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A genome-scale metabolic model of Saccharomyces
cerevisiae that integrates expression constraints
and reaction thermodynamics
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Eukaryotic organisms play an important role in industrial biotechnology, from the production

of fuels and commodity chemicals to therapeutic proteins. To optimize these industrial

systems, a mathematical approach can be used to integrate the description of multiple

biological networks into a single model for cell analysis and engineering. One of the most

accurate models of biological systems include Expression and Thermodynamics FLux (ETFL),

which efficiently integrates RNA and protein synthesis with traditional genome-scale meta-

bolic models. However, ETFL is so far only applicable for E. coli. To adapt this model for

Saccharomyces cerevisiae, we developed yETFL, in which we augmented the original for-

mulation with additional considerations for biomass composition, the compartmentalized

cellular expression system, and the energetic costs of biological processes. We demonstrated

the ability of yETFL to predict maximum growth rate, essential genes, and the phenotype of

overflow metabolism. We envision that the presented formulation can be extended to a wide

range of eukaryotic organisms to the benefit of academic and industrial research.
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Eukaryotic organisms are extremely important in industrial
biotechnology (e.g., Saccharomyces cerevisiae1 and Yarrowia
lypolytica2) and are host organisms for the production of

fuels and specialty and commodity chemicals. Also eukaryotic,
mammalian systems such as Chinese hamster ovary cells are the
main platform organism used for therapeutic protein
production3. In contrast to bacterial cells, the eukaryotes have
compartmentalized cell structure to localize macromolecules with
different biological tasks. This fundamental difference renders the
engineering of the eukaryotes more complex and challenging. To
help optimize and plan for industrial applications, complex bio-
logical systems such as these can be represented in silico by
specific networks designed to capture key processes.

Metabolic networks are the most widely studied and modeled
type of biological networks, with over 6000 genome-scale meta-
bolic models (GEMs) reconstructed for archaea, bacteria, and
eukaryotes4,5. One approach for analyzing these models is flux
balance analysis (FBA), which is a constraint-based optimization
technique, where the metabolic flux of individual reactions is
computed in a metabolic network by formulating a linear opti-
mization problem6. However, FBA can predict biologically irre-
levant solutions, including cycles with unrealistically high fluxes7

or thermodynamically infeasible solutions8,9. Despite its wide
applicability, FBA cannot predict some important features of
metabolic networks, such as those that account for limited cata-
lytic capacity of enzymes or limitations in cellular expression
systems.

To overcome some of the issues with FBA and eliminate
unrealistic solutions, additional constraints that represent
empirical or mechanistic evidence have been introduced. For
example, thermodynamic-based flux balance analysis (TFA)8,9

enforces the coupling between the directionality of each reaction
with its corresponding Gibbs free energy to eliminate thermo-
dynamically infeasible predictions. More importantly, TFA also
directly integrates variables for the concentrations of metabolites,
which enables the integration of metabolomics data. Genome-
scale models with Enzymatic Constraints using Kinetic and
Omics data (GECKO) are another FBA-based method that
accounts for the limited catalytic activity of enzymes by inclusion
of enzyme concentrations as variables10. Previous studies have
shown that GECKO can capture a realistic maximum specific
growth rate and the occurrence of overflow metabolism in Sac-
charomyces cerevisiae10. However, GECKO does not explicitly
consider the cost of protein synthesis. Instead, it assumes that the
fractions of peptides within a protein pool are inversely propor-
tional to their molecular weight. The molecular weight represents
the cost of the enzyme within the context of proteome allocation.
However, the actual cost of enzyme synthesis is absent from the
formulation. Therefore, GECKO fails to account for the compe-
tition for amino acids required for enzyme synthesis, which is an
important part of the expression system.

Metabolic and Expression Models (ME-models) are another
class of constraint-based models that include the cellular
expression system in addition to metabolic and catalytic
constraints11–13. ME-models include individual mRNA and
enzyme concentrations as well as their cost of synthesis and
cellular expression capacity. A new approach to construct ME-
models, called Expression and Thermodynamics-enabled Flux
(ETFL)13, was recently proposed to address the significant
drawback of needing to solve the nonlinear programming (NLP)
problem. The approach approximates bilinear terms with a
zeroth-order piecewise-linear function by discretizing growth and
solving locally linearized mixed-integer problems instead of an
NLP problem. Similar to published ME-models11,14, the first
ETFL model was developed for Escherichia coli. However, the

ETFL formulation can readily be extended to the study of
eukaryotic organisms.

S. cerevisiae is an industrially relevant organism1,15 that is
widely used for biological and medical research studies16. Several
GEMs of this organism have been published over the years due to
its ubiquity in metabolic engineering17–22. However, likely due to
additional requisite considerations in modeling the compart-
mentalized cellular expression systems of eukaryotes, no ME-
model of S. cerevisiae has been developed. The previous ME-
models were constructed for bacteria11–13, with one ribosome and
one RNA polymerase being sufficient to represent the cellular
expression machinery. In contrast, S. cerevisiae as a eukaryotic
organism additionally has mitochondrial ribosomes and RNA
polymerases. In this work, we extended the ETFL formulation
and code for applicability to eukaryotic systems. In this new
formulation, we account for the additional ribosomes and RNA
polymerases within the eukaryotic mitochondrial expression
system. We also included an allocation constraint for the fraction
of proteins that are allocated to metabolism and cellular expres-
sion. Herein, we propose an ETFL model for S. cerevisiae, named
yETFL, which is based on the extended ETFL formulation. The
methodological advancements in ETFL provide avenues toward
development of such models for the study of other eukaryotes.

