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Abstract

Objective: A major challenge in precision medicine is the development of patient-

specific genetic biomarkers or drug targets. The firsthand information of the genes

associated with the pathologic pathways of interest is buried in the ocean of biomedical

literature. Gene ontology concept recognition (GOCR) is a biomedical natural language

processing task used to extract and normalize the mentions of gene ontology (GO), the

controlled vocabulary for gene functions across many species, from biomedical text. The

previous GOCR systems, using either rule-based or machine-learning methods, treated

GO concepts as separate terms and did not have an efficient way of sharing the common

synonyms among the concepts.

Materials and Methods: We used the CRAFT corpus in this study. Targeting the compo-

sitional structure of the GO, we introduced named concept, the basic conceptual unit

which has a conserved name and is used in other complex concepts. Using the named

concepts, we separated the GOCR task into dictionary-matching and machine-learning

steps. By harvesting the surface names used in the training data, we wildly boosted the

synonyms of GO concepts via the connection of the named concepts and then enhanced

the capability to recognize more GO concepts in the text. The source code is available at

https://github.com/jeroyang/ncgocr.

Results: Named concept gene ontology concept recognizer (NCGOCR) achieved 0.804

precision and 0.715 recall by correct recognition of the non-standard mentions of the GO

concepts.

https://academic.oup.com/
https://github.com/jeroyang/ncgocr
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Discussion: The lack of consensus on GO naming causes diversity in the GO mentions in

biomedical manuscripts. The high performance is owed to the stability of the composing

GO concepts and the lack of variance in the spelling of named concepts.

Conclusion: NCGOCR reduced the arduous work of GO annotation and amended the

process of searching for the biomarkers or drug targets, leading to improved biomarker

development and greater success in precision medicine.

Database URL: https://github.com/jeroyang/ncgocr

Background

Introduction

In precision medicine, the individual genomic variability is
emphasized in prevention, screening, diagnosis and treat-
ment (1, 2). In this regard, the discovery of new biomarkers
or drug targets using genome-wide methods requires the
support of bioinformatics tools. The gene ontology (GO),
composed of three ontologies—biological process, molec-
ular function and cellular component—standardizes the
terminology of the gene functions and is extensively used
to analyze the results of high-throughput and microarray
experiments (3, 4). The data of GO annotation containing
the genes and associated gene functions are manually col-
lected from biomedical publications (3, 5). By examining
the literature, a few well-trained curators, having knowl-
edge of both biology and GO terminology, established
the relationship between the gene and GO concept (5, 6).
Although the results acquired by experts who perform GO
annotation can be applied to similar genes in other species
through the use of software, manual biocuration obstructs
the processing of the exponentially growing number of
biomedical literature (5, 7, 8).

In relation to the foregoing, the gene ontology concept
recognition (GOCR) is the basal component in automatic
GO annotation. Given a short paragraph of a biomedi-
cal paper, the intuitive approach of GO annotation is to
recognize the presence of a gene and GO concept, and
then confirm the relationship between them. In the GO
annotation tracks of BioCreative I and BioCreative IV, the
teams focused most of their efforts to optimize their GOCR
systems. Nevertheless, the results remained unsatisfactory
(8, 9).

The issues with GOCR are caused by limited synonyms
and the limited training data. Some commonly used syn-
onyms of a concept discovered in the annotation are not
included in the official synonyms provided by the Gene
Ontology Consortium. For example, the term ‘diurnal cycle’
is not in the list of synonyms of the concept GO:0007623
‘circadian rhythm’ because the definitions of these two
terms are not the same; only a ‘diurnal cycle’ having endoge-

nous nature can be called a ‘circadian rhythm’. While
the GO maintainers avoid using ‘diurnal cycle’, some of
the authors use these two terms interchangeably. Auto-
matically marking the term ‘diurnal cycle’ as a synonym
of GO:0007623 ‘circadian rhythm’ is not difficult for a
machine learning-based GOCR system. However, four GO
concepts contain the term ‘circadian rhythm’. If there is
not an efficient way to connect the concepts together, we
need four independent training examples to update the
synonyms of these four concepts. The basic idea of named
concept gene ontology concept recognizer (NCGOCR) is
to introduce named concepts to handle the highly variable
surface names of GO concepts and keep the core definition
of each GO concept simple.

