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ABSTRACT
Background. Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive
interstitial lung disease, characterized by a decline in lung function. To date, the
pathophysiologic mechanisms associated with lung dysfunction remain unclear, and
no effective therapy has been identified to improve lung function.
Methods. In the present study, we used weighted gene co-expression network analysis
(WGCNA) to identify key modules and hub genes associated with lung function in
IPF. Three datasets, containing clinical information, were downloaded from Gene
Expression Omnibus. WGCNA was performed on the GSE32537 dataset. Differentially
expressed gene s (DEGs) between IPF patients and healthy controls were also identified
to filter hub genes. The relationship between hub genes and lung function was then
validated using the GSE47460 and GSE24206 datasets.
Results. The red module, containing 267 genes, was positively correlated with the
St. George’s Respiratory Questionnaire score (r = 0.37, p < 0.001) and negatively
correlated with the percent predicted forced vital capacity (FVC% predicted) (r =
−0.46, p< 0.001) and the percent predicted diffusion capacity of the lung for carbon
monoxide (Dlco% predicted) (r = −0.42, p < 0.001). Gene Ontology and Kyoto
Encyclopedia of Genes and Genomes enrichment analysis suggested that the genes in
the red module were primarily involved in inflammation and immune pathways. Based
on Module Membership and Gene Significance, 32 candidate hub genes were selected
in the red module to construct a protein-protein interaction network . Based on the
identified DEGs and the degree of connectivity in the network, we identified three hub
genes, including interleukin 6 (IL6), suppressor of cytokine signaling-3 (SOCS3), and
serpin family Emember 1 (SERPINE1). In the GSE47460 dataset, Spearman correlation
coefficients between Dlco% predicted and expression levels of IL6, SERPINE1, SOCS3
were –0.32, –0.41, and –0.46, respectively. Spearman correlation coefficients between
FVC% predicted and expression levels of IL6, SERPINE1, SOCS3 were –0.29, –0.33,
and –0.27, respectively. In the GSE24206 dataset, all three hub genes were upregulated
in patients with advanced IPF.
Conclusion. We identified three hub genes that negatively correlated with the lung
function of IPF patients. Our results provide insights into the pathogenesis underlying
the progressive disruption of lung function, and the identified hub genes may serve as
biomarkers and potential therapeutictargets for the treatment of IPF patients.
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INTRODUCTION
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive interstitial lung disease
of unknown etiology, characterized by fibrosis or structural deformations, honeycomb
lung, plaque pulmonary parenchymal fibrosis, and fibroblast foci (Raghu et al., 2011;
Richeldi, Collard & Jones, 2017). The median survival time after diagnosis is 2–3 years
(Kim, Perlman & Tomic, 2015; Martinez et al., 2017; Richeldi, Collard & Jones, 2017). To
date, only pirfenidone and nintedanib have been approved by the United States Food and
Drug Administration to treat patients with IPF. However, these treatments merely slow
the progression of IPF, without improving lung function (Costabel et al., 2019; Costabel
et al., 2017; Richeldi et al., 2014; Richeldi et al., 2020). Studies have confirmed that age,
genetics, environmental factors, maladaptive repair processes, and the immune system are
involved in the etiology of IPF (Martinez et al., 2017; Meng et al., 2020; Richeldi, Collard &
Jones, 2017). However, the pathophysiologic mechanisms that underly IPF are complex
and remain incompletely understood (Lederer & Martinez, 2018; Richeldi, Collard & Jones,
2017).

Transcriptomics studies of patients with IPF have demonstrated that transcriptional
changes are involved in the pathophysiologic mechanisms of these diseases (Yang et al.,
2007; Zuo et al., 2002). Genes that are differentially expressed in different groups are almost
always associated with a particular disease phenotype (Huang et al., 2015; Konishi et al.,
2009; Todd et al., 2019). Yang and colleagues (2013) analyzed the transcriptional profiles
of lung tissue, collected from IPF patients and non-diseased controls, and found that
the elevated expression of cilium genes was associated with more extensive microscopic
honeycombing. Boon et al. (2009) studied the lung expression profiles of six patients with
relatively stable IPF and six patients with progressive IPF, and found that genes associated
with cell proliferation, migration, and cell morphology were highly expressed in the
progressive IPF group relative to the stable IPF group.

