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Support Vector Machine model for
hERG inhibitory activities based
on the integrated hERG database

using descriptor selection by
NSGA-II

Keiji Ogura, Tomohiro Sato, Hitomi Yuki(® & Teruki Honma

Assessing the hERG liability in the early stages of drug discovery programs is important. The recent
increase of hERG-related information in public databases enabled various successful applications of
machine learning techniques to predict hERG inhibition. However, most of these researches constructed
the datasets from only one database, limiting the predictability and scope of the models. In this study,

a hERG classification model was constructed using the largest dataset for hERG inhibition built by
integrating multiple databases. The integrated dataset consisted of more than 291,000 structurally
diverse compounds derived from ChEMBL, GOSTAR, PubChem, and hERGCentral. The prediction model
was built by support vector machine (SVM) with descriptor selection based on Non-dominated Sorting
Genetic Algorithm-11 (NSGA-I1) to optimize the descriptor set for maximum prediction performance
with the minimal number of descriptors. The SVM classification model using 72 selected descriptors

and ECFP_4 structural fingerprints recorded kappa statistics of 0.733 and accuracy of 0.984 for the test
set, substantially outperforming the prediction performance of the current commercial applications for
hERG prediction. Finally, the applicability domain of the prediction model was assessed based on the
molecular similarity between the training set and test set compounds.

Drug safety is an important issue in pharmaceutical research and development (R&D)!. The major reasons for
failures in clinical trials in the 2000s were lack of efficacy and safety (approximately 30%)?. Cardiotoxicity, hepa-
totoxicity, genotoxicity, and phototoxicity are frequently observed toxicities. There are 30 to 40% reports of cardi-
otoxicity and hepatotoxicity in clinical trials and post-approval studies, respectively®. The human Ether-a-go-go
Related Gene potassium channel (hERG) is a critical contributor to drug-induced prolongation of the QT interval
and arrhythmia, called Torsades de Pointes (TdP)**°. Since hERG binds and is inhibited by structurally diverse
compounds, hERG is regarded as a major anti-target for drug discovery. Several drugs (e.g., terfenadine®, cisap-
ride’, and sertindole®) have been withdrawn from the market because of the inhibition of hERG. Consequently,
the assessment of hERG inhibition is essential in drug discovery projects. A patch clamp assay and a cardiotoxicity
assay using iPS cell-derived cardiomyocytes have been developed to monitor the effects on hERG’, and are com-
monly used to assess cardiotoxicity at later stages in drug discovery. However, if the cardiotoxicity of a compound
is revealed at a later stage, it would severely impact the project. Thus, the evaluation of the hERG blockade of a
compound at an early stage is quite important in the drug discovery process. In early drug discovery stages such
as screening and hit to lead optimization, performing costly and time-consuming assays is difficult; therefore, the
development of an in silico model to predict hERG inhibition would be useful. Many i silico models have been
developed by both structure and ligand-based approaches!®!!. These studies included statistical models based on
the 2D or 3D structures of small compounds, and structure-based approaches employing docking simulations
using a modeled 3D structure of hRERG. Although the electronic microscopy structure of hRERG was reported in
2017'%, docking simulations with hERG are still difficult challenges, due to its high flexibility. However, recent
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Figure 1. The result of descriptor selection by NSGA-II. (a) Ratio of dominated Pareto solutions of previous
generation at generation ¢. (b) The Kappa statistics and the number of used descriptors of the descriptor sets
in the 100th generation. (c) Results of the combination of the Pareto solutions descriptor set and ECFP_4. The
selected descriptor sets for model building are highlighted. The kappa statistics of the SVM model only using
ECFP_4 is shown as dashed line.

increases in the bioactivity information about hERG inhibitors in public databases (e.g., ChEMBL, PubChem)
have accelerated the improvement of statistical models using machine learning techniques