Results
ETFL model of S. cerevisiae. We present here yETFL, a ME-
model of S. cerevisiae based on the ETFL formulation (Table 1).
yETFL is constructed using the latest S. cerevisiae genome-scale
model Yeast822. Toward the generation of yETFL, we first per-
formed a thermodynamic curation of Yeast8, which contains
1326 unique metabolites (a total of 2691 compartmentalized
metabolites), 3991 reactions, 1149 genes, and 14 compartments
(including the extracellular space). There are 2614 reactions
associated to genes.

Information about the thermodynamic properties of reactions
allows us to (i) integrate the available metabolomics and
fluxomics data into the models, (ii) compute thermodynamically

Table 1 Properties of the yETFL (variable biomass
composition with thermodynamics) model created from
Yeast8.3.4.

Growth upper bound (ū) 0.75 h−1

Number of bins (N) 128
Resolution (ū/N) 0.0058 h−1

Number of species
- Metabolites 2689
- mRNAs 1393
- Peptides 1393
- rRNAs 6

Number of enzymes
- Metabolic enzymes 1059
- RNA polymerases 2
- Ribosomes 3

Number of reactions
- Metabolic 2678
- Transport 1047
- Exchange flux 243
- Transcription 1393
- Translation 1393
- Complexation 1065
- Degradation 2458

Thermodynamic data
- Number of metabolites ΔG′°f 1764
- Number of reactions ΔG′°r 1880
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consistent values of metabolic fluxes and metabolite concentra-
tions, and (iii) determine thermodynamically feasible direction-
alities. Using the group-contribution method (GCM), we
estimated the Gibbs free energies of formation for 1092 of 1326
total unique metabolites. We then estimated the Gibbs free
energies for 1880 reactions in the Yeast8 GEM, which only
includes reactions in an aqueous environment (see “Methods”).
Yeast8 has 1304 reactions in the membrane compartments
(nonaqueous environment). We did not apply thermodynamic
constraints for these 1304 reactions as thermodynamic relations
for membrane-associated metabolites require correction based on
information about the nonaqueous environments, which is not
always available.

In yETFL, we modeled the synthesis of 1059 enzymes coupled
to 2588 of 2614 reactions with associated genes. The catalytic
constraints are specified by coupling the reactions and the
enzymes, which requires information on kcat, or the enzyme
turnover numbers. We found kcat values for 943 enzymes and
approximated this number for a further 166 enzymes from the
median kcat value in S. cerevisiae (see “Methods”). Of these
enzymes, 77 were transporters associated to 167 transport
reactions, there are 107 complexes among the enzymes, and the
remainder are monomeric enzymes composed of a single peptide.
A complexation reaction is considered for each enzyme to account
for its synthesis from the constituent peptides. Operon structures
were considered in the previous formulation of ME-models for the
bacterial cells14. Similar to the original ETFL formulation, yETFL
does not account for these structures since such mechanistic
details were not necessary for the studies here. However, the
details about the operon structures can be included in the ETFL
formulation by expanding around the corresponding existing
transcription steps, as it was done in the previous ME-models.

While one RNA polymerase and one ribosome can sufficiently
represent bacterial expression system, in a eukaryotic cell such as
S. cerevisiae, there are different RNA polymerases and ribosomes.
Notably, the mitochondria have their own RNA polymerase and
ribosome. The extended ETFL formulation, presented here,
enables implementing multiple ribosomes and RNA polymerases,
the latter of which includes: (i) the RNA polymerase II, which
transcribes nuclear genes and (ii) the mitochondrial RNA
polymerase, which transcribes the mitochondrial genes. The
model also includes three ribosomes, where one ribosome is
associated with mitochondrial genes and the other two ribosomes
are associated with nuclear genes, but differ in their composition
(see “Methods”). Altogether, yETFL includes 1149 metabolic
genes from Yeast8 and an additional 244 genes that encode the
composition of the aforementioned ribosomes and RNA
polymerases.

To study the inclusion or exclusion of thermodynamic
constraints and a variable or constant type of resource allocation
(“Methods”), we developed four different types of models
(Table 2). The inclusion of thermodynamic constraints is
reflected by the presence of “T” in the name of the model (i.e.,
ETFL.cb and ETFL.vb), and the “cb” points to a version with a

constant biomass composition, while “vb” indicates that the
biomass composition is variable with growth. The number of
variables and constraints in each model is detailed in Table 2. We
used 128 bins to discretize the growth in the range of [0, μmax],
where μmax is the maximum growth rate of S. cerevisiae as
observed in rich growth medium as a conservative upper bound
on growth rate. Here, we assumed that the highest growth rate S.
cerevisiae can achieve in a normal condition is when it grows on
the rich medium (see Salvy and Hatzimanikatis13 for details). It is
worth mentioning that μmax can be increased or decreased by the
users based on their needs to have higher resolution or higher
range of the growth variation, respectively. Alternatively, we can
increase the resolution by increasing the number of bins, but this
entails increasing the number of variables and constraints. Using
128 bins to discretize the growth resulted in 135 (i.e.,
128þ log2128) binary variables in the models without thermo-
dynamic constraints, denoted as EFL.cb and EFL.vb. In the
models with thermodynamic constraints, two binary variables
were added per reaction to account for the directionality, which
resulted in 8073 binary variables.