The Gene Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo) is a public
database that provides a large quantity of gene expression datasets. These datasets can
be downloaded freely and reused, to reveal the molecular pathogenesis of diseases. In
this study, to identify key modules and hub genes associated with lung function in IPF,
we downloaded datasets containing information regarding the clinical characteristics of
lung function from GEO and performed weighted gene co-expression network analysis
(WGCNA) on one dataset. Our study provides insights into the pathogenesis of progressive
lung function decline in IPF, and the identified hub genes may represent therapeutic targets
for the treatment of IPF patients.
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Figure 1 Workflow of this study.
Full-size DOI: 10.7717/peerj.9848/fig-1

MATERIALS & METHODS
Microarray data
Figure 1 shows the workflow of our study. On the GEO home page, ‘‘IPF’’ was used as
the search term. We selected datasets according to the following criteria: (1) the gene
expression profile was measured using microarray chip technology; (2) the samples for the
study were lung tissues from healthy donors or patients with IPF; (3) the dataset provided
raw data or a gene expression matrix; and (4) the dataset contained information regarding
the clinical characteristics of lung function. Finally, we selected two datasets, GSE32537
and GSE47460. Although the GSE24206 dataset did not contain clinical characteristics,
the patients with IPF were divided into two groups in this dataset. Lung samples that were
obtained at the time of biopsy were considered to represent early IPF, whereas samples
obtained at the time of explant were considered to represent advanced IPF (Meltzer et al.,
2011). Therefore, the GSE24206 dataset was also included. Table S1 shows the details of
the three datasets.

Data preprocessing
We downloaded the raw data for GSE32537 and GSE24206. The raw data was obtained in
CEL format. Data quality control was performed before data analysis. We used the affyPLM
package (, http://www.bioconductor.org/packages/release/bioc/html/affyPLM.html,
v.1.60.0) to assess the array quality, by calculating relative log expression (RLE) and
normalized unscaled error (NUSE). We used the affy package (http://bioconductor.
org/packages/release/bioc/html/affy.html, v.1.62.0) to normalize the array data by using
the robust multi-array average (RMA) method. Then, we annotated the probes using
platform annotation files, and genes that were represented by more than one probe were
used to calculate the average gene expression levels. The gene expression matrix file for
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Table 1 Demographic data for subjects used in this study.

Characters GSE32537 (93 IPF) GSE47460 (86 IPF)

Age (years) 62.81± 8.32 63.65± 7.89
SGRQ score 46.81± 20.90 –
FEV1% predicted – 68.20± 16.88
FVC% predicted 62.76± 15.86 61.38± 15.35
Dlco% predicted 46.76± 20.22 47.28± 18.71
Sex (%)

Male 62(67) 61(71)
Female 31(33) 25(29)

Smoking history (%)
Non-smoke 32(34) 30(35)
Former 61(66) 56(65)

Notes.
Data are presented as mean± SD or n(%).

GSE47460, which had been normalized using a cyclic loess approach in pairwise fashion,
was downloaded. We extracted IPF samples with complete data, including lung function
[percent predicted forced vital capacity (FVC% predicted) and percent predicted diffusion
capacity of the lung for carbon monoxide (Dlco% predicted)], and healthy donor samples
from the GSE32537 and GSE47460 datasets. Table 1 shows the clinical characteristics of
IPF patients in both datasets.

Construction of co-expression network with WGCNA
Co-expression network analysis was performed using the R package ‘‘WGCNA’’
(https://cran.r-project.org/web/packages/WGCNA/index.html, v.1.69) (Langfelder &
Horvath, 2008). First, we extracted the gene expression profile data from IPF patients in the
GSE32537 dataset and selected the top 25% of variable genes. We constructed scale-free
co-expression networks using these genes. Second, we used Pearson correlation matrices
to calculate a correlation matrix among these genes. Third, we transformed the correlation
matrix into a weighted adjacency matrix, through a power function. To construct scale-free
networks, we chose the soft threshold power value, using the following criteria (Zhang &
Horvath, 2005): (1) the generated Scale free Topology Model Fit R2 > 0.90; (2) the mean
connectivity in the network should be as large as possible; and (3) the slope of the linear
fitting model is around −1. Finally, we performed automatic network construction and
module detection, using the following major parameters: power = 4, networkType =
unsigned, maxBlockSize = 4,000, minModuleSize = 30, and mergeCutHeight = 0.25.

Identification of clinically significant modules
Module eigengene represents the first principal component of a given module and the
gene expression profiles in this module. When a sample trait is incorporated into the
co-expression network, the correlation coefficient between the module eigengene and this
sample trait can be calculated. The eigengene significance is defined as the correlation
coefficient. Based on the eigengene significance, we were able to identify key modules.
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Gene ontology and KEGG enrichment analysis
To further understand the functions of the genes in the key module, Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses
were performed on the genes in the key module, using the R package ‘‘clusterProfiler’’
(http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html,v.12.0)
(Yu et al., 2012). We selected GO terms including biological process (BP), cellular
component (CC), and molecular function (MF). We regarded a p-value <0.01 as the
cut-off criterion.