The previously reported machine learning models of hERG inhibition were summarized by Wang'® and
Villoutreix'!. As machine learning methods, PLS, Bayesian, and Neural Networks were mainly used in the early
2000s, and subsequently Random Forest (RF) and Support Vector Machine (SVM) have been often used since
2010. In recent studies about classification models, Czodrowski'? constructed RF models using descriptors calcu-
lated by Rdkit'*, based on 3,721 compounds measured in a binding assay and 765 compounds measured in a func-
tional assay collected from ChEMBL'. The prediction models were constructed separately from each data set,
and showed prediction accuracies of 0.797-0.801 and 0.692-0.907, respectively. Shen et al. used SVM combined
with 4D-fingerprints and traditional 2D and 3D VolSurflike molecular descriptors to build a model based on the
PubChem hERG Bioassay dataset, including 876 compounds'®. The SVM model achieved an accuracy of 0.87
for the test set of 456 compounds. Wang et al. developed hERG classification models using naive Bayesian clas-
sification and recursive partitioning based on molecular properties and the ECFP_8 fingerprints, and recorded
85% accuracy for test set'’”. The group also combined pharmacophore modeling and machine learning techniques
(naive Bayesian classification and SVM) and recorded 82.1% accuracy for the external test set'®. Liu ef al. devel-
oped the Bayesian classification model using four molecular properties (MW, PSA, AlogP, and pKa_basic), as well
as extended-connectivity fingerprints (ECFP_4), based on a dataset of 2,644 compounds including compounds
tested on hERG in the literature and FDA-approved drugs, divided into a training set of 2,389 compounds and a
test set of 255 compounds'?. In addition, further validation was performed experimentally using an external data
set of 60 compounds by Doddareddy?. The model showed an accuracy of 0.91 for the test set and 0.58 for the
external test set. In 2015, one of the most recent models, Pred-hERG, was reported by Braga et al.?'. To build the
classification models, Morgan fingerprints and Chemistry Development Kit descriptors were calculated for 5,984
compounds in ChEMBL using RDKit and the PaDEL descriptor plugin for KNIME, respectively. The consensus
model built by each descriptor showed the best performance (Correct Classification Rate = 0.84), and is freely
available at http://labmol.com.br/predherg/. Schyman et al. combined 3D similarity conformation and 2D simi-
larity ensemble approach, and achieved 69% sensitivity and 95% specificity on an independent external data set?.

Despite the successful applications of the increased hERG information, most of the current researches con-
structed their datasets from only one database, because the differences in the data format and ontology made
the integration of various databases difficult. Thus, the dataset sizes used to construct hERG prediction models
in most of the previous studies were limited to less than 3,000, as reported by Wang'® (Fig. 1). Our previous
research? integrated the hERG-associated information from ChEMBL!®, GOSTAR?*, NIH Chemical Genomics
Center dataset registered in PubChem®, and hERGCentral®® into a dataset consisting of more than 291,000 struc-
turally diverse compounds. The analysis revealed that the hERG-related entries derived from the respective data-
bases showed different distributions for various molecular properties, according to the information source of
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Database hERG inhibitors | Inactive compounds
ChEMBL (version 22) 4,793 5,275

GOSTAR 3,260 3,509

NCGC 232 1,234

hERGCentral 4,321 274,536

hERG integrated dataset | 9,890 281,329

Table 1. Details of the integrated dataset.

Algorithm ’Il;ll:/lig Accuracy | Sensitivity | Specificity | BAC* | Kappa | ROC
g?;?inmaﬁon ?ggggg 0.820 0.807 0.832 0.820 | 0640 |0.890
E;“‘;Zik g;gggé 0.794 0.784 0.805 0794 |0.589 | 0.867
E;?O?E“ral §§§?§§§ 0.818 0918 0.720 0.819 | 0637 |0.907
Random forest ?gg;}ggg 0.858 0.841 0.874 0.858 |0.715 |0.927
SVM ?Z?%il 0.863 0.850 0.876 0.863 |0.726 |0.925

Table 2. Preliminary assessment of machine learning algorithms. “BAC: balanced accuracy.

each database (journals, patents, HTS library, etc.). Thus, the construction of a prediction model using a single
database could result in limited prediction performance and applicability.

In this study, we developed a novel hERG classification model by SVM, using the most comprehensive hERG
blocker information from the integrated database. To avoid overfitting of the prediction model, the descriptor
set was optimized to show high accuracy with a small number of descriptors by a genetic algorithm, to find the
Pareto optimal for multiple objective functions. Subsequently, the importance of each of the selected descriptors
for hERG prediction was assessed, according to the results of the descriptor selection. Finally, model validation
and comparisons of the prediction performance with commercially available hERG prediction models were con-
ducted. Its applicability domain was also evaluated based on the molecular similarity to the training compounds.

Methods

Dataset. The integrated dataset for hRERG inhibitory activity?, consisting of ChEMBL, GOSTAR, the NIH
Chemical Genomics Center (NCGC) dataset in PubChem bioassay, and hERGCentral, was used to build a predic-
tion model. As reported by Brag et al.”’, assay entries derived from literatures often contains unreliable values and
duplicates. Assay entries for which data validity problems or potential duplicates were indicated in ChEMBL were
removed. The references of the assay entries were also collated not to derive same data from multiple database.
Then, the compounds in the four databases were merged into a dataset of 9,890 hERG inhibitors (IC5, < 10 uM
or >50% inhibition at 10 M) and 281,329 inactive compounds (IC5, > 10 pM or <50% inhibition at 10 pM)
according to their standardized chemical structures (Table 1). For compounds with contradictory assay results,
the compound was assigned as an inhibiter or inactive when more than two thirds of the reports agreed to either
class. IC5, data were prioritized in the assignment to percent inhibition data when both values were available. This
dataset is available in Supplementary Information. Detailed procedures of the curation to format ontologies, the
standardization of chemical structures, and the classification of inhibitors/inactives, were reported in the previ-
ous study?’. The raw assay values are available at our home page (http://drugdesign.riken.jp/hERGdb/) except
the data from GOSTAR, a commercial database. The dataset was randomly split into the training set (70%, 6,923
inhibitors/196,918 inactives) and the test set (30%, 2,966 inhibitors/84,395 inactives) for external validation. For
genetic algorithm-based descriptor selection, another training set with fewer inactives was prepared by clustering
the inactive compounds by ECFP_4 to reduce the calculation time. From each of the 6,923 clusters, the cluster
center was selected to create a trimmed training set containing 6,923 molecules for both hERG inhibitors and
inactive compounds.