Similar models to yETFL developed for S. cerevisiae are
GECKO models, ecYeast710 and ecYeast822, and WM_S288C23, a
whole-cell model. The Gecko models contain phenomenological
constraints for proteome limitations. In contrast, yETFL is a fine-
grained framework that accounts for proteome limitations
mechanistically by integrating additional processes, such as
transcription and translation. As a result, yETFL can predict
parameters such as growth-condition-dependent biomass com-
position as well as transcription and translation machinery
content, which cannot be done by the GECKO models. Moreover,
the mechanistic representation of the expression system provides
additional capabilities to yETFL to simulate the perturbations on
the expression machinery, RNA transcripts, and gene copy
numbers. Finally, in addition to proteomics data, which can also
be integrated into the GECKO models, yETFL enables the
integration of transcriptomics data.

The recently developed whole-cell model of S. cerevisiae,
WM_S288C, decomposes cell functionality into 26 cellular
processes23. yETFL includes three of those cellular processes,
i.e., metabolism, RNA transcription, and protein translation,
which makes WM_S288C broader in scope. A comparison of the
common parts between both models shows that both approaches
use a constraint-based framework to model metabolism, but they
differ in the form they model expression. While WM_S288C uses
ordinary differential equations, yETFL uses a constraint-based
optimization framework. The simplified approach used in yETFL
allows for an efficient analysis of cellular behavior for different
physiological conditions and different strains overcoming the
requirement of the vast number of biophysical parameters present
in WM_S288C and which are highly dependent on the strain and
the environmental conditions24. Furthermore, yETFL is able to
simulate cellular processes under the macroscopic steady-state
assumption and study the cell behavior in time intervals spanning
a few hours25, with a reasonable computational effort.

Table 2 The nomenclature, number of variables, and constraints of different ETFL models.

Abbreviated name Thermodynamics Growth-dependent biomass composition Number of variables Number of constraints

EFL.cb No No 43,527 70,918
ETFL.cb Yes No 66,714 92,338
EFL.vb No Yes 43,565 71,012
ETFL.vb Yes Yes 66,746 92,429

EFL Expression and Flux, T Thermodynamic, cb constant biomass composition, vb variable biomass composition.
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Prediction of specific growth rate. The cellular growth rate
should plateau when high values of substrate uptake are attained,
as limitations in the expression system and catalytic activity of
enzymes cause shift the growth rate from a glucose-dependent
limitation to an enzyme-dependent one. This phenomenon is
described by established empirical models of microbial growth,
where the growth shifts from nutrient limitation to proteome
limitation26. However, standard FBA models predict that the
growth rate increases linearly with increased carbon uptake. Since
ETFL accounts for expression limitations, it is expected to predict
this shift in the cellular growth rate.

We investigated the variations in growth rate with constant (E
[T]FL.cb) and variable (E[T]FL.vb) biomass composition by
examining the predicted maximum growth rate versus the glucose
uptake (Fig. 1). With a constant biomass composition, the
stoichiometric coefficients are constant in the growth reaction.
Likewise, the stoichiometric coefficients change with growth in
the variable composition. To account for this variation, the
fractions and hence, stoichiometric coefficients of each biomass
building block are determined based on experimental data. This
way, we obtain a set of different biomass reactions, each
associated with a specific growth rate. Then, we use a MILP
optimization problem to determine which of the biomass
reactions corresponds to the studied physiology (for more details,

see Salvy and Hatzimanikatis13). In both constant and variable
biomass composition, and in contrast to FBA, the growth rate
plateaued at higher values of glucose uptake rate, which is in
accordance with the experimental results27. That is, we observed a
shift from glucose-limited growth to proteome-limited growth.
The maximum predicted growth rate was 0.44 and 0.41 h−1 for E
(T)FL.cb and E(T)FL.vb, respectively. Both agree with experi-
mentally measured maximum growth rates reported in the
literature, which are in the range of 0.4–0.45 h−1 for different
strains28–30. The accuracy of our predictions with experimental
observations is important, as the maximum growth rate was
highly overestimated in previously reported ME-models12,13 that
were developed for the other organisms, likely due to the lack of
an allocation constraint on the total amount of metabolic
enzymes (see Eq. (5)).

We observed small discrepancies in the maximal growth rate
between the experimental data and the yETFL results for the
glucose uptake rates, which ranged from ~4 to ~11 mmol gDW−1

h−1 (Fig. 1). One cause of these discrepancies might be the
growth dependence of certain parameters, such as the ribosomal
elongation rate. To avoid excessive constraints in the model and
to preserve experimental observations in the feasible solution
space, we used the highest reported values for ribosomal
elongation rate, which typically corresponds to higher growth
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Fig. 1 The maximum specific growth rate (h−1) at different glucose uptake rates (mmol gDW−1 h−1). a The models with thermodynamic constraints are
compared against FBA. b The models without thermodynamic constraints are compared against FBA. The results are shown for ETFL models with constant
(E[T]FL.cb) and variable (E[T]FL.vb) biomass composition. While using FBA, no maximum growth rate was observed, all ETFL models predicted a
maximum for the growth rate, even in the presence of excessive substrate. The experimental data were taken from van Hoek et al.27.
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rates31,32. Since our formulation accounts for growth-dependent
parameters, we anticipate the facile integration of new informa-
tion on the variation of the parameters with the growth rate
into yETFL.

Another contributor to experimental and predicted discrepan-
cies might be the regulation system that is used by S. cerevisiae
during the transition from nutrient-limited to proteome-limited
growth. Like in other ME-model formulations, we assume in
yETFL that the cellular system evolved under selection pressure
to maximize the growth rate. In this context, the regulatory
network of S. cerevisiae can be seen as a control system that drives
the metabolism toward optimality. Deviations from model
optimality in transition regions are simply limitations of the
regulatory system. Therefore, the predictive ability of the model
can be enhanced by the addition of regulatory constraints from
improved input on mechanisms and parameters that regulate the
phenotypic transition.