Identification of candidate hub genes in key modules
Module membership (MM) represents the intramodular connectivity of any gene in a
given module. A higher absolute value of MM indicates that a gene has a higher negative
or positive correlation with the module eigengenes (MEs). Gene significance (GS) is used
to incorporate external information into the co-expression network. A higher absolute
value of GS indicates the increased biological significance of a gene for a given clinical trait.
Candidate hub genes in key modules were selected based on |MM|>0.8 and |GS|>0.2.

Identification of DEGs
Differentially expressed genes (DEGs) between IPF lung tissues and healthy lung tissues
were analyzed by the R package ‘‘limma’’ (http://www.bioconductor.org/packages/release/
bioc/html/limma.html, v.3.42.2). DEGs were defined by |log 2 Fold Change|>0.5 and
adjusted p-value <0.05. During this process, the adjusted p-value, which is referred
to as the false discovery rate (FDR), was calculated using the Benjamini–Hochberg
correction method. Subsequently, the lists obtained from the differential expression
analysis of each dataset were integrated, using the R package ‘‘RobustRankAggreg (RRA)’’
(https://cran.r-project.org/web/packages/RobustRankAggreg/index.html, v.1.1) (Bardou
et al., 2014).

Construction of a protein–protein interaction network
We uploaded candidate hub genes into the STRING database (https://string-db.org,
v.11.0) to construct a protein-protein interaction (PPI) network, and we visualized
the interaction relationships among the candidate hub genes using Cytoscape software
(https://cytoscape.org, v.3.7.0). Finally, we identified hub genes according to the DEGs and
the degree of connectivity within the network.

Validation of hub genes
We validated the hub genes using the GSE47460 and GSE24206 datasets. The differential
expression of hub genes between healthy lung tissue and IPF lung tissue in the
GSE47460 dataset were calculated and visualized using the R package ‘‘ggpubr’’
(https://cran.r-project.org/web/packages/ggpubr/index.html, v.0.2.5). Then, we validated
the correlations between lung function and expression levels of hub genes, using the R
package ‘‘ggstatsplot’’ (https://cran.r-project.org/web/packages/ggstatsplot/index.html,
v.0.3.1). We also validated the differential expression of hub genes between early IPF and
advanced IPF using the GSE24206 dataset.

Xia et al. (2020), PeerJ, DOI 10.7717/peerj.9848 5/22

https://peerj.com
http://www.bioconductor.org/packages/release/bioc/html/clusterProfiler.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
http://www.bioconductor.org/packages/release/bioc/html/limma.html
https://cran.r-project.org/web/packages/RobustRankAggreg/index.html
https://string-db.org
https://cytoscape.org
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47460
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24206
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47460
https://cran.r-project.org/web/packages/ggpubr/index.html
https://cran.r-project.org/web/packages/ggstatsplot/index.html
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE24206
http://dx.doi.org/10.7717/peerj.9848


Statistical analysis
Continuous variables were compared between two groups by applying the Student’s t -test
or a non-parametric Wilcoxon rank-sum test, as appropriate. Associations between the
expression levels of genes and lung function were determined by Spearman correlation
coefficient. All statistical analyses were performed in R (v.3.6.1), and p< 0.05 was regarded
as significant.

RESULTS
Weighted gene co-expression network analysis (WGCNA)
Weselected the top 25%of variant genes identified in theGSE32537 dataset. A total of 93 IPF
samples, containing 4,705 genes, were used for WGCNA. Hierarchical clustering analysis
was performed, and when the threshold was set to 60, GSM806234 and GSM806335 were
considered to be outliers (Fig. S1). Outlier samples were removed prior to further analyses.
When the soft threshold power value was set to 4, the co-expression network exhibited an
approximate scale-free topology (Figs. 2A–2C).WGCNA identified 14modules, containing
between 65 and 1,672 genes (Fig. 2D).