Machine learning algorithms. Prior to the detailed optimization including descriptor selection and
parameter tuning, discrimination models using linear discrimination, single-layer neural network, deep neural
network, random forest, and SVM with ECFP_4 were built using Pipeline Pilot with the default parameter set-
tings for preliminary assessment. Dividing the reduced training set containing even numbers of hERG inhibitors
and inactive compounds into 70% and 30% for preliminary training and validation, prediction performances
of the discrimination models were evaluated as shown in Table 2. Among the algorithms, SVM recorded the
highest kappa statistics among the machine learning models for validation (0.64, 0.794, 0.643, 0.858, and 0.863,
respectively). Despite the recent reports of various successful applications of deep neural network, the deep neural
network model underperformed SVM and random forest in this study. Since the network was built only using
the default setting of Pipeline Pilot, consisting of two hidden layer with 50 nodes and dropout of 0.25 probabil-
ity using R package “deepnet’, intense optimization of hyperparameters would be necessary to obtain a deep
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neural network model outperforming other machine learning algorithms. While random forest also showed the
equivalent prediction performance to the SVM model, SVM was selected for the model building with descriptor
selection and further optimization because of the slight advantage in Kappa statistics and possibility of parameter
tunings such as cost factor and gamma value for the RBF kernel function.

Molecular descriptors.  To construct a hERG prediction model, 424 descriptors and ECFP_4 were calcu-
lated, using MOE® and Pipeline Pilot*. Using MOE, 192 2D descriptors and 134 3D descriptors were computed.
Using Pipeline Pilot, 98 descriptors and the ECFP_4 structural fingerprint were computed. To calculate the 3D
descriptors, 3D molecular conformers were generated and minimized by a AMBER10:EHT force field* with sol-
vent reaction field using MOE. The full list of the descriptors is available in the Supporting Information (Table S1).

Descriptor selection.  Using too many descriptors for machine learning often results in an over-complicated
model that could lead to overfitting. Thus, descriptor selection based on the Non-dominated Sorting Genetic
Algorithm-IT (NSGA-II)*' was applied to maximize the prediction performance with the minimal number of
descriptors.

NSGA-II is an optimization algorithm to find the Pareto optimal for multiple objective functions. First, an
initial population is generated randomly. The individuals in each population are sorted according to their dom-
inance levels. The individuals in the Pareto front, which no other individuals shows higher values for all of the
objective functions than, are defined as level 1. Then, the individuals only dominated (overtaken for all of the
objective functions) by the level 1 individuals are defined as level 2, and so on. In addition to the dominance level,
the crowding distance is also calculated to rank the individuals with the same dominance level. The crowding
distance represents how close an individual is to its neighbors. In each generation, a given number of individuals
is selected, based on their dominance level. If individuals with the same dominance level remain, then those with
a larger crowding distance are selected. The selected individuals become the parents of the next generation, and
generate the offspring by mutation and crossover. The selected individuals and offspring compose the population
of the next generation. This procedure is iterated until it reaches the specified number.

In this study, NSGA-II was employed to simultaneously optimize both the number of descriptors and the
prediction performance by the SVM model. To reduce the computing cost due to the high-dimensionality,
descriptor selection was performed using 424 descriptors, and then the combination of the obtained descriptor
sets and ECFP_4 was tested. Before the descriptor selection, three preprocesses were performed to delete some
descriptors: (1) some obviously non-relevant descriptors (e.g., the number of unconstrained chiral centers); (2)
descriptors with a variance of 0; and (3) descriptors showing correlation coefficient higher than 0.85 to the other
descriptors. As a result, 213 descriptors were selected for NSGA-II. The subset of the 213 descriptors was treated
as an individual for NSGA-II. For each descriptor set, a SVM model to predict the hERG blocking activity was
built, using the training set. The average kappa statistics of the 5-fold cross validation (kappa CV) and the number
of used descriptors were defined as the objective functions for NSGA-II. The parameters of NSGA-II were defined
as follows: generations = 100, population size = 50, mutation rates =0.02 (off to on) and 0.2 (on to off), and cross-
over rate = 0.6. After 100 iterations, the descriptor sets in the Pareto front were combined with ECFP_4 to build
final SVM models using full training set.