Gene essentiality analysis. To investigate the quality of yETFL,
we examined the ability of the model to predict which genes are
essential for the cellular growth. We discovered that the gene
essentiality results for metabolic genes were identical for the EFL.
cb and FBA models (Table 3(a)). This includes 1149 genes
associated with metabolic reactions in the Yeast8 model. We
compared the predicted essentialities to the experimental obser-
vations, which were available for 5061 genes, to assess the quality
of the model. However, these 5061 genes do not include all S.
cerevisiae genes. The results in Table 3(a) show the essentiality of
metabolic genes with the available experimental data. Compared
to the FBA model, yETFL models have more genes that corre-
spond to RNA polymerases and ribosomes (expression genes).
We could not do gene essentiality for these 244 expression genes
with FBA, as these genes are not associated to any function in the
Yeast8 model. There are 222 expression genes with available
experimental data that are represented alongside the metabolic
genes in Table 3(b). We performed gene essentiality for 1393
genes in yETFL (compared to 1149 genes in Yeast8 that could be
tested for gene essentiality), and we obtained a slight improve-
ment in Matthews correlation coefficient (MCC) (Table 3). We
also found that the integration of thermodynamic constraints into
FBA or EFL.cb did not change the essentiality results.

Crabtree effect. Overflow metabolism is a shift from an optimal
to a nonoptimal metabolic phenotype and is observed in different
organisms at high growth rates27,33,34. Overflow metabolism in S.
cerevisiae, also called the Crabtree effect, occurs when cells shift

from pure respiration to a combination of respiration and fer-
mentation in the presence of oxygen. This happens after cells
reach a critical growth rate, which is strain-specific though can be
estimated at about 0.3 h−1. Because one hypothesis for why
overflow metabolism occurs is proteome limitation35,36 and
because the yETFL model takes this into account, we therefore
looked next at the ability of yETFL to predict this metabolic shift.

The Crabtree effect in S. cerevisiae cannot be predicted with
FBA unless some ad hoc assumptions are made in the constraints
or the objective function36. In contrast, we successfully predicted
the shifts in fluxes at higher growth rates with yETFL, which
considered limitations in the catalytic capacity of the enzymes
and protein expression machinery (Fig. 2). In fact, yETFL could
capture the shift in metabolism at high growth rates, where
ethanol was secreted, and CO2 production increased while O2

consumption decreased. The model had good qualitative agree-
ment with the experimental data acquired from aerobic, glucose-
limited chemostat cultures27.

The E[T]FL.vb models (see “Methods”) presented an earlier
onset of the Crabtree effect relative to the E[T]FL.cb models
(Fig. 2). We can attribute the onset to the Yeast8 protein fraction
used in E[T]FL.cb, which is close to the experimentally observed
values at higher growth rates. Thus, the E[T]FL.cb models are less
constrained than the E[T]FL.vb ones. In general, models with
higher protein ratios are less tightly constrained. Hence, their
maximum growth rate and the Crabtree effect occur at higher
growth rates (Fig. 2). We also observed a slight deviation of the
model predictions from the experimental observations in the
transition region for the growth rates between 0.3 and 0.36 h−1,
the onset of Crabtree effect with the experimental data and
yETFL, respectively (Fig. 2). A potential method to enhance the
predictive ability of yETFL in light of these slight discrepancies
would be through the inclusion of regulatory mechanisms by
integration of regulatory constraints. Another next step would be
to account for the growth dependence of more parameters. These
improvements can be facilitated by further experimental
investigations into S. cerevisiae physiology.

It is of note that yETFL was able to capture the Crabtree effect
solely by integration of experimentally measured data and
without ad hoc modifications in the model or the formulation.
In an earlier study10, an additional parameter was introduced to
further constrain the availability of enzymes. Since the saturation
rate of individual enzymes is not known, this parameter was
introduced as the saturation rate of the total enzymatic pool and
it was calculated by fitting the model predictions to the
experimental data. Here, we captured the Crabtree effect without
additional parameters, as yETFL explicitly accounts for the
saturation rates of individual enzymes. Moreover, yETFL also
allows for integration of experimentally observed saturation rates
of individual enzymes by the addition of saturation parameters to
the catalytic constraint of each enzyme. These parameters can
then be found by fitting the model predictions to the
experimental data, as has been reported37. Following a similar
procedure, we can also integrate different experimental transcrip-
tional and translational efficiencies into the model.

Discussion
In this work, we developed a model for a eukaryotic organism, S.
cerevisiae, by extension of the recently published formulation of
ETFL to consider compartmentalized expression systems with
separate ribosomes and RNA polymerases. This is the first model
for yeast that includes RNA and enzyme concentration data, and
this explicit simulation of expression broadens the applications of
yETFL to the simulation of the impacts of different perturbations
on cellular mechanisms. To test the accuracy of yETFL, we

Table 3 Gene essentiality results for (a) only metabolic
genes (FBA and E[T]FL.cb) and (b) metabolic and
expression genes (E[T]FL.cb) compared with experimental
results.

