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Background: Transcriptomic profiles have shown promise as predictors of response to neoadjuvant chemotherapy in breast
cancer (BC). This study aimed to explore their predictive value in the advanced BC (ABC) setting.

Methods: In a Phase 3 trial of first-line chemotherapy in ABC, a fine needle aspiration biopsy (FNAB) was obtained at baseline.
Intrinsic molecular subtypes and gene modules related to immune response, proliferation, oestrogen receptor (ER) signalling and
recurring genetic alterations were analysed for association with objective response to chemotherapy. Gene-set enrichment
analysis (GSEA) of responders vs non-responders was performed independently. Lymphocytes were enumerated in FNAB smears
and the absolute abundance of immune cell types was calculated using the Microenvironment Cell Populations counter method.

Results: Gene expression data were available for 109 patients. Objective response to chemotherapy was statistically significantly
associated with an immune module score (odds ratio (OR)¼ 1.62; 95% confidence interval (CI), 1.03–2.64; P¼ 0.04). Subgroup
analysis showed that this association was restricted to patients with ER-positive or luminal tumours (OR¼ 3.54; 95%, 1.43–10.86;
P¼ 0.012 and P for interaction¼ 0.04). Gene-set enrichment analysis confirmed that in these subgroups, immune-related gene sets
were enriched in responders.

Conclusions: Immune-related transcriptional signatures may predict response to chemotherapy in ER-positive and luminal ABC.

Immunohistochemical staining of tumour tissue for oestrogen
receptor (ER) and human epidermal growth factor receptor 2
(HER2) is used to select appropriate candidates for endocrine
manipulation and HER2-guided treatment in patients with
advanced breast cancer (ABC). However, the development of
robust, reproducible markers that predict benefit derived from
chemotherapy in this patient population has been more challen-
ging. Clinicopathologic characteristics such as Ki67 staining and

chemoresistance assays have been used with variable levels of
success (Amadori et al, 1997; Schrag et al, 2004). The evolution of
the biologic characteristics of the tumour throughout the disease
trajectory until the manifestation of clinically overt metastases
underscores the value of metastatic lesion biopsies that may
accurately capture the temporal heterogeneity of the tumour and
thus be a better source of predictive biomarkers (Amir et al, 2012;
Lindstrom et al, 2012; Kimbung et al, 2015). Liquid biopsy for
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enumeration of circulating tumour cells has been shown to be
prognostic but not predictive for chemotherapy response in ABC
and is not recommended for guiding treatment (Smerage et al,
2014).

The role of the immune microenvironment as a prognostic and
predictive factor in BC has recently been elucidated. An easily
accessible marker, tumour-infiltrating lymphocytes (TILs) as
assessed by haematoxylin–eosin (H&E) staining, has been
extensively studied and shown to harbour significant prognostic
power in patients with triple-negative and HER2-positive BC, but
not luminal BC, in the neoadjuvant and adjuvant settings (Loi et al,
2013; Adams et al, 2014; Denkert et al, 2015), and in HER2-
positive ABC (Luen et al, 2017). Moreover, TILs predict pathologic
complete response after neoadjuvant chemotherapy (Denkert et al,
2015), but their predictive significance in the metastatic setting is
currently unknown (Savas et al, 2016). In addition, questions
remain over the possibility of sampling bias, the inability to
distinguish between lymphocyte subpopulations and the inter-
observer and intraobserver variability, despite guidelines issued by
the TILs working group regarding the interpretation of H&E
sections (Salgado et al, 2015).

Gene expression analysis has emerged as a powerful tool that
has repeatedly demonstrated the molecular diversity of BC (Perou
et al, 2000; Sotiriou and Pusztai, 2009; Reis-Filho and Pusztai,
2011). Although gene expression signatures have also been
extensively used for the prognostic stratification of both early
and advanced BC, the prediction of response to chemotherapy at
the metastatic setting has been a more complex issue. Factors such
as the intratumoural heterogeneity and the ever-increasing number
of both genetic and epigenetic aberrations that may affect the
chemosensitivity of BC hinder the ability to develop and
standardise predictive gene expression signatures (Sotiriou and
Pusztai, 2009; Reis-Filho and Pusztai, 2011). Gene expression
signatures derived from metastatic lesions have been shown to
harbour prognostic information in patients with ABC (Ng
et al, 2014; Tobin et al, 2015; King et al, 2016). Here we explore
the predictive value for chemotherapy of gene expression
signatures from fine needle aspirations obtained in the advanced
setting.