Related works

The concept recognition tools, which are integrated with
GO, are listed in Table 1. The system Whatizit, using
exact string match considering morphological variations,
formed the baseline of GOCR (10). The hybrid annotator,
Neji, using both dictionary-matching and machine-learning
approaches, outperformed Whatizit on the CRAFT corpus
(11). The NCBO Annotator uses dictionary-based annota-
tion and expands the annotations using several rules (12).
The widely known MetaMap from the National Library of
Medicine is best designed for extracting the concepts in the
UMLS Metathesaurus (13, 14). The ConceptMapper from
the IBM Watson Research Center is equivalent to MetaMap
and is more configurable (15).

Funk et al. (16) explored the NCBO Annotator,
MetaMap and ConceptMapper and systemically adjusted
their parameters for the best results in the GOCR. Groza
et al. (17) advanced the use of ConceptMapper in the
GOCR by integrating the methods based on case-sensitivity
matching and term information gain. Funk et al. (18)
provided the ConceptMapper with a rule-based method to
generate the synonyms of the GO concepts. Consequently,
an evident improvement was gained as indicated by an
F-measure of 0.636 (0.640 precision, 0.632 recall) on the
CRAFT corpus.

https://github.com/jeroyang/ncgocr
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Table 1. Public available concept recognition tools for GOCR

System name Description Ontologies

Whatizit (10) • Web service
• Find the exact matching of GO concept and considering

morphological variability

Chemical, disease, UMLS, drugs,
GO

Neji (11) • Using both dictionary-matching and machine-learning
approaches.

• Using Gimli, based on conditional random fields model

General purpose

NCBO Annotator (12) • Dictionary-based annotation
• Expands the annotations by using:

� transitive properties of the ontology
� semantic similarity between the concepts
� known mappings between different ontology sources.

UMLS, NCBO BioPortal, GO
and others

MetaMap (National Library of
Medicine) (13, 14)

• Tolerate complex match and partial match of noun phrases
• Parse the text into noun phrases then:

� generate the variants of the noun phrase
� obtain the candidate set from Metathesaurus
� select the best mapping according to the evaluation function

UMLS, GO and others

ConceptMapper (IBM Watson
Research Center) (15)

• Highly configurable token-based dictionary lookup
• Equivalent to MetaMap

General purpose

Other text-mining systems facilitate GO annotation
without identifying the exact locations of the GO concepts.
The famous Textpresso, developed by WormBase, is
a search engine utilizing keywords and ontology-like
hierarchical categories. It helps the curators to narrow
down the valuable documents efficiently (19, 20). The
powerful GOCat, the leading system in BioCreative IV,
takes advantage of previously annotated sentences in the
knowledge database. It then assigns a list of prevalent GO
concepts and their similarity scores by k-nearest neighbors
to the input sentence (21). These systems have resolutions
at document and sentence level and cannot be evaluated at
character level with the same settings in this study.

Previous systems have had difficulty learning synonyms
from the training data. Even when the system learned a new
synonym of a concept, it cannot comprehend by analogy
how to use this synonym in the related concepts. As a
result of this deficiency, the NCGOCR was developed in
this study to harvest the synonyms of the named concepts
in the limited training data and apply the synonyms to mul-
tiple concepts. With the boosting step, we maximized the
usage of synonyms via the connection made by the named
concepts, which is beyond the capabilities of the previous
systems. The high precision (0.804) of NCGOCR could
markedly reduce the false positive rate in the search for
valuable genes and reduce the workload of human curators.

Materials and methods

We use McDonald’s as a metaphor to explain our design.
Imagine that there are a lot of products on the menu of

McDonald’s. Some products, such as Big Mac, are made
with ingredients such as bun, beef patty, shredded lettuce,
sauce, cheese and pickle slices. Besides, some products,
e.g. Chicken McNuggets, have only one ingredient. The
consumers can customize their order by modifying some
of the ingredients in the products. If we check the food
on each customer’s tray, would it be possible to trace back
the original ordered product? GOCR recognizes the GO
concepts from the given documents just like we recognize
the customers’ orders.

NCGOCR simplifies the representations of the GO con-
cepts by using smaller fragments, called named concepts.
NCGOCR represents the input sentences with these named
concepts; then, the GO concepts that share named con-
cepts with the candidates are explored. Finally, NCGOCR
confirms the existence and location of the concept using a
machine-learning algorithm.