(a) FBA,E[T]FL.cb (metabolic
genes)

Predictions

MCC= 0.48 Essential Nonessential
Experimental Essential 53 106

Nonessential 12 945
(b) E[T]FL.cb (metabolic and

expression genes)
Predictions

MCC= 0.50 Essential Nonessential
Experimental Essential 72 118

Nonessential 16 1132

Matthews correlation coefficient (MCC) was used as a metric to assess the quality of the
predictions.
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validated the predictions of the model against experimental data.
Moreover, we reproduced the emergence of the Crabtree effect,
and observed the secretion of ethanol in aerobic conditions
without needing to integrate experimental data as with previous
descriptions of the Crabtree effect10.

Overall, a key advantage of the ETFL formulation is its direct
extension to other types of analyses, such as the study of the
Crabtree effect at the steady state as we have presented in this
work. Future work in understanding the emergence of this effect
in a dynamic setting, as previously shown for the E. coli overflow
metabolism25, will yield valuable insights on the optimality of the
regulatory mechanisms in S. cerevisiae. We envision that this
information can be applied to design industrially valuable strains.
Also, yETFL can be used as a scaffold to integrate other biological
networks, such as regulatory or signaling networks5, as a vital step
toward constructing a whole-cell model38. Finally, the extension
of the ETFL formulation presented here is readily adaptable to
any eukaryotic organism for which a well-curated GEM is
available. The quality of the information about enzymes (i.e.,
catalytic rate constants and protein composition) will affect the
quantitative predictions of the model, though new data are easily
inputted into ETFL such that the predictions will always be as
good as the available data. We envision that the availability of
eukaryotic ME-models will improve the understanding and
engineering of industrial hosts for the refinement and creation of
better eukaryotic systems in biotechnology, for applications ran-
ging from the production of fuels and commodity chemicals to
therapeutic proteins.

Methods
Formulation of the ETFL model. yETFL is based on the ETFL formulation, which
was previously described in detail in Salvy and Hatzimanikatis13 (for the full list of

the constraints in yETFL see Supplementary Tables S2 and S3). The ETFL con-
straints can be divided into five main categories:

● Metabolic constraints: enforce all metabolite and macromolecule concen-
trations to be at steady state. These constraints are the same as in FBA6.

● Thermodynamic constraints: couple the directionality of reactions with
their Gibbs free energy. These constraints are the same as in TFA8,9.

● Catalytic constraints: define upper bounds on the reaction fluxes based on
the enzymatic capacity of the associated enzymes. We account for the
catalytic efficiency of each enzyme based on its turnover number (kcat). A
reaction might be catalyzed by different enzymes (i.e., isozymes) and the
efficiency of these isozymes might be highly different. For example, if a
reaction i is catalyzed by two isozymes j and j′, the corresponding catalytic
constraint is:

vi ≤ kcat;jEj þ kcat;j0Ej0

where kcat;j and kcat;j0 reflect different catalytic efficiency of the isozymes.
This way, the maximum catalytic capacity of the reaction is defined as the
sum of the maximum catalytic capacities of individual isozymes. For the
ribosomes and RNA polymerases, we model both free enzymes and enzyme
complexes. For the metabolic enzymes, we do not account for enzyme
mechanisms (e.g., Michaelis-Menten), and therefore making the distinction
between free enzymes and enzyme complexes is not necessary. The enzyme
mass balances constrain directly only the total amount of the enzyme, Etotal .
This quantity is used in the flux inequality constraints to express the
maximal reaction velocity, Vmax ¼ kcatEtotal .

● Expression constraints: model the synthesis of mRNAs, peptides, and
proteins, and constrain synthesis rates based on the limitations of
transcription and translation machinery.

● Allocation constraints: determine the available amounts of DNA, RNA,
and proteins in the cell. If experimental data are available, the ETFL
formulation allows for modeling the growth-dependent abundance of these
macromolecules. Whenever the experimentally measured abundance of
these macromolecules during growth is not available, we assume that the
ratio between these quantities is growth-independent, an assumption
already made in FBA.

ETFL13 is different from the other formulations of ME-models12,14 in several
aspects. On the one hand, only ETFL allows the integration of thermodynamic
constraints and metabolomics data. Also, multiple expression systems were
implemented only in ETFL. On the other hand, stable RNA splicing and operon
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Fig. 2 The simulation of the Crabtree effect. a EFL.cb, b ETFL.cb, c EFL.vb, and d ETFL.vb models. In all cases, after a critical growth rate (0.35–0.39 h−1 for
different models), ethanol secretion was observed. Also, a shift in the fluxes of carbon dioxide production and oxygen consumption emerged, which
indicated the shift of the organism from pure respiration to a combination of respiration and fermentation. The experimental data were taken from van
Hoek et al.27.
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structure were considered in the previous formulations of ME-models, but not in
ETFL (see Supplementary Notes for further details). The inclusion of ionic
cofactors to form functional enzymes, i.e., metalloproteins, is partially considered
in the previous formulations of ME-models, whereas ETFL lumps such
requirements in the biomass reaction, alike the FBA models. Both formulations
derived the mass balances for the macromolecules from the first principles, but
rather in a different way. For example, in the other formulations of ME-models the
enzymes are involved in the reactions as metabolites. In ETFL, however, the
enzymes are coupled to the reactions based on their catalytic capacity
(see Supplementary Notes and Supplementary Table S3). Finally, ETFL is a MILP
formulation, which can be solved by conventional double-precision solvers, while
the previous formulations of ME-models were nonlinear and only solvable with
special quad-precision solvers.

Data collection
Genome-scale metabolic model (GEM). The most recent GEM of Saccharomyces
cerevisiae, Yeast822, was used as a basis to construct the yETFL model. The latest
published version of Yeast8 model, Yeast8.3.4, was obtained from the GitHub as it
was provided by Laboratory of Systems and Synthetic Biology at Chalmers Uni-
versity (https://github.com/SysBioChalmers/yeast-GEM).