MATERIALS AND METHODS

Clinical trial, radiology and metastatic biopsies. TEX was a
multicentre, randomised phase III trial (ClinicalTrials.gov identi-
fier NCT01433614) that evaluated the activity of epirubicin and
paclitaxel, with or without capecitabine, as first-line treatment for
locally advanced inoperable or metastatic BC using tailored doses
depending on treatment side effects (see study protocol in the
Supplementary Data). A third treatment group with fluorouracil,
epirubicin and cyclophosphamide was closed short after the study
started. In total, 304 patients were randomised (Hatschek et al,
2012). Enrolment of patients with HER2-positive disease was
initially allowed, but was discontinued after the publication of data
regarding the efficacy of trastuzumab in this patient subgroup.

Radiological tumour assessments were performed per protocol
after every third 3-week chemotherapy cycle and were evaluated
according to the Response Evaluation Criteria In Solid Tumors
(RECIST) version 1.0. Best objective response and the size change
of target lesions were documented and centrally reviewed for each
patient, and were used in this analysis. Progression-free survival
(PFS) was defined as the interval from date of randomisation to
date of disease progression or death. Time to treatment failure
(TTF) was defined as the interval from date of randomisation to
date of end of study treatment for any reason (progression,
patient’s choice, toxicity or death).

As part of the translational aspect of the TEX trial, 149 patients
underwent a biopsy before the start of study treatment from at least
one site (36.7% lymph nodes, 22.5% liver, 18.3% skin, 15.8% breast
and 6.7% from other sites), by fine needle aspiration biopsy
(FNAB) (97.6%) or, in few cases, by core biopsy (2.4%).

The clinical study including the correlative analyses was
approved by the ethics committee at Karolinska Institutet, which
had jurisdiction for all participating centres and by the Swedish
Medical Product Agency. All patients received oral and written
information, and consented to participate.

Gene expression profiling and data analysis. RNA was extracted
from the obtained biopsies and profiled on Rosetta/Merck Human
RSTA Custom Affymetrix 2.0 microarray (Seattle, WA, USA; GEO:
GPL10379), as described previously (Tobin et al, 2015) and are
available at the Gene Expression Omnibus (GEO) database under
accession number GSE56493.

Assignment of the intrinsic subtype in each tumour according to
the PAM50 classification (Parker et al, 2009) has been described
previously (Tobin et al, 2015). For independent confirmation of the
intrinsic subtyping, the Absolute Intrinsic Molecular Subtyping
(AIMS) approach was also utilised (Paquet and Hallett, 2015).

Six gene expression signatures were explored for their predictive
power in patients with ABC treated with first-line chemotherapy in
the TEX trial. These included immune-related (Sota et al, 2014;
Denkert et al, 2015) and proliferation-related gene signatures
(Nielsen et al, 2010), ER signalling-related gene signatures
(Desmedt et al, 2008) and gene signatures associated with the
two most common recurring molecular aberrations in BC (Cancer
Genome Atlas Network, 2012), Phosphatidylinositol-4,5-bispho-
sphate 3-kinase catalytic subunit alpha (PIK3CA) (Loi et al, 2010)
and TP53 mutations (Miller et al, 2005). Gene module scores were
derived as the weighted averages of the expression values of the
constituent signature genes, where the weight for each gene is þ 1
or � 1 depending on the direction with the phenotype in the
original publication (Supplementary Data). Gene expression data
were first collapsed to gene level using a nonspecific filter keeping
only the probe sets with highest interquartile range in the case of
multiple mappings to the same Entrez Gene ID. Only original
probe sets or genes that could be mapped to Entrez Gene IDs were
used. The derived gene modules were named as Immune module 1
(derived from Sota et al, (2014)), Immune module 2 (derived from
Denkert et al (2015)), ESR1 module, Proliferation module, PIC3CA
module and TP53 module. Additional predictive modelling using
all gene-expression data was explored using the R package caret
(version 6.0-71; R Foundation for Statistical Computing, Vienna,
Austria).