The red module had the strongest positive correlation with the St. George’s Respiratory
Questionnaire (SGRQ) score (r = 0.37, p< 0.001) and was negatively correlated with
FVC% predicted (r =−0.46, p< 0.001) and Dlco% predicted (r =−0.42, p< 0.001, Fig.
2E). The red module was identified as the key module. We randomly selected 400 genes, to
visualize the relationship among the modules, using a heatmap plot showing topological
overlap (Fig. 3A). The heatmap suggests a high degree of independence among the modules
and genes at the tip of the module branches have high intramodular connectivity with
the rest of the genes in this module. Then, the correlations between MM and GS for
FVC% predicted, Dlco% predicted, and SGRQ score in the red module were shown in
Figs. 3B–3D. GS showed a significant correlation with the MM in the red module, which
indicated that the hub genes identified in the red module tended to be highly associated
with lung function.

GO and KEGG enrichment analysis
GO and KEGG pathway enrichment analyses were performed on the genes in the
red module. GO enrichment results demonstrated that the red module genes were
significantly associated with inflammation and immune responses, such as the response
to lipopolysaccharide (LPS), leukocyte differentiation, cell chemotaxis, and the cellular
response to molecules of bacterial origin. The KEGG pathway enrichment results indicated
that genes in the red module were primarily enriched in the tumor necrosis factor (TNF)
signaling pathway, the interleukin (IL)-17 signaling pathway, the Janus kinase (JAK)-signal
transducer and activator of transcription (STAT) signaling pathway, and cytokine-cytokine
receptor interactions. GO and KEGG terms were ranked in ascending order, based on p-
values. Table 2 shows the top 10 categories associated with BP, CC, and MF. Table 3 shows
the top 10 categories identified in the KEGG analysis.
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Figure 2 Construct gene co-expression network and identify key module in 93 IPF patients from
GSE32537 dataset. (A–C) The process of selecting soft threshold. When we set R2 > 0.9, β = 4 is
chosen, log-log plot of network connectivity distribution is almost a straight line, which represents
that the network is approximately scale-free topology. (D) Cluster dendrogram and module color.
branch represents gene cluster by average linkage hierarchical clustering and each color under cluster
represents one co-expression gene module by the Dynamic Tree Cut. (E) Heatmap of correlation between
module eigengenes and clinical traits. red color indicates positive correlation and green indicates negative
correlation. In each cell, the up number represents correlation coefficients and the bottom number
represents P value. The red module has the strongest negative correlation with lung function.

Full-size DOI: 10.7717/peerj.9848/fig-2

Candidate hub genes in the red module
We selected candidate hub genes in the red module, based on the criterion: |MM| > 0.8
and |GS|> 0.2. Then we examined the intersection of the three gene lists (Fig. 4A). Finally,
32 genes were identified as candidate hub genes. Table 4 shows the GS and MM values for
the 32 candidate hub genes in the red module.

Identification of DEGs
Using the thresholds |log2 FoldChange| >0.5 and adjusted p-values < 0.05, we identified
1,347 upregulated and 1,023 downregulated genes in the GSE32537 dataset and 3,285
upregulated and 596 downregulated genes in the GSE24206 dataset. RRA was performed
to integrate the DEGs identified in the GES32537 and GSE24206 datasets. Finally, 247
upregulated and 78 downregulated genes were identified (Table S2). The top 20 upregulated
and the top 20 downregulated genes are shown in Fig. 4B.
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Figure 3 Module analysis. (A) Network heatmap plot of randomly selecting 400 genes. Branch repre-
sents gene cluster and each color under cluster represents one co-expression gene module. Light red indi-
cates low overlap and darker red indicates higher overlap. The heatmap indicated the high independence
between each module and genes at the tip of the module branches have high intramodular connectiv-
ity with the rest of the genes in this module. (B–D): scatter plot of gene significance (GS) for Dlco% pre-
dicted, FVC% predicted and SGRQ score versus module membership (MM) in the red module. GS is sig-
nificantly correlated with MM, which indicated that the hub genes in the red module tended to be highly
associated with lung function.

Full-size DOI: 10.7717/peerj.9848/fig-3

Construction of the PPI network and identification of hub genes
We uploaded 32 candidate hub genes into the STRING database to construct a PPI network
(Fig. S2). Cytoscape software was used to visualize the interaction relationships among these
hub nodes. The nodes with no connections were removed. The final network contained
20 nodes and 35 edges (Fig. 4C). The nodes with the top 5 degree of connectivity were
interleukin-6 (IL6), MYC proto-oncogene (MYC), serpin family E member 1 (SERPINE1),
thrombospondin-1 (THBS1), suppressor of cytokine signaling 3 (SOCS3), and CCAAT
enhancer-binding protein delta (CEBPD).

The differentially expression genes IL6, THBS1, SERPINE1, and SOCS3 were also
included in the previously described nodes with great degree of connectivity in the PPI
network (Fig. 4C). Therefore, we identified IL6, SERPINE1, THBS1, and SOCS3 as hub
genes, based on differential expression and connectivity.
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Table 2 GO enrichment analysis in red module.