The following modifications to Yeast8 were made:

● Pseudometabolites defined for RNAs and proteins as well as pseudoreac-
tions defined for their synthesis were replaced by the explicit expressions
for RNA and protein synthesis (according to the procedure described in
Salvy and Hatzimanikatis13).

● tRNAs and their reactions were adapted into a formulation that accounts
for dilution effects, according to the ETFL procedure13. This is necessary as
the dilution effect is not necessarily negligible for tRNAs.

● The biomass reaction was modified to account for growth-dependent
composition, as discussed in detail in “Allocation data and constraints.”

Thermodynamic curation of Yeast8. We used GCM39 to determine the standard
Gibbs free energy of formation in aqueous, ionic environments40 for 1092 out of
1326 (82.4%) unique metabolites from Yeast8 (Fig. 3). We were not able to
determine the thermodynamic properties for the remaining 234 metabolites
because: (i) 89 metabolites (6.7%) represented abstract compounds, such as pools
of proteins, nucleotides, lipid chains; (ii) 92 metabolites (6.9%) did not have a
known molecular structure or they contained structural groups for which the
estimated standard Gibbs energy of formation is unknown (e.g., acyl carrier protein
group); and (iii) 53 metabolites (4%) contain groups with unknown energy in their
composition. Using the standard Gibbs free energy of formation of compounds, we
integrated the thermodynamic properties only for reactions in the aqueous solu-
tion. We estimated the standard Gibbs free energy of reactions for 1880 out of 2687
(70.0%) such reactions from Yeast8. The standard Gibbs free energy of reactions
with at least one metabolite associated with a membranous compartment
(including 1304 reactions) was not calculated using this procedure, as the standard
Gibbs free energy of formation of compounds was determined for the aqueous
environments (see Supplementary Notes).

mRNA, peptide, and protein data. The sequences for the peptides and mRNAs were
obtained from the KEGG database41. Information about the stoichiometry of
peptides forming enzymatic complexes in S. cerevisiae was obtained by combining
available information in YeastCyc42 and Complex Portal43. Turnover numbers
(kcat) were retrieved from BRENDA using functions provided by GECKO10.

Allocation data and constraints. We created yETFL models using either a con-
stant or variable biomass composition. For constant biomass composition (E[T]FL.
cb), we used the macromolecular fractions from the Yeast8 biomass reaction. The
mass fractions for different macromolecules were calculated using the below
equation:

f k ¼ ∑
i2Mk

ηiMWi: ð1Þ
For each type of macromolecule, Mk , ηi2Mk

is the stoichiometric coefficient of
the metabolites belonging to this macromolecule class in the biomass reaction, and
MWi is their molecular weight. For example, to find the protein fraction in the
biomass, f Prot, the stoichiometric coefficients of individual amino acids were
multiplied by their molecular weight to find their mass fractions in the biomass.
The sum of these amino acid ratios indicates how much of the biomass is protein.
By definition, the weight of biomass should be 1 g44,45, i.e.,

∑
i2BBBreactants

ηiMWi þ ∑
j2byproducts

ηjMWj ¼ 1: ð2Þ
In this equation, BBBreactants is the set of reactants in biomass reaction and

byproducts is the set of all products except biomass.
When generating an ETFL model, it is important to remove protein and RNA

metabolites from the biomass equation to prevent double counting of the metabolic
requirements, since the explicit mRNA and peptide synthesis reactions already
account for their respective participation in cell growth.

In ETFL, we model the participation of macromolecules in the cellular biomass
composition as follows:

∑
j
MWjEj ¼ Pm; ð3Þ

∑
l
MWlFl ¼ Rm; ð4Þ

where Pm and Rm are, respectively, the protein and RNA mass fractions in g gDW−1,
and Ej and Fl represent, respectively, the concentration of enzyme j and RNA l in
mmol gDW−1. Pm and Rm can either be constant (E[T]FL.cb) or variable and
discretized (E[T]FL.vb). The constraints in Eqs. (3) and (4) ensure that Eq. (2) holds
at different growth rates and different biomass compositions.

To create an E[T]FL.vb model, it is necessary to know the fraction of each
biomass component at different growth rates. We gathered this information for S.
cerevisiae by reviewing the literature (data available on the online yETFL
repository, see “Data availability”)27,46,47. Since the data are usually reported for a
few particular growth rates, we resampled it using piecewise-linear interpolation.

Protein allocation. Since ME-models do not consider all the cellular tasks of pro-
teins, ETFL defines a generic, so-called dummy protein to represent the fraction of
the proteome not accounted for in the model13, such as structural proteins, sig-
naling proteins, or chaperones. However, since the dummy protein is not asso-
ciated with a cellular function, the optimization procedure will apportion the whole
protein content to the proteins that are associated with a cellular task (i.e., meta-
bolic enzymes, ribosomal peptides, and RNA polymerase). Consequently, the
concentration of the latter proteins is overestimated, which results in over-
estimating the maximum growth rate, and the Crabtree effect emerges at higher
growth rates. To realistically account for enzyme participation in the proteome, we
can define φ; the proportion of proteins that is associated with a metabolic task, in
the total protein content of the cell. Then, we can add the following constraint in

Fig. 3 Schematic representation of the thermodynamic curation of the
metabolites in Yeast8. After excluding the pseudometabolites and ACP-
containing proteins to which a concrete chemical structure cannot be
assigned, the SMILES were generated or collected for the rest of the
metabolites. Then, using the SMILES, each metabolite was decomposed
into known functional groups. Finally, the standard free Gibbs energy of
formation was estimated using the free Gibbs energy of formation of the
groups that constitute each molecule. ACP acyl carrier protein, GCM
group-contribution method, SMILES simplified molecular input line entry
system.
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the optimization problem

∑
j≠dummy protein

MWjEj ¼ φ � Pm: ð5Þ

This way, the constraints in Eqs. (3) and (5) enforce the optimization procedure
to allocate a fraction of the proteome, i.e., (1� φ), to the proteins with cellular
functions not considered in the model, i.e., dummy protein. We used the latest
protein abundance dataset for S. cerevisiae available in PaxDB48 to compute this
fraction as φ ¼ 0:55 g g�1

protein.