Support vector machine. SVM models nonlinearly discriminate two classes of compounds, by mapping
the data vectors to a very high-dimensional descriptor space and finding the hyperplane that separates the two
classes with the largest margin. In this study, a radial basis function was chosen as a kernel function. During the
descriptor selection, the gamma for the RBF and C, the constant for the slacks variant, were fixed to the default
values of SVMlight package®? (1.0 and 1.0/nx, respectively (nx indicates the number of descriptors)), to reduce
computational cost. After the descriptor selection, C and Gamma were optimized by a grid search in the 5-fold
cross validation on the full-training set. The search ranges of C and gamma are as follows: C=0.5, 1.0, or 2.0,
Gamma = 0.5/nx, 1.0/nx, or 2.0/nx. Due to the imbalanced number of positive and negative compounds, the class
weight option, which imposes a heavier penalty for errors in the minority class, was used. The weight was defined
as the ratio of the positive and negative compounds in the training set. Other parameters were set to the default
values of Pipeline Pilot.

Evaluation of prediction performance. To evaluate the model performance, the following metrics were

calculated.
TP + TN
accuracy =
TP + FN + TN + FP (1)
e TP
sensitivity = ————
TP + FN (2)
specificity = N
P 4 TN + FP (3)

sensitivity + specificity
2 (4)

balanced accuracy =
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# of TP/FN

descriptors FP/TN Accuracy | Sensitivity Specificity BAC Kappa
10 Vioross | 0982 0680 0993 083 | 0714
20 ?22;2;%915(?;45 0.983 0.696 0.993 0.844 | 0725
28 Virsitonsas | 0983 0696 0993 0845 | 0.726
60 aia/iossos | 0983 0712 0993 0852|0734
2 Visortonags | 093 0715 0993 0854|0735

Table 3. Statistical results of 5-fold cross validation for promising Pareto models.

TP (true positives) and FN (false negatives) denote the numbers of known inhibitors predicted to be active
and inactive. TN (true negatives) and FP (false positives) are the numbers of known inactives predicted to be
inactive and active. Cohen’s kappa was also applied for model evaluation. Kappa measures the agreement between
the predicted and observed classes and compare the agreement to that expected by chance. Kappa is defined in
the following Eq. (5),

Po — Pe

Cohen’s k =
ohen’s kappa — 5)

_ (TP 4 EN)(TP + FP) + (TN + FP)(TN + FN)

# of compound * # of compound (6)

Pe

where Po is the relative observed agreement and Pe is the random chance of agreement. Furthermore, the perfor-
mance of the SVM model was also measured by the ROC score, defined as the area under the receiver operation
curve, which plots the ratio of true positives on the axis of false positive fractions and ranges from 0 to 1.

Comparison with commercial prediction models. The constructed SVM model was compared to
three commercially available models (ACD/Percepta®*, ADMET Predictor*, StarDrop®’). ADMET Predictor and
StarDrop predict the hERG pICs, values of the given compounds. Thus, the predicted pICs, value of 5.0 was
defined as the criterion to classify positive and negative compounds. ACD/Percepta calculates the probability
that a compound inhibits hERG with a K; value lower than 10 pM. The predicted probability of 0.5 was defined
as the threshold to classify the positive and negative compounds. Compounds that could not be evaluated by the
commercial software were removed from the test set to compare the prediction performances.

Assessment of applicability domain. To evaluate the applicability domain of the SVM model for reli-
able prediction, the relationship between the structural similarity and the prediction accuracy was assessed,
based on the concept that the prediction of a compound similar to those in the training set could be reli-
able. The similarity-based approach was applied because the data distribution of the hERG dataset was quite
high-dimensional and sparse due to ECFP_4 fingerprint, and difficult to estimate the data distribution in prob-
abilistic approaches to assess the applicability domain. For each test set compound, the ECFP_4 Tanimoto sim-
ilarities were calculated to all of the training compounds, and the highest similarity was employed as the metric
for prediction difficulty.

Results
Descriptor selection.  The result of the descriptor selection by NSGA-II is shown in Fig. 1. The dominance
ratio describes the ratio of the Pareto solutions of generation i-1 dominated by the Pareto solutions of generation
i. After the 80th generation, the dominance ratio is less than 0.1, meaning that most of the Pareto solutions have
not been updated (Fig. 1(a)). Thus, 100 generations would be sufficient to optimize the two objective metrics.
Among the 40 Pareto solutions in the 100th generation, the descriptor set with 35 descriptors recorded well
balanced prediction performance (Accuracy = 0.870, Kappa =0.741). With more descriptors, the kappa CV only
showed a slight improvement over those using 35 descriptors (Fig. 1(b)).