Category ID Description P-value Count

BP GO:0002237 response to molecule of bacterial origin 4.95E−21 34
BP GO:0032496 response to lipopolysaccharide 1.16E−20 33
BP GO:0002521 leukocyte differentiation 8.93E−16 35
BP GO:0060326 cell chemotaxis 1.29E−14 25
BP GO:0050727 regulation of inflammatory response 2.41E−14 33
BP GO:0048511 rhythmic process 2.32E−13 25
BP GO:0071222 cellular response to lipopolysaccharide 4.61E−13 20
BP GO:0071219 cellular response to molecule of bacterial origin 9.66E−13 20
BP GO:0071216 cellular response to biotic stimulus 1.01E−12 21
BP GO:0001819 positive regulation of cytokine production 4.26E−12 29
CC GO:0101003 ficolin-1-rich granule membrane 1.39E−05 7
CC GO:0070820 tertiary granule 5.88E−05 10
MF GO:0001228 DNA-binding transcription activator activity, RNA

polymerase II-specific
3.56E−11 26

MF GO:0005125 cytokine activity 2.30E−07 13
MF GO:0000978 RNA polymerase II proximal promoter sequence-specific

DNA binding
2.61E−06 20

MF GO:0070888 E-box binding 4.68E−06 7
MF GO:0000987 proximal promoter sequence-specific DNA binding 5.15E−06 20
MF GO:0030545 receptor regulator activity 7.72E−06 19
MF GO:0050786 RAGE receptor binding 1.10E−05 4
MF GO:0048018 receptor ligand activity 1.11E−05 18
MF GO:0001227 DNA-binding transcription repressor activity, RNA

polymerase II-specific
1.51E−05 13

MF GO:0000980 RNA polymerase II distal enhancer sequence-specific DNA
binding

2.74E−05 8

Table 3 KEGG enrichment analysis in red module.

ID Description p-value Count

hsa04668 TNF signaling pathway 9.26E−16 21
hsa04657 IL-17 signaling pathway 1.11E−12 17
hsa04625 C-type lectin receptor signaling pathway 7.24E−10 15
hsa04380 Osteoclast differentiation 1.36E−08 15
hsa05144 Malaria 2.19E−08 10
hsa04060 Cytokine-cytokine receptor interaction 2.44E−08 22
hsa04933 AGE-RAGE signaling pathway in diabetic complications 3.17E−07 12
hsa04064 NF-kappa B signaling pathway 4.88E−07 12
hsa04630 JAK-STAT signaling pathway 1.89E−06 14
hsa04061 Viral protein interaction with cytokine and cytokine

receptor
2.41E−06 11
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Figure 4 Construct PPI network and identify hub genes. (A) The intersection of candidate hub genes
for clinical traits: Dlco% predicted, FVC% predicted and SGRQ score. (B) The top 20 upregulated genes
and top 20 downregulated genes in IPF compared with healthy donors. The numbers in each rectangle
show the logarithmic fold-change of genes in each dataset. Red represents upregulated gene and blue rep-
resents downregulated genes. (C) The PPI network visualized by Cytoscape software. We removed the 11
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shade of red represents the higher degree of connectivity and, conversely, the darker shade of blue color
indicates the lower degree of connectivity.

Full-size DOI: 10.7717/peerj.9848/fig-4

Validation of hub genes using additional GEO datasets
We compared the expression levels of hub genes between IPF and healthy lung tissues
in the GSE47460 dataset (Figs. 5A–5C) and found that IL6, SERPINE1, and SOCS3 were
significantly downregulated in IPF patients compared with healthy controls. However,
THBS1 showed no significantly different expression (p= 0.75), which was excluded from
further analyses (Fig. S3). In the GSE24206 dataset, the expression of the final three
hub genes were lower in the early IPF group than in the advanced IPF group, although
the expression of SOCS3 did not differ significantly between the two groups (p= 0.074,
Figs. 5D–5F). The Spearman correlation coefficients between Dlco% predicted and IL6,
SERPINE1, SOCS were calculated as −0.32, −0.41, and −0.46, respectively (Figs. 6A–6C).
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Table 4 GS andMM of 32 candidate hub genes in red module.