Gene-set enrichment analysis (GSEA) of the Reactome gene sets
collection in the Molecular Signatures Database (Broad Institute,
version 5.2, Cambridge, MA, USA) in the comparison responders
versus non-responders was performed using the GSEA Software
(Broad Institute, version 2.2.3) (Subramanian et al, 2005). Genes
were pre-ranked according to moderated t-statistics from a
differential expression analysis using the R/Bioconductor package
limma (version 3.30.4, R Foundation) (Ritchie et al, 2015).

Quantitative assessment of immune infiltrate. Lymphocytes and
cancer cells were counted using FNAB smears from the same
tumour lesions used for gene expression profiling. The smears were
stained by standard H&E or Giemsa and were examined by two
investigators. To be evaluable, a sample had to contain a minimum
of 10 cancer cell clusters of at least 10 cells each. In each cluster,
tumour cells and lymphocytes were enumerated and the average
percentage of lymphocytes was calculated for each smear.

The absolute abundance of eight immune and two stromal cell
populations was estimated using gene expression data with the
Microenvironment Cell Populations counter (MCP-counter)
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method using the R package MCP-counter (version 1.1.0, R
Foundation) (Becht et al, 2016).

Statistical analysis. Objective response rates in two or more
groups were compared with Fisher’s exact test. Progression-free
survival and TTF outcomes in groups were estimated using
Kaplan–Meier curves and compared with the log-rank test. The

association between gene expression signatures and objective
response was assessed using multivariable logistic regression
models with the signature score standardised and as continuous
variable. The models included age, recurrence-free interval and
treatment group as adjustment variables. Test for interaction was
performed by a w2-test of the reduction in deviance when adding
an interaction term to the logistic regression model as compared
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Figure 1. Odds ratio (responder/non-responder) and 95% confidence interval. Odds ratio (responder/non-responder) and 95% confidence
interval per increase in module score of 1 s.d., and adjusted for age and recurrence-free interval, and with stratification by treatment arm, for the
whole cohort and biological subgroups. (A) Immune module 1; (B) Immune module 2; (C) Proliferation module; (D) ESR1 module; (E) PI3CA
module; and (F) TP53 module. CI¼ confidence interval; ER¼oestrogen receptor.

Table 1. Objective response rates to study chemotherapy in the 109 patients of the translational TEX trial, according to clinical
and molecular subtypea

Best objective response, no. (%)

All responses
(CRþPR) CR PR SD PD ND

Oestrogen receptor statusb

Positive 34 (53.1%) 3 (4.7%) 31 (48.4%) 21 (32.8%) 9 (14.1%) 5
Negative 22 (61.1%) 6 (16.7%) 16 (44.4%) 10 (27.8%) 4 (11.1%) 4

Intrinsic molecular subtypec

Luminal A 4 (40.0%) 0 (0.0%) 4 (40.0%) 4 (40.0%) 2 (20.0%) 1
Luminal B 21 (65.6%) 3 (9.4%) 18 (56.2%) 9 (28.1%) 2 (6.2%) 2
HER2-enriched 14 (48.3%) 0 (0.0%) 14 (48.3%) 10 (34.5%) 5 (17.2%) 3
Basal-like 15 (60.0%) 6 (24.0%) 9 (36.0%) 7 (28.0%) 3 (12.0%) 3
Normal breast-like 2 (50.0%) 0 (0.0%) 2 (50.0%) 1 (25.0%) 1 (25.0%) 0

Abbreviations: ABC¼ advanced breast cancer; CR¼ complete response; HER2¼ human epidermal growth factor receptor 2; ND¼ not determined; PD¼progressive disease; PR¼partial
response; SD¼ stable disease.
aObjective response assessed centrally by Response Evaluation Criteria In Solid Tumors v. 1.0.
bPrimary tumour, except seven cases where it was only determined in a relapse biopsy.
cABC biopsy, by PAM50.
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Figure 2. Enrichment of Reactome gene sets in the comparison of responders versus non-responders to chemotherapy. Gene sets (rows) are
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with a model without. The relation between a gene expression
signature score and percentage decrease in target lesions following
study treatment was analysed with Spearman’s rank correlation
coefficient and exact P-value. Cohen’s k-coefficient was used to
measure agreement between molecular subtype assignments. The
performance of the additional exploratory predictive models was
assessed by the area under the receiver operating characteristic
curve and repeated cross-validation analysis. Multiple testing in the
GSEA was controlled by estimating the false discovery rate
according to Benjamini and Hochberg. An arbitrary level of
5% statistical significance (two-tailed) was used. All data analysis
was done in R/Bioconductor (version 3.3.2, R Foundation), unless
otherwise specified.

