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A key concern in public health is whether disparities exist between urban
and rural areas. One dimension of potential variation is the transmission
of infectious diseases. In addition to potential differences between urban
and rural local dynamics, the question of whether urban and rural areas par-
ticipate equally in national dynamics remains unanswered. Specifically,
urban and rural areas may diverge in local transmission as well as spatial
connectivity, and thus risk for receiving imported cases. Finally, the potential
confounding relationship of spatial proximity with size and urban/rural
district type has not been addressed by previous research. It is rare to
have sufficient data to explore these questions thoroughly. We use exhaus-
tive weekly case reports of measles in 954 urban and 468 rural districts
of the UK (1944–1965) to compare both local disease dynamics as well
as regional transmission. We employ the time-series susceptible–infected–
recovered model to estimate disease transmission, epidemic severity,
seasonality and import dependence. Congruent with past results, we observe
a clear dependence on population size for the majority of these measures.
We use a matched-pair strategy to compare proximate urban and rural dis-
tricts and control for possible spatial confounders. This analytical strategy
reveals a modest difference between urban and rural areas. Rural areas tend
to be characterized by more frequent, smaller outbreaks compared to urban
counterparts. Themagnitude of the difference is slight and the results primar-
ily reinforce the importance of population size, both in terms of local and
regional transmission. In sum, urban and rural areas demonstrate remarkable
epidemiological similarity in this recent UK context.
1. Introduction
Though widespread vaccination has greatly reduced global transmission of
measles since the mid-1960s, it continues to be a major cause of death among
children in sub-Saharan Africa [1]. Additionally, re-emergence of measles in
many parts of the world due in part to vaccine hesitancy emphasizes the impor-
tance of continued attention to measles [2,3]. More broadly, in an increasingly
urbanized world, understanding the impacts of urbanization and population
density on transmission of highly contagious infections such as measles are
increasingly urgent [4]. A simple epidemic clockwork and detailed and reliable
notification systems across urban and rural settings, makes measles one of the
best documented spatio-temporal consumer–resource model systems generally,
and a particularly apt candidate for examining disease interactions across
diverse population densities [5–8].

Urban and rural disparities in health have been studied in a variety of contexts.
In the USA, the urban–rural gap in life expectancy has widened over the last four
decades. This is due in large part to mortality of individuals under the age of 25
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and correlateswith accidental injury and reduced access to high-
qualitymedical care [9,10]. The incidence of Dengue is known to
be higher inurban areas [11,12],whereas theburden ofmalaria is
higher in rural areas [13]. In rural areas, increased likelihood of
concurrent sexual contacts increases the risk for HIV and other
STIs [14]. Seasonal migration between urban and rural areas
also impacts transmission of infection [15]. While these papers
have investigated differences in urban and rural health out-
comes, disease burden, and migration few have explored the
urban/rural hierarchy in transmission across a metapopulation
or attempted to quantify differences in transmission due to
urban/rural environment. This study allows an investigation
into differences within urban and rural areas in addition to
differences between urban and rural areas as part of a larger,
connected population.

Ferrari et al. show that population size is the most consist-
ent driver of themagnitude of epidemic seasonality inmeasles
epidemics in Niger across urban and rural districts [16]. Rain-
fall and agriculturally induced variation in contact rates also
impact the amplitude of seasonality. The authors find reduced
seasonal forcing in sparsely populated areas with the highest
seasonal amplitudes present in large and/or densely popu-
lated areas. A comparable investigation of urban and rural
districts in a contextwhere school calendar forcing is the domi-
nant mechanism has not been done. The consistency of
seasonality in England and Wales (hereafter E&W) as a
result of the school calendar provides a unique opportunity
to compare transmission rates and epidemic dynamics while
isolating urban/rural status from other potentially confound-
ing factors such as climate, variation in seasonal contact rates,
population size and proximity to epidemic pacemakers.
Additionally, the granularity of the data as a result of the
number of districts (1422) and the duration of notification
data before vaccination (20 years) is unparalleled.
1.1. Time-series susceptible–infected–recovered model
Measles is a paradigmatic infection for investigating nonlinear
dynamics of disease transmission [17–19]. Infection with
strongly immunizing pathogens such as measles results in
either death of the host, or more often, recovery and lifetime
protection. Compartmental models, such as the susceptible–
infected–recovered (SIR) model are useful as simple models of
disease dynamics but can be difficult to adapt to data. The SIR
model assumes a well-mixed population, and in the most basic
form balances demographic processes (e.g. births, deaths and
immigration) with properties such as contact rate, β, and infec-
tious period particular to a given pathogen. In general, the
transmission coefficient, β, varies seasonally, in the case of
measles, this seasonality is largelydrivenby the school calendar.