DNA. The growth dependence of the DNA abundance in the cell was modeled as
proposed in the original ETFL formulation13.

Carbohydrates, lipids, and ions. To consider the growth dependence of the biomass
composition, we introduced the variation of the other biomass components in the
ETFL formulation. The growth dependence of carbohydrates, lipids, and ions is
implemented in a similar way to the one of DNAs, RNAs, and proteins in the
original ETFL formulation. Specifically, we first discretize the growth into bins and
then we use a MILP optimization to determine the discretized growth value (bin)
that corresponds to the studied physiology. Then, we defined a metabolite pool for
each of these macromolecules. In Yeast8, each biomass component is attached to a
pooling reaction that transforms the sum of specific metabolites (e.g., all carbo-
hydrate metabolites) into a single metabolite pool (e.g., carbohydrate). The mass
balance equation for these modeling metabolites is the following:

d½Xi�
dt

¼ ηbiomass
i μþ ηpooli vpooli ; i 2 fCarbohydrate; Lipid; Iong; ð6Þ

where vpooli is the flux through the pooling reaction, and ηpooli and ηbiomass
i represent

stoichiometric coefficients of the modeling metabolite i in the pooling and biomass
reactions, respectively. When it is desired to model a growth-dependent stoichio-
metric coefficient in the biomass reaction, the said stoichiometric coefficient can be
redefined as a function of μ and calculated as follows:

ηbiomass
i ¼ ηbiomass

i;ref

Xm
u;i

Xm
ref ;i

; i 2 fCarbohydrate; Lipid; Iong: ð7Þ

In this equation, Xm
u;i is the discretized mass fraction of component i in the

discretized growth bin u, following notations from Salvy and Hatzimanikatis13.

ηgrowthi; ref is the stoichiometric coefficient in the biomass reaction, and Xm
ref ;i is the

mass ratio of component i in a reference model (e.g., FBA).

Ribosomes and RNA polymerases. To model the ribosomes and the RNA
polymerases, information about their constituting peptides, ribosomal RNA, and
catalytic rate constants is required. To consider the eukaryotic complexity of S.
cerevisiae, we defined multiple RNA polymerases and ribosomes in yETFL
(Table 1)

● RNA polymerase: similar to the other eukaryotes, S. cerevisiae has three
different types of nuclear RNA polymerases. However, most of the mRNA
transcripts are transcribed by RNA polymerase II49. In yETFL, we
implemented this nuclear RNA polymerase, and we modeled such that
all the nuclear genes could be transcribed only by this enzyme, similar to
the previous work13. For mitochondrial genes, we defined a mitochondrial
RNA polymerase, which was characterized by its own composition and
kinetic parameters49.

● Ribosome: the structure of the cytosolic ribosomes in S. cerevisiae contains
four ribosomal RNA (rRNA) molecules encoded by four different genes. In
addition to these four rRNAs, the cytosolic ribosomes contain 78 peptides
encoded by 137 genes50. Out of 78 peptides, 19 are encoded by a single
gene and 59 peptides are encoded by either of two alternative genes. To
account for alternative ribosomal peptides, we defined two sets of genes: set
A containing 59 genes encoding for the 59 peptides (designated with “A” in
their standard names, e.g., RPL1A), and set B containing the alternative
genes of set A (designated with “B” in their standard names, e.g., RPL1B).
Then, we constructed two cytosolic ribosomes, one where we constructed
the 59 peptides using the set A and the other where we used the set B. We
assumed a similar elongation rate for both cytosolic ribosomes. The two
modeled ribosomes represent only two out of many possible combinations
of the peptides from sets A and B. Implementing these 259 possibilities is
currently computationally intractable. Here, as a first approximation, we
decided to keep the two ribosomal compositions because we wanted to be
inclusive of all ribosomal genes while having a realistic production cost.
The other possible combinations can be readily integrated into the model
by adding similar constraints to what we have already included for the two
modeled ribosomes. A mitochondrial ribosome was also defined to
translate mitochondrial genes. This ribosome is composed of two rRNAs
and 78 peptides52.

Further details about the expansion of the ETFL formulation to implement
multiple expression systems are provided in Supplementary Notes.

Modifying the growth-associated maintenance (GAM). The energetic cost of
growth, including maintenance of the cell and polymerization of the
macromolecules53, is quantified in genome-scale models using the GAM. In ETFL,
we consider the energetic cost of protein synthesis explicitly, and this cost should
be removed from the GAM to avoid the overestimation of energetic requirements
in the polymerization of peptides (Eq. (8)).