RESULTS

The characteristics of the patients included in the translational part
of the TEX trial have been described in detail previously (Tobin
et al, 2015), as has the radiological assessment according to
RECIST (Hatschek et al, 2012; Suzuki et al, 2013). For the scope of
this analysis, additional quality controls regarding tumour cell
purity and cellularity were performed. In total, 109 patients were
deemed eligible for this study (Supplementary Figure 1). The
median age of the patients at the time of inclusion was 55 years
(interquartile range 47–61 years) and the median recurrence-free
interval was 2.9 years (interquartile range 0.3–4.6 years). At the
time of initial diagnosis, 64 patients had ER-positive and 38 ER-
negative disease, whereas in 7 cases the ER status was unknown
and was only determined by a biopsy at the time of relapse. The
HER2 amplification status was negative in 58, positive in 5 and
unknown in 46 cases. Molecular tumour subtypes were determined
on the study specific FNAB by PAM50, which classified 11 (10.0%)
of the cases as luminal A, 34 (31.2%) as luminal B, 28 (25.7%) as
basal-like and 32 (29.3%) as HER2 enriched. The remaining 4
(3.7%) were classified as normal breast-like. Subtyping using AIMS
led to similar classification for the majority of tumours (Cohen’s
k¼ 0.644; Supplementary Table 1).

Objective responses to chemotherapy among clinical and
molecular subtypes. Overall, objective response to therapy was
seen in 56.0% of patients evaluated and did not differ between the
treatment groups (47.9% in patients treated with epirubicin and
paclitaxel, and 64.6% in those receiving the triplet combination,
P¼ 0.149). Thus, the type of chemotherapy was merely considered
as an adjustment variable in the analysis. Table 1 shows the best
objective response in cases with ER-positive and ER-negative
primary tumours, as well as among molecular subtypes of the ABC
biopsies defined by PAM50. The response rate did not differ
according to ER status; however, PFS was statistically and clinically
significantly shorter in patients with ER-negative and non-luminal
tumours, median PFS time 14.1 vs 7.6 months for ER-positive and
ER-negative tumours, respectively (P¼ 0.017; Supplementary
Figure 2A), and 16.5 versus 7.8 months for luminal and non-
luminal tumours, respectively (Po0.001; Supplementary
Figure 2B).

Gene expression modules in relation to objective response. The
six gene modules related to immune response, proliferation, ER
signalling, PIK3CA and TP53 mutations were assessed for
association with the objective response to chemotherapy, adjusted
for age, treatment group and recurrence-free interval (Figure 1).
The probability of achieving an objective response to chemother-
apy was statistically significantly associated with higher immune
module scores for immune module 2 (per s.d. odds ratio
(OR)¼ 1.62; 95% CI, 1.03–2.64; P¼ 0.04) but not for immune
module 1 (per s.d. OR¼ 1.50; 95% CI, 0.96–2.41; P¼ 0.08).
Furthermore, higher immune module scores in both modules were

statistically significantly associated with objective response rates in
both ER-positive (per s.d. OR¼ 2.05; 95% CI, 1.11–4.13; P¼ 0.02
for Module 1 and per s.d. OR¼ 2.23; 95% CI, 1.21–4.48; P¼ 0.01
for Module 2) and Luminal BC (per s.d. OR¼ 6.91; 95% CI, 2.11–
35.05; P¼ 0.006 for Module 1 and per s.d. OR¼ 3.54; 95%, CI
1.43–10.86; P¼ 0.01 for Module 2) but not in ER-negative and
non-Luminal BC (Figure 1). When the two immune module scores
were assessed as dichotomous variables with the median as the
cutoff, the results were essentially unchanged (Supplementary
Figure 3).