The descriptor sets of the Pareto solutions in the 100th generation were combined with ECFP_4. As compared
to ECFP_4 alone, the combination of descriptor sets and ECFP_4 recorded improved kappa statistics (Fig. 1(c)).
As in the case of SVM models using only descriptors, the predictive performance slightly improved when more
descriptors were combined with ECFP_4. Then, a further study was performed to confirm the balance between
the number of descriptors and the prediction performance. From the Pareto solutions combined with ECFP_4, a
descriptor set showing the highest kappa CV value was chosen from the range of every 10 descriptors. By elimi-
nating the descriptor sets showing lower kappa CV values than those using fewer descriptors, five descriptor sets
(10, 20, 28, 60, and 72 descriptors highlighted in Fig. 1(c)) were selected for model construction using the whole
training data. The statistics of the cross validation by the prediction models constructed by the five descriptor sets
are shown in Table 3. All models showed sufficient prediction performances. Among the five models, the model
with 72 descriptors yielded the best performance (accuracy = 0.983, balanced accuracy = 0.854, Kappa =0.735),
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Figure 2. Frequency of descriptors in the 100th generation of the Pareto solutions.

and the selected descriptors seemed to be consistent with the features of hERG inhibitors reported in a previous
study?®.

The accuracy and the kappa CV of the model combining ECFP_4 and all the calculated 424 descriptors were
0.901 and 0.714, while those of the combination of ECFP_4 with 212 descriptors, the largest descriptor set eval-
uated in the descriptor selection by NSGA-II, were 0.983 and 0.728, respectively. From the comparison between
these two models, the model by descriptor selection showed slightly higher predictive performance with the
smaller number of descriptors. This result indicated that the complexity of the model was reduced by removing
redundant and non-relevant descriptors. Therefore, the SVM model based on ECFP_4 and 72 descriptors was
selected as the descriptor set with a good balance between the number of descriptors and the predictive perfor-
mance. The 72 selected descriptors are listed in Supplementary Table S2.

Assessment of selected descriptors. The importance of each molecular descriptor was evaluated by the
number of occurrences in the 40 Pareto solutions in the last generation. Frequently used molecular descriptors
can be considered as important descriptors for hERG inhibition. The frequency of each descriptor is shown in
Fig. 2.

According to analyses of site-directed mutagenesis and homology modeling®’ -, Tyr652 and Phe656 were
identified as the important residues forming electrostatic interactions (cation-m) and T stacking interactions with
several known hERG inhibitors. The most frequently selected descriptor is AM1_HOMO, which could represent
the electrostatic conditions in the aromatic ring, and correlates the w-w interaction with Phe656. The second
one is pKa, which could represent the cation-m interaction with Tyr652. In fact, many hERG inhibitors have an
aromatic ring at the terminal position of the ligand and a basic amine that is easily protonated at physiological
pH. In our previous study, while about 80% of the inactive compounds had no positively charged atoms, more
than half of the hERG inhibitors contained at least one positively charged atom. Therefore, atomic charge-related
descriptors, such as PEOE_VSA_plus, GCUT_PEOE, and PC_plus, were also chosen in the descriptor selection.

In addition to the atomic charge, several previous studies reported that hERG liability compounds tend to be
larger, more hydrophobic, more flexible, and have fewer H-bond acceptors®***. The molecular size was expressed
by the diameter, and the molecular refractivity-based descriptors SMR_VSA, and SMR_VSA were employed
in our models. The hydrophobic feature was expressed by logP-based descriptors such as logD, logP(o/w),
and SlogP_VSA. The hydrophobicity is also related to the polar surface area, and thus Molecular_Fractional _
PolarSurfaceArea was also selected. These descriptors might be rationalized by the hydrophobic nature of the
pore region of hERG, due to the high number of hydrophobic amino acids. Thus, the potency generally increases
with the logP of the ligand.

The molecular flexibility was represented by Num_Aliphatic SingleBonds, b_bond, Num_Doublebond,
and opr_brigid which show the rigidity of molecules. Two descriptors related to the number of double bonds
were included. Num_DoubleBonds counts the number of all double bonds and b_double counts the number
of double bonds excluding those in aromatic rings. Most of the ligands that showed potent activity for hERG
have nitrogen-containing alkyl chains*!, and the flexibility might be considered as an important feature of hRERG
inhibition.

Some pharmacophore models* and a mutational analysis suggested that hydrogen bonds with Thr623, Ser624
and Val625 play an important role to inhibit hERG. The features about the hydrogen bond acceptors (vsa_acc,
a_acc and Num_H_Acceptors) were selected by NSGA-IL. Overall, these frequently selected descriptors seemed
to be consistent with the features of hRERG inhibitor reported in previous studies.

Integration of the databases. Because of the heterogeneity of the assay protocols for hERG inhibition,
building a prediction model using multiple databases could harm the data consistency and possibly bring the
risk of prediction performance degradation. Thus, the adequacy to employ the integrated hERG dataset to build a
prediction model was assessed. To investigate the relationship between the prediction performance and the data
sources, the training set and the test set were separated by the original database of each assay entry to compile the
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Figure 3. The ROC scores of the SVM models built from the hERG integrated database (light blue bar),
ChEMBL (blue line), GOSTAR (red line), NCGC (green line), and hERGCentral (purple line), using (a) ECFP4,
(b) ECFP4 and 72 descriptors as the explanatory variables. The horizontal axis corresponds to the data source of
the test set.