∑
aai2A

ηlaai tRNA
charged
aai

þ 2LlaaðGTPþH2OÞ ! Pepl þ ∑
aai2A

ηlaai tRNA
uncharged
aai

þ 2LlaaðGDPþ PiþHþÞ;
ð8Þ

where aai is the ith amino acid, ηlaai represents its count in the lth peptide (Pepl),

and Llaa is the length of the peptide in amino acid.
Since 2 moles of GTP are needed to attach 1 mole of amino acid to the peptide

(Eq. (8)), and from

ATPþ GDP ! ADPþ GTP; ð9Þ
1 mole of ATP is required to produce 1 mole of GTP. Therefore, we can deduce

that peptide polymerization requires 2 moles of ATP per 1 mole of amino acid.
We also know that the stoichiometric coefficients of amino acids in the biomass

reaction of Yeast8 give information on how many mmol gDW−1 of each amino
acid are required to produce 1 g of biomass. From there, it is straightforward to
compute the total amount of amino acids (~4.1 mmol) required for the production
of 1 g of biomass. Combined, we can calculate that to produce 1 g of biomass, the
energetic cost is 2 ´ 4:1 ¼ 8:2 mmol gDW−1 of ATP for peptide synthesis, which
we removed from the GAM.

Gene–protein–reaction coupling. Coupling the reactions in metabolic networks
with their enzymes is the most important step in the process of creating an ETFL
model. Ideally, assigning enzymes to reactions requires information about: (i)
gene–protein–reaction rules, (ii) catalytic rate constants (kcat), and (iii) type and
stoichiometry of the peptide assembly into enzymes. Whenever we did not have
access to all required information, we made the following assumptions (Fig. 4):

Fig. 4 Workflow for the integration of enzymes into the model. The
enzyme composition for the complex enzymes was sourced from YeastCyc
and Complex Portal. In cases that the enzyme composition was found for
one isozyme but not for the other(s), we assumed a similar composition for
all isozymes (e.g., all were assumed to be dimers, trimers, etc.). We used
the function MatchKcats from GECKO10 to find turnover numbers (kcat). If
the kcat cannot be found for an enzyme, we used the median of the kcats in
S. cerevisiae as an approximation.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25158-6

8 NATURE COMMUNICATIONS |         (2021) 12:4790 | https://doi.org/10.1038/s41467-021-25158-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


● We assumed similar composition for isoenzymes if composition informa-
tion was only available for one of them. For example, if one of the
isoenzymes is a dimer, the other is also assumed to be a dimer.

● We assumed that monomeric enzymes catalyze reactions (i) that depend
on a single gene, and (ii) for which information about their enzyme
composition was not available.

● If an enzyme peptide composition is identified, either from databases or by
approximation, but its kcat was not found, we set the kcat equal to 70:9 s�1,
which is the median for kcats in S. cerevisiae10.

● While the reactions that transport a metabolite from one compartment to
another one are associated with genes, their kcat information is scarce. As a
result, these reactions were not catalytically constrained in similar models
such as GECKO10. We set kcat of the proteins that catalyze these reactions
to a large number (1E+ 9 h−1), which ensures that these reactions are not
catalytically constrained and only the gene–protein–reaction relationship is
preserved. We also checked the impact of constraining the transport
reactions. To this end, these reactions were constrained by the median kcat ,
but no significant change was observed in the results.

Gene essentiality analysis. We used gene essentiality analysis54 to assess the
quality of yETFL. The ETFL formulation enables single-gene knockouts by
blocking the flux through transcription reaction for each gene. The predicted
essential genes were compared against experimental data for S. cerevisiae obtained
from http://www-sequence.stanford.edu/group/yeast_deletion_project/downloads.
html. Before deleting the genes, the culture medium was modified according to Lu
et al.22. Briefly, the minimal medium supplemented with amino acids and
nucleotides was used for the simulations, and the model was allowed to uptake
glucose as the sole carbon source. The MCC was used as a metric to evaluate the
quality of predictions for FBA and ETFL because of its robustness to the imbalance
in the number of essential and nonessential genes. MCC can take values from −1
to 1, where values of MCC close to −1 indicate predictions opposed to the ground
truth, 0 random predictions, and 1 perfect predictions.

Chemostat simulations. The results of this paper were obtained by simulating the
cell growth as a function of different carbon uptake rates. This allows the exhibition
of proteome-limited behavior and overflow metabolism in the presence of excess
glucose. For all simulations, the model was allowed to uptake glucose as a carbon
source, some essential inorganic compounds, and oxygen. To prepare the model for
the simulations, it was modified as described previously in Sánchez et al.10.

To capture the Crabtree effect, the substrate uptake rate was minimized for
different values of the growth rate. Then, we fixed the values of the substrate uptake
rates at the computed minima and minimized the total fluxes55 and then the total
enzyme concentrations10, consecutively, to account for the parsimonious enzyme
usage. Finally, the Chebyshev center of the enzyme space was used as a
representative solution25.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The supporting data used in this study51 are available in Zenodo (https://doi.org/
10.5281/zenodo.4778047). This data is collected from public databases including KEGG
(https://www.genome.jp/kegg), yeastCyc (https://yeast.biocyc.org), and Complex Portal
(https://www.ebi.ac.uk/complexportal/home). The other parameters that are set inside
the code are provided in Supplementary Tables S1 and S4–S7.

Code availability
The code was implemented in Python 3.7, and the commercial solver Gurobi was used to
solve the MILP problems. The code relies on the ETFL13 and pyTFA56 packages, which
use COBRApy57 and Optlang58. The code to generate yETFL models and reproduce the
results of this paper is freely available at https://github.com/EPFL-LCSB/yetfl and https://
gitlab.com/EPFL-LCSB/yetfl (the code is also deposited in Zenodo to provide a reference
to the version used in this study59).
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