Exploratory GSEA and predictive modelling. To further explore
the biology of chemo-sensitivity in ABC, GSEA was performed to
identify sets of genes with differential expression between
responders and non-responders. As expected, the highly ranked
gene sets were different for ER-positive and ER-negative tumours
(Figure 2). In the ER-positive subgroup, immune-related gene sets
including the ‘interferon-g signalling’ and ‘PD-1 signalling’ gene
sets were enriched in responders, corroborating the association
seen with the published immune modules. Notably, the enrichment
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of immune-related gene sets was more pronounced in cases where
the FNAB was not obtained from a lymph node metastasis
(Supplementary Figure 4).

Furthermore, we aimed to explore whether a novel gene
signature derived from the differentially expressed (nominal
Po0.05) genes of the two immune modules would outperform
either of them in terms of prediction of response, which was not
the case (Supplementary Figure 5A). Advanced predictive model-
ling starting with all gene-expression data and with stringent
evaluation by repeated cross-validation did not either outperform
the two immune modules (Supplementary Figure 5B).

Association of immune modules with TTF and with changes in
tumour size after study treatment. As the best objective response
by RECIST only provides a rough (dichotomous) estimate of
chemosensitivity, the correlation of the immune module scores
with the continuous variables of TTF and the (%) decrease in target
lesions at 4 months (after six 3-weekly cycles of chemotherapy) was
also investigated.

For the whole study cohort, TTF did not differ significantly
between high and low immune module scores (median TTF 4.3 vs
4.2 months, hazard ratio (HR)¼ 1.12, 95% CI, 0.90–1.39, P¼ 0.32
for immune module 1 and median TTF 4.5 vs 4.1 months,
HR¼ 1.04, 95% CI, 0.84–1.30, P¼ 0.71 for immune module 2).
However, higher immune module 1 scores were associated with a
shorter TTF in ER-negative (median TTF 3.8 vs 5.3 months,
HR¼ 1.7, 95% CI, 1.15–2.53, P¼ 0.008) and non-luminal (median
TTF 4.0 vs 5.0 months, HR¼ 1.34, 95% CI, 1.01–1.78, P¼ 0.046)
disease, whereas there were trends for a positive association in both
ER-positive (median TTF 4.7 vs 3.8 months, HR¼ 0.9, 95% CI,
0.68–1.19, P¼ 0.46) and Luminal tumours (median TTF 5.5 vs 3.6
months, HR¼ 0.74, 95% CI, 0.0.49–1.10, P¼ 0.14), further
corroborating the relationship between the immune modules and
chemosensitivity in these subgroups (Figure 3). Similar results were
seen for immune module 2 (data not shown).

Furthermore, immune module 1 was correlated with decrease in
tumour size in the ER-positive (Spearman’s r¼ 0.31; P¼ 0.03) or

luminal (r¼ 0.53; P¼ 0.001) subgroup of patients (Figure 4A and
C, respectively). Similar correlation was seen between immune
module 2 and tumour decrease in the luminal subgroup; however,
in the ER-positive tumours the association was weak and non-
statistically significant (Figure 4B and D).

Quantification of lymphocytes in FNAB smears and by in silico
analysis. Fifty of the 109 tumours had FNAB smears that were
evaluable for lymphocyte counts. In general, lymphocytes were
scarce with a median of 1.3% of the total cells (interquartile range
0.6–2.3%). The correlation between lymphocyte counts and the
immune gene modules was low (Spearman’s r¼ 0.26 and 0.18
between lymphocytes and Immune module 1 and 2, respectively,
Supplementary Figure 6). There was no statistically significant
association between the lymphocyte counts and response, whereas
the immune signatures retained their predictive value also in this
subset of patients (Supplementary Figure 7).

Using the MCP-counter method, the absolute abundancies of
immune and stromal cell populations were calculated in silico
using the gene expression profiles of the 100 patients that were
evaluable for response. As expected, immune cell lineages were
correlated to each other and to the immune gene modules
(Figure 5). In addition, lymphocytes but also monocytes were
correlated with response to chemotherapy in the ER-positive and
luminal subgroup, however without outperforming the predictive
value of the two immune modules (Figure 5).