TP/FN
Name FP/TN Accuracy | Sensitivity | Specificity | BAC | Kappa | ROC
1,987/979
410/83,985 0.984 0.670 0.995 0.833 | 0.733 |0.962
SVM-72 model* L838/854
327/74,043 0.985 0.683 0.996 0.839 |0.749 |0.966
1,890/802
ACD/Percepta 6.518/67,852 0.905 0.702 0.912 0.807 | 0.304 |0.890
. 2,329/363
ADMET Predictor 25,495/48,875 0.664 0.865 0.657 0.761 | 0.095 |0.866
2,357/335
StarDrop 32,963/41,407 0.568 0.876 0.557 0.716 | 0.063 |0.831

Table 4. Statistics of the SVM-model and commercial models for the test set. “For the SVM model, the first
row represents the results for all test set compounds, and the second row represents the results for 77,062
compounds used with all three commercial software programs to predict the hERG inhibitory activity.

data sets corresponding to the individual databases. Then, SVM model building and the prediction performance
evaluation based on ROC scores were performed for all combinations of the training set and the test set. The com-
parison were performed for SVM models using ECFP4 to investigate the effect of data integration (Fig. 3(a)), and
SVM models using ECFP4 with 72 descriptors selected by NSGA-II (Fig. 3(b)) to assess those after the descriptor
selection. As previously reported®, the compounds in ChEMBL and GOSTAR, compiled from literatures and pat-
ents, had the different molecular property distribution and the ratio of hERG inhibitors to inactive compounds,
compared to the compounds in NCGC and hERGCentral, compiled from the HTS results of chemical libraries.
As the result, the SVM models built from the individual databases failed to achieve high prediction performances
for test set compiled from the different databases.

For the SVM models using ECFP4, the average of ROC scores were 0.694 when the model was trained by the
training set derived from the different database to the test set, and 0.870 when the training set and the test set were
derived from the same database. Since hERGCentral was compiled from the HT'S of nearly 300,000 compounds in
the National Institutes of Health Molecular Library Small Molecule Repository, the corresponding test set could
be the best approximation of the actual HTS situation. For the test set build from hERGCentral, the ROC scores
of the SVM models built by ChEMBL, GOSTAR, and NCGC were all below 0.75. Since the numbers of hRERG
inactive compounds in ChEMBL, GOSTAR, and NCGC were far less than those in hRERGCentral (Table 1), these
three prediction models could not deal with structurally diverse compounds in hRERGCentral dataset. The ROC
scores of the SVM model built from the integrated hERG dataset showed the almost equivalent ROC scores to
those by SVM models build from the corresponding training sets (0.864 for ChEMBL, 0.880 for GOSTAR, 0.846
for NCGC, and 0.912 for hERG Central), indicating that the integration of the heterogeneous assay entries caused
little adverse effect in the prediction performance, and provided the better coverage of chemical space for the
improved applicability.

In the aspect of the descriptor selection using NSGA-II, the ROC scores were consistently improved by the
addition of 72 descriptors compared to the SVM models using only ECFP_4 for all combinations of the training
sets and the test sets, indicating that the descriptor selection could successfully obtained the essential properties
of hERG inhibitors in the various databases. The detailed data of the ROC scores were available in Supporting
Information (Table S3) along with the corresponding Kappa statistics.

Prediction performance of the constructed SVM model compared with commercial soft-
ware. A test set of 87,361 molecules was used to validate the constructed SVM model and the commercial
applications. The prediction performances for the test set are shown in Table 4. The SVM model achieved kappa
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Figure 4. ROC curve of the SVM model, using the 72 descriptors and ECFP_4 (red), as compared to ACD/
Percepta (orange), ADMET Predictor (blue), and StarDrop (green).

statistics of 0.733 with an accuracy of 0.984, a sensitivity of 0.670 and a specificity of 0.995. The value of the kappa
statistics was equivalent to that of the cross validation (0.735). These results indicated the robustness of our model
against overfitting.