SGRQ score FVC% predicted Dlco% predicted

Gene GS P-value GS P-value GS P-value MM P-value

NAMPT 0.36 4.34E−04 −0.47 2.90E−06 −0.45 8.02E−06 0.92 6.27E−38
GADD45B 0.32 1.98E−03 −0.31 2.75E−03 −0.30 3.47E−03 0.89 4.89E−32
THBS1 0.39 1.62E−04 −0.51 1.83E−07 −0.50 5.65E−07 0.88 3.46E−31
FOSL2 0.28 6.70E−03 −0.42 3.77E−05 −0.38 1.96E−04 0.88 2.49E−30
MYC 0.24 2.47E−02 −0.38 1.79E−04 −0.32 1.85E−03 0.87 2.99E−29
ITPKC 0.24 2.17E−02 −0.33 1.28E−03 −0.30 4.06E−03 0.86 5.16E−28
MT2A 0.28 7.17E−03 −0.44 1.55E−05 −0.33 1.41E−03 0.86 1.12E−27
NNMT 0.32 1.70E−03 −0.44 1.07E−05 −0.36 4.28E−04 0.86 1.59E−27
IL6 0.23 2.90E−02 −0.31 2.38E−03 −0.32 1.97E−03 0.86 1.96E−27
ERRFI1 0.29 4.82E−03 −0.38 2.04E−04 −0.38 2.27E−04 0.85 5.48E−27
SERPINE1 0.44 1.31E−05 −0.52 1.03E−07 −0.44 1.27E−05 0.85 2.54E−26
NFIL3 0.39 1.30E−04 −0.47 2.04E−06 −0.46 4.48E−06 0.85 4.49E−26
ITPRIP 0.29 4.77E−03 −0.27 1.11E−02 −0.27 1.01E−02 0.85 5.69E−26
PPP1R15B 0.24 2.06E−02 −0.31 3.14E−03 −0.29 5.05E−03 0.84 6.93E−26
SOCS3 0.28 6.45E−03 −0.27 8.37E−03 −0.30 4.31E−03 0.84 7.13E−26
SLC19A2 0.29 5.37E−03 −0.41 5.63E−05 −0.35 6.25E−04 0.84 1.44E−25
ADAMTS4 0.38 2.01E−04 −0.39 1.09E−04 −0.45 8.18E−06 0.84 1.61E−25
ZFP36 0.29 5.28E−03 −0.34 8.46E−04 −0.23 2.76E−02 0.84 2.86E−25
ADAMTS1 0.28 6.54E−03 −0.31 3.16E−03 −0.32 1.76E−03 0.83 4.31E−24
PHLDA1 0.38 2.37E−04 −0.47 2.38E−06 −0.46 5.78E−06 0.82 9.88E−24
SLC2A3 0.28 6.77E−03 −0.32 1.99E−03 −0.36 4.59E−04 0.82 1.25E−23
MT1M 0.24 2.38E−02 −0.34 9.14E−04 −0.26 1.47E−02 0.82 2.04E−23
MT1JP 0.26 1.31E−02 −0.39 1.38E−04 −0.34 9.10E−04 0.82 2.75E−23
MT1A 0.20 5.13E−02 −0.40 9.79E−05 −0.29 5.49E−03 0.82 3.22E−23
C11orf96 0.41 5.88E−05 −0.36 5.21E−04 −0.36 5.22E−04 0.82 6.40E−23
CDKN1A 0.33 1.65E−03 −0.36 3.92E−04 −0.32 1.74E−03 0.82 6.53E−23
CEBPD 0.27 9.00E−03 −0.32 1.72E−03 −0.28 6.34E−03 0.81 1.88E−22
APOLD1 0.28 6.42E−03 −0.23 2.85E−02 −0.26 1.37E−02 0.81 2.85E−22
SLCO4A1 0.32 2.26E−03 −0.45 7.30E−06 −0.40 1.00E−04 0.81 3.52E−22
RNF122 0.23 2.58E−02 −0.28 7.49E−03 −0.25 1.56E−02 0.81 4.16E−22
PELI1 0.25 1.89E−02 −0.25 1.49E−02 −0.32 1.87E−03 0.80 9.76E−22
SOCS2 0.26 1.15E−02 −0.24 2.09E−02 −0.32 1.89E−03 0.80 9.89E−22

The Spearman correlation coefficients between FVC% predicted and IL6, SERPINE1,
SOCS3 were calculated as −0.29, −0.33, and −0.27, respectively (Figs. 6D–6F).