DISCUSSION

In this correlative analysis of a phase 3 randomised clinical study of
chemotherapy in the first-line setting, the predictive power of gene
expression profiling of ABC biopsies was comprehensively
evaluated. To our knowledge, this is the first study that
demonstrates the predictive value of immune-related gene
signatures in patients with ER-positive ABC treated with
chemotherapy, similar to previous observations made in early
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disease (Ignatiadis et al, 2012). Our findings suggest that the
immune-based gene modules derived by the previous work of Sota
et al (2014) and Denkert et al (2015) statistically significantly and
consistently outperformed other gene signatures in predicting
sensitivity to chemotherapy in ER-positive and luminal BC. In
contrast, they did not predict response to chemotherapy in ER-
negative and non-luminal tumours as shown in early BC, possibly
due to low number of ER-negative tumours in this study, or
presumably due to the underrepresentation of stroma in FNAB,
which has been shown to exert a strong immunogenic effect in
TNBC and potentially drives the association between chemosensi-
tivity and immune function in this subgroup (Bonsang-Kitzis et al,
2016).

It should be noted, that the two immune modules consisting of
19 and 12 genes, respectively, only have a minor overlap of 3 genes.

However, in an exploratory analysis, a combination of the two as
well as data-derived novel signatures did not outperform any of the
original modules, indicating that the predictive information is
dependent on the presence of an activated immune microenviron-
ment and not on the expression of specific genes. The importance
of the immune infiltrate in this context was confirmed by an
independent and unbiased GSEA, showing that gene sets related to
cross-talk between immune cells and cancer cells, PD-1 signalling
and interferon-g signalling were among the most highly enriched
in chemo-sensitive tumours. Furthermore, the findings were
accentuated when FNAB from lymph nodes were excluded, in
which the presence of non-activated lymphocytes may have
masked the signals seen in the remaining cases.

The role of TILs in early BC is well established (Savas et al,
2016); however, using a single marker is a relatively rudimentary
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approach that does not fully grasp the complexity of the tumour–
host interactions. An effort was made to quantify lymphocytes in
relapse and metastatic sites using FNAB smears; however, the
number of cells was too low in order to have any clinical
usefulness. It is unclear whether this is a result of a lower number
of lymphocytes infiltrating metastatic lesions per se, as has been
previously shown (Ogiya et al, 2016; Luen et al, 2017), or whether
FNAB is not an appropriate method for this analysis, as it cannot
distinguish between intratumoural and stromal TILs.

The study has some limitations that should be acknowledged. It
remains unclear whether the predictive role of the immune
infiltrate and its interactions with cancer cells in ER-positive ABC
can be generalised to other chemotherapeutic drugs, later
treatment lines, the early BC setting or in tissue obtained with
core instead of FNA biopsies. In addition, objective response by
RECIST and TTF but not PFS was used as efficacy outcome in this
analysis. Progression-free survival could not be utilised, as almost
half the patients enrolled at the TEX trial either discontinued
treatment due to toxicity or switched to other treatments, mainly
endocrine, after a period of disease stabilisation. Nevertheless, rate
of objective response is a widely accepted measure of the activity of
a regimen and it has also been correlated with overall survival in
patients with ABC treated with chemotherapy (Bruzzi et al, 2005),
while TTF also exhibited trends for the same associations in ER-
positive and Luminal tumours. Furthermore, this was a retro-
spective analysis of prospectively collected samples from a
relatively small number of patients, with missing HER2 status in
a considerable percentage of those, which could have influenced
our results. Prospective evaluation of these findings in a
randomised trial is warranted, as no similar cohort in ABC are
currently available for external validation. Ideally, for confirming
the predictive value of immune activity in this setting, a
comparator group receiving other treatment than chemotherapy
should be included. Given these limitations, the results should be
seen as hypothesis generating.

In conclusion, overexpression of immune-related genes was
found to predict chemosensitivity in patients with luminal ABC
enrolled in a prospective randomised trial. With the availability of
therapies that can effectively modulate immune activity in the
tumour microenvironment, these findings may have implications
not only in patient selection but also in the design of combination
therapies of immunotherapies and chemotherapy, as has been
successfully implemented in other malignancies (Langer et al,
2016) and is being actively pursued in phase 3 trials of ABC
(ClinicalTrials.gov identifiers NCT02819518 and NCT02425891).
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