Ogren et al. (22) explained the compositional structure
of GO quite well. Most of the GO terms heavily share
same tokens with other terms or just contain another GO
term. This causes the redundancy in the terminology data
and makes it difficult to distinguish between concepts in
natural language. For example, there are several associated
concepts in the GO, such as ‘gene silencing‘, ‘regulation of
gene silencing’, ‘negative regulation of gene silencing’ and
‘negative regulation of gene silencing via microRNA’. The
two-word term ‘gene silencing’ is a substring in all of these
terms and is itself a GO concept.

The named concept, a concept has a name that is well
accepted by scientists, was introduced to simplify the rep-
resentation of GO concepts and divide the GOCR into
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Figure 1. NCGOCR combined dictionary-matching and machine-learning algorithms with named concept.

two operable tasks (Figure 1). Accordingly, any GO con-
cept could be split into one or more named concepts.
For example, the ‘GO:0016458 gene silencing’ has only
one named concept—‘gene silencing’. On the other hand,
the ‘GO:0031047 RNA-mediated gene silencing’ has two
named concepts—‘RNA’ and ‘gene silencing’. A named
concept may be shared in multiple GO concepts similar to
how one ingredient may be used in multiple products at
McDonald’s.

Problem description

Let Θ = {θ1, θ2. . . θ |Θ |} be the collection of GO concepts
and θ a GO concept. Given the document Γ , the problem
is to identify the references to the GO concept, θ , including
their start and end positions in the document.

Corpus and resources

The CRAFT corpus 1.0 contains 67 full-text articles asso-
ciated with manual annotations to multiple biomedical
ontologies and terminologies, including GO (23). It pro-
vides the location of a reference to a GO concept and the
unique identifier (GOID) in the given article.

To make the results of GOCR pertinent, the GO data
provided with the CRAFT corpus (23)—containing 24 337
concepts (biological process: 14 361, molecular function:
7980 and cellular component: 2047)—were used in this
study.

Generating named concepts and statements

from GO data

Apart from the ingredients already listed in the menu of
McDonald’s, we have to find out the ingredients—we call
them named concepts—of these items by ourselves. With
a group of regular expressions (listed in Table S1 in the
supplementary data), the name or synonym of a GO concept
is decomposed into a product of named concepts and state-
ments (Figure 2). A statement is a concise representation of
a GO concept that consists of named concepts. Each name
or synonym of a GO concept is represented with statement,
s = {m1, m2, . . . m|s|}, where m represents the named con-
cept, and a unique identifier for each statement (statement
ID) is assigned. Using the metaphor of McDonald’s, the GO
statements are similar to the products on the menu, which
are the standards. A GO concept is a collection of one or
multiple statements, just as a cheeseburger may be a Cheese-
burger, Double Cheeseburger or Triple Cheeseburger.

https://academic.oup.com/database/article/doi/10.1093/database/bay115/5146423?preview$=$true#supplementary-data
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Figure 2. Decomposition of the GO definition. NC-P#5 and NC-P#11 were defined heuristically in our regular expression, and the naïve NC-E#2423

was generated in this process. The redundant nine definitions of GO:0019853 are simplified into two statements. The variant spellings of vitamin C

are handled by NC-E#2423.

The regular expressions in Table S1 were designed based
on several common fragments in the names or synonyms,
usually representative of some actions, such as ‘regulation’,
‘positive regulation’, ‘activity’ and ‘transport’. These named
concepts are called ‘the pattern’ (NC-P). The surface names
of the NC-P are used to cut a name or a synonym and
split it into named concepts. The named concepts made by
the previous decomposing process, account for the majority
of named concepts, are called ‘the entity’ (NC-E). ‘The
constraint’ (NC-C), representing the constraints of the GO
concepts and only presented in some concepts deep down
in the hierarchy of GO, were filtered by the NC-C regular
expressions beforehand (Table S1). All the surface names
of the named concepts were collected as the targets in
the dictionary-matching step. For example, GO:0007623
‘circadian rhythm’ has only one named concept: ‘circa-
dian rhythm’ (NC-E); GO:0042752 ‘regulation of circa-
dian rhythm’ contains ‘regulation’ (NC-P) and ‘circadian
rhythm’ (NC-E); GO:0042753 ‘positive regulation of circa-
dian rhythm’ contains ‘positive regulation’ (NC-P) and ‘cir-
cadian rhythm’ (NC-E); GO:0042754 ‘negative regulation
of circadian rhythm’ contains ‘negative regulation’ (NC-P)
and ‘circadian rhythm’ (NC-E). These four concepts having
the common ‘circadian rhythm’ (NC-E) will later benefit
from the boosting step.