DISCUSSION
In the present study, we found a significant inverse correlation between the red module
and lung function by performing WGCNA on an IPF dataset. We identified three hub
genes, including IL6, SERPINE1, and SOCS3. The expression levels of IL6, SOCS3, and
SERPINE1 were negatively correlated with lung function, and the advanced IPF patients
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Figure 5 Validate the expression of hub genes in different groups. (A–C) In GSE47460 dataset, IL6,
SERPINE1 and SOCS3 were significantly downregulated in IPF when compared with normal lung tissues.
(D–E) In GSE24206 dataset, IL6 and SERPINE1 were significantly overexpressed in advanced IPF when
compared with early IPF, (F) while the expression of SOCS3 was no statistical difference between the two
groups (p= 0.074).

Full-size DOI: 10.7717/peerj.9848/fig-5

had higher expression levels of these genes than early IPF patients in the validated datasets.
The most important characteristic of patients with IPF is a decline in lung function, and
declines of FVC and Dlco can predict mortality risk (Frankel & Schwarz, 2009; Nathan et
al., 2011). However, the pathophysiologic mechanisms of lung dysfunction remain unclear.
Our results may provide insights into the pathogenesis underlying the progression of lung
function.

WGCNA is a bioinformatic algorithmandhas beenused to identify candidate biomarkers
and therapeutic targets for many diseases, especially in cancer and neuroscience research
(Giulietti et al., 2017; Li et al., 2020; Niemira et al., 2019; Rangaraju et al., 2018; Spiers et al.,
2015; Zeleznik et al., 2020). We can identify clusters (modules) of highly correlated genes
using WGCNA. WGCNA can systematically study the interconnectedness among all genes
and convert gene expression data into a weighted co-expression network, which represents
its most important advantage (Zhang & Horvath, 2005; Zhao et al., 2010). Based on the
module significance, we can incorporate external clinical information into the network
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(D–F) The relationship between expression levels of IL6, SERPINE1, SOCS3 and the FVC% predicted of
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IL6, SERPINE1, SOCS3 were−0.29 (p= 0.007),−0.33 (p= 0.002),and−0.27 (p= 0.012), respectively.

Full-size DOI: 10.7717/peerj.9848/fig-6

and identify key modules and hub genes, which are believed to play core roles in the
pathogenesis of the disease.

The GSE32537 and GSE47460 datasets contain the transcriptomic profiles and clinical
characteristics of the included subjects. Studies examining IPF have been previously
performed using these datasets. Yang and colleagues (2013) analyzed the GSE32537
dataset and found that the high expression of cilium-associated genes was associated
with increased microscopic honeycombing. McDonough and colleagues selected DEGs
to construct co-expression networks by performing WGCNA on GSE47460 dataset and
identified regulatory factors that were associated with co-expression networks in IPF
(McDonough et al., 2019). In the present study, we selected the top 25% variant genes to
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perform WGCNA on patients with IPF in the GSE32537 dataset. We found that the red
module had the strongest negative correlations with FVC%predicted andDlco% predicted.
We identified IL6, SERPINE1, and SOCS3 as hub genes in the redmodule.We also validated
the relationships between expression levels of these hub genes and lung function using
independent datasets. To our knowledge, this study is the first to identify and validate genes
that are negatively associated with lung function, based on transcriptomic files combined
with the WGCNA approach.

In this study, the red module had the strongest negative correlation with lung
function. The enrichment analysis of genes in the red module showed that they were
primarily associated with inflammatory and immune responses, which indicated that the
inflammatory and immune pathways are involved in the pathophysiologic mechanisms of
lung dysfunction. Althoughmulticenter trials of anti-inflammatory drugs for IPF treatment
have failed (Farrand et al., 2020; King et al., 2009; Raghu et al., 2004; Raghu et al., 2017;
Raghu et al., 2008), the immune system continues to be regarded as playing an important
role in the development of fibrosis (Heukels et al., 2019; Wynn, 2011). Furthermore, many
studies have also confirmed that changes in immune activity or the proportions of immune
cell populations may be associated with declines in lung function (Adegunsoye et al., 2016;
Gilani et al., 2010; Xue et al., 2013).

Interestingly, all three hub genes were downregulated in the IPF group compared with
their levels in the healthy group. We speculated that hub genes had different molecular
functions under different conditions. IL6 is a multifunctional cytokine, belonging to the
IL-6 family of cytokines. Various cells, including alveolar macrophages, lung fibroblasts,
and fibrocytes, can express and secret IL6 (Shahar et al., 1996). Takizawa and colleagues
observed that IL6 concentrations were significantly higher in bronchoalveolar lung fluid
(BALF) from IPF patients than in BALF from healthy controls (Takizawa et al., 1997).
However, in this study, when compared with healthy lung tissues, the expression of
IL6 was lower in IPF tissues. A previous study demonstrated that IL6 promoted the
proliferation of IPF lung fibroblasts but inhibited the proliferation of normal lung
fibroblasts (Moodley et al., 2003b). In another study, in lung fibroblasts derived from
IPF patients, IL6 contributed to resistance against Fas-induced apoptosis by increasing the
expression of the anti-apoptotic protein BCL-2, whereas normal lung fibroblasts became
more sensitive to Fas-induced apoptosis, which was mediated by the increased expression
of the pro-apoptotic protein Bax when exposed to IL6 (Moodley et al., 2003a). In the
present study, the expression of IL6 was negatively associated with lung function, which
also indicated IL6 promoted the progression of IPF.