The prediction performance was then compared with those obtained by commercial models (ACD/Percepta,
ADMET Predictor, and StarDrop). For the comparison, the compounds that cannot be predicted by some com-
mercial models were removed from the test set, and all models were validated with 77,062 compounds. The
results are shown in Table 4. Among the three commercial models, ACD/Percepta showed the best predictive
performance, with kappa statistics of 0.304, an accuracy of 0.905, a sensitivity of 0.702, and a specificity of 0.912.
ADMET Predictor and StarDrop recorded poor kappa statistics of less than 0.1. In Table 4, the area under the
ROC curve (ROC_AUC) was also provided as another metric to assess the classification performance. The ROC_
AUC value does not depend on the classification threshold, and it can evaluate the ranking ability of the classifier.
To visualize the quality of the ranking, the ROC curve is shown in Fig. 4. In the evaluation of ROC_AUC, the
commercial models showed good results (0.831-0.890), indicating that all of the commercial software worked
well in the inhibitory potency ranking. Considering that both ADMET Predictor and StarDrop also recorded
moderately high ROC scores of 0.866 and 0.831, the low kappa statistics of these two regression models did not
suit the discrimination use at the criterion of IC5;= 10 uM. In the comparison with the constructed model, our
model showed the highest ROC_AUC of 0.966, with a kappa value of 0.749 and an accuracy of 0.985. Our model
clearly outperformed the commercial models. Relatively low sensitivity of the model could be caused by the use
of hERGCentral data. As shown in Table 1, HTS results in hERGCentral contain huge number of inactive com-
pounds, and thus, dramatically decreased the ratio of positive samples in the dataset. This imbalanced number of
positive and negative examples could shift the threshold of the model towards negative prediction. Nevertheless,
the higher ROC curve in Fig. 4 indicated that the SVM model discriminated hERG inhibitors clearly more effec-
tive than the commercial models, and the balance of positive and negative prediction could be calibrated by the
setting of the threshold value when needed. The integration of the multiple databases greatly increased the hRERG
inhibition information, which contributed to the improved prediction performance. In particular, our model
showed higher precision (0.849), as compared with commercial models (0.066-0.225). The precision is the rate
that a compound predicted to be positive is actually a hERG inhibitor. The commercial software tended to predict
more false positives indicating overestimation of the hERG risk of inactive compounds. Among the commercial
software, ACD Percepta showed higher specificity to ADMET Predictor and StarDrop. Since ADMET Predictor
and StarDrop were built to provide regression model for hERG K; prediction, their dataset consisted compounds
for which their binding affinity to hERG could be quantified, meaning inactive compounds showing no hERG
inhibitory activity at all could not be included, and possibly resulting in lower prediction accuracy for inactive
compounds. The results indicated the effectiveness of discrimination models to screen initial HTS results which
distribute in broader chemical space. The regression models should be considered in the later stage where the
hERG inhibitory activity of a certain hit compound should be modified through chemical synthesis. Our model
would be useful in the early stage of a drug discovery program, such as HTS triage, when the purpose is to remove
the compounds with a high possibility of hERG inhibition.

Since the commercial models show low specificity, 4,298 inactive compounds were wrongly classified as hERG
inhibitors by all three commercial models. Among the 4,298 false positive cases, 4,162 compounds were cor-
rectly predicted as inactives by our SVM model. The majority of these false positive compounds had an aliphatic
nitrogen atom at the center of the molecular structure. Although it is well known that w-interactions by posi-
tively charged atoms are important for hERG binding, the interactions between the nitrogen atoms contained
in the misclassified false positive compounds and hERG seem to be difficult for the following reasons: (1) the
influence of surrounding bulky substituents around the nitrogen atom, and (2) the nitrogen atom is generally
not positively charged due to attached electron-withdrawing groups. In addition, inactive compounds that share
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Figure 5. Compounds for which only the SVM model correctly predicted the activities, and their most similar
hERG inhibitors. Each structure was ionized at pH7.4.

the same scaffold with hERG inhibitors, but lack a key nitrogen atom or an aromatic ring, were also observed in
the false positives. Figure 5 shows typical examples of the inactive compounds that only our SVM model cor-
rectly predicted, along with their most similar hERG inhibitors. Our SVM model successfully predicted all the
inhibitor/inactive pairs, while none of the three commercial software programs could distinguish the inactive
compounds. In the cases of Fig. 5(a,b), the positively charged nitrogen atoms in hERG were modified in the
inactive compounds. Figure 5(c,d) represent the cases in which modifications changed the ionization tendency
of the nitrogen atoms in the piperazine rings. In Fig. 5(e), the bulky chemical group could make steric clash with
hERG. In Fig. 5(f), the disappearance of a terminal aromatic ring could weaken the binding affinity with hERG.
The presence of two aromatic rings next to a positively charged nitrogen atom is one of the well-known pharma-
cophores for hERG binding, and the aromatic rings are thought to form w-electron interactions with Tyr652 and
Phe654 of hERG. In the commercial models, the hERG inhibitory activity of compounds with such inaccessible or
uncharged nitrogen atoms tended to be overestimated. The successful discrimination by our SVM model regard-
ing the differences of hERG inhibition by such detailed structural changes could be benefitted by an increase of
the training data in the integrated dataset. This improved prediction specificity would be especially useful in a
case where structural modification to avoid hERG inhibition is needed in the hit to lead optimization process.