Text processing and candidate generation

A majority (∼97%) of the GO concepts in the CRAFT
corpus do not cross the boundaries of sentences, so we made
sentence segmentation of the documents as a preprocessing
procedure. For a document Γ = {γ 1, γ 2, . . ., γ |Γ |}, where

γ represents the sentence, the sentence’s start and end
positions were tracked. This was performed as well in the
succeeding candidate generation steps for the final reporting
of GOCR.

The use of word tokenization to match the surface
names of the named concepts was abandoned because
a named concept usually crosses the boundaries of the
tokens. Instead, the Aho–Corasick algorithm, a finite state
machine based on a prefix tree, was employed to perform
the dictionary-matching task (24). For each input sentence,
γ , all the surface names of the known named concepts were
located and then gathered in a list of associated named
concepts, called ‘grounds’, Gγ (Figure 3).

Thereafter, a candidate—containing a related statement,
s, pointing to the associated GO concept—is derived from
Gγ . Both s and Gγ are lists of named concepts, where s is
from the name or synonyms and Gγ is from the sentence
γ . All related statements are thoroughly explored to ascer-
tain if s and Gγ had at least one shared named concept
(Figure 3). A candidate is a guess of the GO statement from
given named concepts found in the input sentence. Imagine
that we checked the customer’s tray and found a fish filet
patty, a regular bun and an American cheese (the standard
ingredients of Filet-O-Fish). All products on the menu that
have any one of the ingredients above will be included as
a candidate; the number of the candidates is thus large
because of this greedy process.

A boosting step was also applied to enrich both the
surface names and statements from the training corpus.
If the annotated GO concept in the training corpus has
a statement that contains only one named concept, its
mention can be intuitively declared as a new surface name

https://academic.oup.com/database/article/doi/10.1093/database/bay115/5146423?preview$=$true#supplementary-data
https://academic.oup.com/database/article/doi/10.1093/database/bay115/5146423?preview$=$true#supplementary-data
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Figure 3. Text processing and machine-learning diagram. On the named concept level, the candidate was generated by the greedy search for at least

one common named concept in the grounds and statement.

linked to this named concept. Otherwise, if the mention
of the annotated GO concept contains only one word,
a new statement associated with the target GO concept,
containing two named concepts, is created. The first named
concept is linked to the mention of this single word as its
surface name and the second ‘null’ named concept is linked
to nothing. By boosting the statements, a link from the text
to GO concept by a newly defined named concept is created,
allowing the machine-learning algorithm to hone its effect.
For example, the term ‘diurnal cycle’ matches GO:0007623
‘circadian rhythm’ in the training data, the boosting step
links the surface name ‘diurnal cycle’ with the ‘circadian
rhythm’ (NC-E) automatically. Our system can, therefore,
utilize this surface name for all the four concepts containing
‘circadian rhythm’ (NC-E). In the metaphor of McDonald’s,
a boosting step is to learn to recognize the variant shapes
of the ingredients. If we learned that the melted cheese is
actually the same cheese in the example of Filet-O-Fish,
this knowledge would be applied to all the products with
cheese on the menu. We could recognize a cheeseburger with
melted cheese without seeing an example in the training
data.

Machine-learning process

Six features in three categories for each candidate were
designed in the machine-learning process. The features in
the concept category contained the statement ID and the
namespace of this concept. The features in the evidence cat-
egory are related to the lowercase mention that was found
in the given sentence, including its span, prefix and suffix.
Moreover, saturation, θ = |G ∩ s|

|s| , is the ratio of the number
of matched named concepts to the count of the named con-
cepts in the target statement. For example, in the sentence
‘Nuclei were digested with increasing amounts of DNase
I or MNase.’, obtained from PubMed unique identifier
(PMID):17083276, three surface names are found: nuclei,
digested and deoxyribonuclease I (DNase I), which linked
to three named concepts—nucleus, catabolic process and
DNase I, respectively. Accordingly, these named concepts
are denoted as being in the grounds G = {nucleus, catabolic
process, deoxyribonuclease I}. In Table 2, the example
candidate is associated with the statement GO:0004530 1,
s = {deoxyribonuclease I, activity}. There is only one named
concept {deoxyribonuclease I} in s presented in G. Hence,
the saturation is 0.5 (1 in 2).
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Table 2. Features of an example candidate

Feature Example Category

Statement ID GO:0004530 1 {deoxyribonuclease I, activity}
Concept

Namespace molecular function

Length 7 (of the mention ‘DNase I’)
EvidenceFirst three characters DNA (of the mention ‘DNase I’)

Last three characters e i (of the mention ‘DNase I’)

Saturation 0.5 Bias

This example candidate and its features were generated from the sentence ‘Nuclei were digested with increasing amounts of DNase I or MNase.’