Suppressor of cytokine signaling-3 (SOCS3) is a well-known regulatory cornerstone
of intracellular signaling. SOCS3 not only acts as a feedback inhibitor of the JAK/STAT
signaling pathway but can also regulate many cytokines, growth factors, and hormones
associated with many cellular processes (Mahony et al., 2016). Whether SOCS3 acts to
protect against or promote disease progression depends on the cells and pathological
processes in which it is expressed, especially in innate and adaptive immunity (Kubo,
Hanada & Yoshimura, 2003; Yasukawa et al., 2003). A previous study demonstrated that
silencing Socs3 in a rat diastolic heart failure model was able to significantly diminish
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myocardial fibrosis and the inflammatory response (Gao et al., 2019). SOCS3 function has
also been studied in lung diseases (Gao &Ward, 2007). Studies have revealed that SOCS3
acts as a pro-inflammatory molecule, by suppressing the IL-6-gp130 signaling pathway,
and mice lacking Socs3 in macrophages and neutrophils were resistant to LPS-induced
shock (Yasukawa et al., 2003). Aboulhoda studied age-dependent SOCS3 expression and
myocardial fibrosis, and found that SOCS3 activity was correlated with myocardial fibrosis
(Aboulhoda, 2017). IPF is an aging-related disease, but the role played by SOCS3 in
pulmonary fibrosis has not been well-studied. The present study revealed a negative
correlation between SOCS3 expression and lung function in IPF patients, but the detailed
mechanisms require further study.

Serpin Family E Member 1 (SERPINE1), also known as plasminogen activator
inhibitor-1 (PAI-1), is the primary inhibitor of plasminogen activators, such as tissue-
type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA),
and acts as a major regulator of the fibrinolytic system. Impaired fibrinolytic activity
is a common characteristic of acute and chronic inflammatory lung diseases, especially
pulmonary fibrosis (Marudamuthu et al., 2015). Eitzman studied transgenic mice that
either overexpressed or were completely deficient inmurine Serpine1, and found that higher
levels of Serpine1 expression can increase collagen accumulation following inflammatory
lung injury (Eitzman et al., 1996). Osterholzer and colleagues studied type-II alveoli
epithelial cells in a lung injury model and found results consistent with those reported
by previous studies (Osterholzer et al., 2012). Senoo and colleagues directly suppressed the
expression of Serpine1 in mice, through the intrapulmonary administration of Serpine1-
siRNA, to reduce pulmonary fibrosis. They found that the suppression of epithelial-to-
mesenchymal transformation may be involved in IPF (Senoo et al., 2010). The present
study confirmed a negative correlation between the expression level of SERPINE1 and IPF.

We identified IL6, SOCS3, and SERPINE1 as IPF hub genes that were negatively
associated with lung function. These hub genes may serve as therapeutic targets for IPF
treatment. The downregulation of SERPINE1 has been shown to attenuate pulmonary
fibrosis (Senoo et al., 2010), indicating the reliability of the our results. However, the
present study also has some limitations. First, the study is based on bioinformatics analysis,
and the results remain to be verified by further research. Second, datasets that met the
inclusion criteria were rare, which may decrease the statistical effectiveness. Finally, the
difference of GeneChips between the datasets may also affect the reliability of the results.

CONCLUSIONS
In summary, we performed WGCNA on an IPF dataset. Among 14 modules, the red
module was identified as a key module because it displayed the strongest correlation with
lung function. Genes in the red module were primarily enriched in inflammatory and
immune pathways. IL6, SOCS3, and SERPINE1 were identified as hub genes from the red
module. We also found that IL6, SOCS3, and SERPINE1 were negatively associated with
lung function in IPF patients. These results may suggest that further study is warranted to
investigate the roles played by hub genes in IPF progression. Based on this research, the
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proteins encoded by these hub genes may serve as biomarkers for IPF severity and may
represent therapeutic targets for IPF.
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