Applicability domain. To assess the applicability domain of the classification model for reliable prediction,
the relationship between the similarity of the test compounds against the training compounds and the prediction
performance was investigated. While the median value of the closest Tanimoto similarities of the test set com-
pounds to their closest training compounds was 0.726, more than half of the test compounds had structurally
similar compounds in the training set. As described in Fig. 6, the compounds with high similarity to the training
set showed higher prediction accuracy. However, a decrease of sensitivity and an increase in false negative com-
pounds were observed for the compounds with lower similarities, except in the range of similarity values from 0.1
to 0.2. Since the number of compounds with similarity values of 0.1-0.3 was relatively small and contained only
9 hERG inhibitors and 86 inactive compounds, the increase of the prediction performance observed in the low
similarity region did not seem to be statistically significant. These results provided insight about the applicability
domain of the model for the reliable prediction. Although the specificity was not affected by the decrease of the
Tanimoto similarity, the sensitivity fell below 0.5 when the Tanimoto similarity was lower than 0.6, resulting
in low reliability for negative predictions. Considering the previous reports suggesting that compounds with a
similarity value of 0.6 or higher tend to show similar activities****, the threshold value of 0.6 for the applicabil-
ity domain criteria was further investigated. By defining the test compounds with similarities lower than 0.6 as
outside of the applicability domain, 12,519 compounds among the 87,361 test set compounds were classified as
outside the applicability domain. While the kappa statistics for the compounds outside of the applicability domain
were still fairly high (0.512), significant degradation from those within the applicability domain (kappa statis-
tics =0.762) was observed. The low sensitivity of 0.392 for the outside compounds suggested that the model tends
to provide negative predictions for compounds that are not similar to any compounds in the training set, contain-
ing the potential risk for false negatives. Even so, since the previously reported analysis of the integrated database
revealed its higher structural diversity, covering 18.2% of the Murcko scaffolds found in the ChEMBL database,
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Figure 6. Performance metrics for the test set in each similarity range. The horizontal axis denotes similarity
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and containing hERG inhibitors with more than twice as many Murcko scaffolds as the other databases, our
model is expected to cover substantial chemical space to enable accurate prediction for diverse drug-like com-
pounds, including newly designed ones. The detailed data was available at Supporting Information Table S4.

Discussion

In this study, a novel hERG classification model based on SVM and descriptor selection by NSGA-II was devel-
oped using the integrated dataset. The amount of hERG-related information in publicly available databases has
increased in recent years, and we previously integrated the hERG-associated bioactivity information from var-
ious databases. The integrated dataset consisted of more than 290,000 structurally diverse compounds cover-
ing broader chemical space, and enabled the construction of a more accurate classification model with a wider
applicability domain. To avoid overfitting of the model, the descriptor set was optimized to show high accuracy
with a small number of descriptors by NSGA-IL. As a result of the descriptor selection, 72 descriptors were cho-
sen to achieve a good balance between the prediction performance and the number of descriptors. The selected
descriptors seemed to be reasonable and consistent with the previously reported features of hERG inhibitors. The
importance of each molecular descriptor for hERG inhibition was then evaluated. The high frequencies of AM1_
HOMO and pKa in the Pareto solutions were associated with the w-electron interactions with hERG. According
to the analyses of site-directed mutagenesis and homology modeling, Tyr652 and Phe656 were identified as the
important residues forming cation-m interactions and = stacking interactions with several known hERG inhibi-
tors. Other frequently chosen descriptors were diameter, Molecular_FractionalPolarSurfaceArea, SMR_VSA, and
LogD. To calculate the 3D molecular descriptors, the 3D conformations optimized by AMBER10:EHT force field
with solvent reaction field were used in this study. Since a cryo-EM structure of hERG was reported by Wang et
al.'?, prediction of the binding conformation of hERG inhibitors using structure-based methods could improve
the prediction in future work. The SVM model combining 72 descriptors and ECFP_4 was then developed, and
achieved highly predictive performances for both the cross validation of the training set and the test set. The
prediction performance was compared with three commercial models. All models were validated with 77,062
compounds, and our model clearly outperformed the three commercial models.

In addition, the applicability domain of our model was evaluated, based on the molecular similarity to the
training compounds. Unsurprisingly, the compounds with high similarity to the training sets showed higher
prediction accuracy, and the compounds with lower similarity decreased the sensitivity and increased the false
positive ratio. By defining the similarity threshold for the applicability domain of the model as 0.6, the kappa sta-
tistics for the subset outside of the applicability domain decreased as compared to the subset within the domain
(0.762 for inside the applicability domain, compared to 0.512 for outside). Despite the increased number of false
negatives, our model still kept a relatively high kappa value even for the subset outside of the applicability domain
according to the current definition. Considering the recent increase of hERG-associated information, the prob-
lem in the applicability domain could be gradually resolved by future updates. The model is expected to be useful
to avoid hERG inhibition at the early stages of drug discovery programs and will be released publicly, along with
the integrated database, at our homepage (http://drugdesign.riken.jp/hERGdD).
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