The benchmark from the CRAFT corpus contains a five-
tuple for the results of the GOCR: the PMID, GOID, start
position, end position and annotated text, which are not
directly suitable for the machine-learning process. Accord-
ingly, a candidate is marked positive if the two following
conditions were satisfied: (i) the GOID of the candidate
matches the one found in the benchmark and (ii) the text
span of the candidate overlaps that in the benchmark
with the exact GOID. Although some character shift was
allowed in the training step to lower the criteria for positive
results, a stringent setting on evaluation was retained. In
this regard, the random forest classifier was employed along
with the default setting of the parameters from the scikit-
learn module (version 0.18.1) of Python (25).

Evaluation

To evaluate the proposed system, we employed 10-fold
cross-validation. The CRAFT corpus was randomly divided
into ten groups at the document level—where nine of these
groups were united as the training dataset—and the remain-
ing group was handled as the testing dataset for each epoch
of cross-validation (Table 3). Thus, the testing dataset was
neither used in the boosting nor machine-learning step.

Consequently, the proposed system was carefully and
thoroughly validated with the benchmark—i.e. a report of
the annotation was counted as true positive only if the
start position, end position and GOID all matched those
of the benchmark. Finally, the micro-averages of the recall,
precision and F-measure of the system were calculated.

Results

Evaluation of the NCGOCR

In the evaluation of the NCGOCR system, the follow-
ing micro-averages were obtained: precision, 0.804; recall,
0.715 and F-measure, 0.757. As shown in Figure 4, the
NCGOCR achieved evident improvements in both preci-
sions and recalls of all namespaces, especially in the biologi-
cal process and molecular function. All the specific values of
the results of the NCGOCR evaluation are listed in Table S2

Table 3. Data for 10-fold cross-validation from the CRAFT

corpus

Number of Average Standard deviation

Documents 6.7 0.5
Sentences 2164.6 329.0

GO concepts 2944.7 (100%) 637.0
Biological process 1691.3 (57.4%) 412.9
Molecular function 418.0 (14.2%) 198.6
Cellular component 835.4 (28.4%) 320.7

Unique GO concepts 284.3 (100%) 37.1
Biological process 174.5 (61.1%) 25.8
Molecular function 57.8 (20.2%) 8.8
Cellular component 53.5 (18.7%) 13.4

in the supplementary data. The frequency distribution of
the named concepts generated from these GO concepts is
shown in Figure S1.

Analysis of the system components

Each component was eliminated from the system to eval-
uate its contribution individually (Table 4). One of the
key components is boosting, which performed an essen-
tial task in increasing the recall. Although the boosting
process required a small loss in precision (from 0.842–
0.804), it doubled the recall (from 0.344–0.715) and greatly
improved the F-measure (from 0.488–0.757). Moreover,
among the three feature categories, the evidence feature is
found to be more important than the other categories. Nev-
ertheless, the single most important feature is the statement
ID, which contributed 0.060 to the system F-measure.

Discussion

The lack of consensus on naming, particularly about the
terminologies used for GO concepts, is making GOCR
difficult. The diversity in the mentions of a GO concept
in the context reflects the uncertainty on naming, which
is a consequence of the compositional structure of GO.
Evidently, the names of the GO concepts and their

https://academic.oup.com/database/article/doi/10.1093/database/bay115/5146423?preview$=$true#supplementary-data
https://academic.oup.com/database/article/doi/10.1093/database/bay115/5146423?preview$=$true#supplementary-data
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Figure 4. Comparison of the precision and recall of the GOCR systems. The surface area of the circles represents the amount of the annotations in

the benchmark. BP: biological process and MF: molecular function.

compositional structures are too complex to fit in the
human brain. Thus, whenever a manuscript being written
describes a complex GO concept, such as ‘negative regula-
tion of gene silencing via microRNA’, its author might coin
another description and use it in the manuscript instead of
the multi-word term. In the preceding example, it is evident
that although scientists are aware of the same GO concept, a
consensus on its name has not been reached. Consequently,
this scenario creates varying presentations of GO concepts
in documents and thrusts GOCR towards a difficult task.
In contrast, named entity recognition with normalization—

an easier form of ontology recognition—locates named
entities inside a given text and maps these into a predefined
list of interests. In named entity recognition, the entities,
such as names, locations or companies are treated as flat
structures. Thus, each named entity is not related to the
other entities and has a consensual name. Among the
three namespaces of GO, the recognition of the cellular
component is most similar to named entity recognition.
The concepts in the cellular component are proper nouns
with a consensual name, indicating different levels of the
cell structures, such as ‘spindle microtubule’, ‘microtubule’
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Table 4. Component analysis by eliminating the system parts

Removed component Precision Recall F-measure Delta to the full system

Full system (baseline) 0.804 0.715 0.757 0.000
Boosting 0.842 0.344 0.488 −0.269
Concept features 0.763 0.657 0.706 −0.051

Statement ID 0.734 0.665 0.697 −0.060
Namespace 0.798 0.718 0.755 −0.002

Evidence features 0.690 0.657 0.672 −0.085
Length 0.787 0.698 0.739 −0.018
Text 0.793 0.714 0.751 −0.006

Prefix and suffix∗ 0.782 0.712 0.745 −0.012
Saturation feature 0.785 0.696 0.738 −0.019

∗Remove two features: the first three characters and last three characters of the mention.

and ‘cytoskeleton component’. In Figure 4 and Table S2,
the cellular component has the highest values in precision,
recall and F-measure in all systems because less ambiguity
in naming makes GOCR in the cellular component easier
than that in the other two namespaces.

A widely known problem in GOCR is the lack of training
data and only ∼5% of the GO concepts are utilized in the
CRAFT corpus. On this account, how does the NCGOCR,
based on only 5% of the GO concepts, work on the remain-
ing 95% of the concepts?

Firstly, in the dictionary-matching step, the training data
multiply their effects via the shared named concepts among
the GO concepts. The new surface names gathered from
the training corpus in the boosting step—mostly plural
forms, abbreviations or alternative spellings—are spread
to many GO concepts with the same named concepts.
Accordingly, boosting the surface name and statement
performed an important function in increasing the recall.
In fact, the 5% of the GO concepts in the CRAFT corpus
covers ∼14% of the named concepts, and this 14%
of named concepts are widely used in 74% of all GO
concepts. Secondly, all training data were concentrated on
building one binary classifier, which determined whether
the candidate had a valid GO concept or not. The lower
bound performance on never-seen GO concepts could
be recognized from the list in Table 4. The system—
blind to the processing of the GO concept—had an F-
measure of 0.706 (−0.051). Based on both dictionary-
matching and machine-learning steps, the NCGOCR is
stable and reliable during the changing of the corpora.
In fact, the majority of the GO concepts are barely
used (or in some cases never used) in the annota-
tion. Since the annotations per concept follow the
Zipfian law (22), the size of the training corpus slowly
increases the coverage of the GO concepts. A corpus
with high coverage of GO concepts may be impossible
to obtain.

Another major problem deals with the migration of
GO (26). There are more than 40 000 GO concepts
today, and the number is continuously growing. How
does NCGOCR, which is based on the 2012 corpus, work
on the present projects? In the dictionary-matching step,
the relationship between the surface names and named
concepts is stable over time. Thus, the named concept, a
concept having a consensual name by definition, should
not frequently change during the evolution of the GO
because the name is embedded within the language and
society of the scientists who use it. In the machine-
learning step, the logic to form a concept from the
features, which was learned by the classifier, should also
be preserved over time. Whenever there is no newer
training material other than the CRAFT corpus, it is
presumed that the NCGOCR can operate well with
different versions of the GO data by modifying the named
concepts and statements without the need of retraining the
classifier.

Conclusion

Variance in spelling is the fundamental difficulty when
mapping natural language mentions into a controlled
vocabulary. The concept recognition work on GO is
more difficult than those on the gene, chemical and
disease names because of the compositional nature of
GO. The gradation of text, named concept and GO
concept elucidates the two layers of these kind of
problems: the variation in spelling and the existence of a
concept. The NCGOCR accurately solved the problems
in these two layers through the dictionary-matching
and machine-learning algorithms. The improvements in
the overall F-measure and precision, especially on the
biological process and molecular function, sufficiently
provided the information needed in the field of precision
medicine.

https://academic.oup.com/database/article/doi/10.1093/database/bay115/5146423?preview$=$true#supplementary-data
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