While the simplicity of the SIR model is beneficial for inter-
pretability and cross-setting comparisons of transmission,
calibrating the seasonality-forced SIR model against data can
be statistically challenging [6,20]. The main challenges of fit-
ting the SIR model to data result from two sources: only one
state variable is observed (the number of cases) and rates of
under-reporting are not known. A computationally efficient
option for addressing both these challenges is the time-series
SIR (TSIR) model. The TSIR model relies on two main assump-
tions: first, the infectious period is fixed at the sampling
interval of the data (e.g. biweekly for measles) and that over
a long enough time (e.g. 10–20 years), the sum of births and
cases should be approximately equal due to the high
infectivity of pathogens such as measles and other childhood
infections. Both of these assumptions have been thoroughly
tested and found to be largely appropriate for this pre-vaccine
era data [19]. Fixing the infectious period to be equal to the
sampling period means we assume an individual that is
infected at the n time step will be recovered by n + 1.
1.2. Metapopulation dynamics and spatial coupling
Highly transmissible childhood infections, such as measles,
can spread quickly through a community until the susceptible
population is depleted, to the point that it can lead to local
extinction. Thus measles requires a steady stream of new sus-
ceptible hosts (mainly from births) to remain endemic. For this
reason, large populations, typically above 300 000, are required
for sustained transmission—this threshold is called the critical
community size (CCS). For communities below the CCS,
future outbreaks are dependent on imported infections from
other locations [21]. In these small populations, the susceptible
proportion will increase until the pathogen is reintroduced
through spatial transmission from a neighbouring community.
These metapopulation dynamics, the reintroduction of infec-
tions via spatial contacts, are a characteristic component of
measles transmission in E&W during pre-vaccination years
(1944–1965) [5,17,22]. Endemic areas such as London would
act as epidemic pacemakers, replenishing infections for com-
munities below the CCS threshold. Echos of London’s strong
biennial epidemic pattern radiate across the surrounding
region, creating biennial epidemics in locations that would
otherwise be too small to experience such regular outbreaks
[5]. Quantifying rates of spatial transmission is a crucial chal-
lenge for epidemiologists as the spread and persistence of
pathogens depends on this connectivity between large and
small places [18,22–24].

Population gravity and spatial hazard models have been
used to estimate movement of individuals across locations
[22–25]. Population gravity models assume that movement
between locations can be approximated by the product of the
population size normalized by a transformation of the distance
between them. Under these assumptions, we expect movement
between large places to be high, movement between small
places to be low, and for contact between communities to
decline with distance. These models have been able to success-
fully capture population movement in the context of disease
transmission in some cases [25]. Though gravity models have
provided useful insights into the spatial interactions of many
human and non-human disease systems, in the absence of
independent covariates describing human movement, the sim-
ultaneous inference of epidemic trajectories and spatial
coupling is difficult. Information on the movement of school
age children is notably sparse. As school age children are the
population of interest in this case, we opt to avoid weighting
by population and allow the reconstructed susceptible popu-
lation to guide our probabilistic model. Furthermore, research
has shown that for this dataset in particular, gravity models
have not adequately captured the dynamics of large cities
with off-year peaks or coastal cities [22,25]. Finally, gravity
models do not assume different contact rates by urban or
rural location type and we may expect contact between urban
locations to be higher regardless of population size. For these
reasons, we use a spatial hazard model to calculate the spatial
coupling associated with each location. Resulting estimates
are informed by the measles case data (using susceptible and
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infectious dynamics to determine infection probabilities) and
assume no predetermined functional forms, so that estimates
of coupling for each location are not constrained by location
size or distance [24].

Spatial coupling provides an estimate of how much a dis-
trict’s epidemic dynamics are influenced by the influx of new
cases from other locations. Previous hazard-based coupling
estimates suggests that transmission across locations is
strongly correlated with population size [24]. Bjornstad
et al. use a spatial hazard model to estimate spatial coupling
for all 954 urban areas in the dataset. The authors show larger
places exhibit larger coefficients of spatial coupling than
smaller, more isolated places, and thus more coordination
with national epidemics. Additionally, the authors use
residuals from linear regression of spatial coupling on popu-
lation size to show that locations near large endemic locations
(such as London, Manchester and Birmingham) have higher
than expected estimated rates of coupling than other
locations of comparable size. Similarly, locations very far
from these population centres produce lower than expected
coupling rates. This highlights the importance of both size
and space in cross-location measles transmission.

By contrast, research on data from E&W suggests trans-
mission within locations does not scale with location size.
Bjornstad et al. [26] use a subset of sixty cities in E&W to
show that while transmission rates demonstrate some variabil-
ity across locations, they do not vary uniformlywith population
size. The authors select 60 locations of various sizes and calcu-
late the basic reproduction number based on the epidemic data.
The basic reproduction number (R0) is a parameter commonly
used to quantify the contagious power of disease, it is defined
as the number of secondary infections resulting from a single
infected individual if everyone else in the population is suscep-
tible. Population level estimates ofR0 formeasles are commonly
between 18 and 30 [27]. Though the estimate can vary, Bjornstad
et al. posit that it does not vary systematically by population
size. This is likely because schools act as transmission hotspots
and the importance of these focus points outweighs any impact
of population size. Furthermore,measles has a particularly high
transmission rate: infected individuals are contagious for up to 4
days before they show symptoms and the measles virus is air-
borne and can survive up to 2 hours in airspace. These factors
make the disease highly contagious. For this reason, once an
infection is introduced to a susceptible population it will
spread rapidly. As these infections will largely spread in
schools, any differences due to population density are believed
to be marginal, particularly in the case of E&W [26].
1.3. Potential urban and rural differences
Estimates of transmission allow us to measure within-
community epidemic dynamics. Spatial coupling allows us
to estimate how these locations differ in their connection to
metapopulation dynamics. We can, therefore, measure poten-
tial differences between urban and rural locations locally as
well as contextually. However, we know spatial proximity
plays a key role, both in terms of the local population
dynamics as well as the number of imports a location can
expect to receive. We also know urban and rural areas are
not distributed randomly in space (both rural and small
population locations are more likely to be farther from large
urban areas) this indicates a need to control for spatial effects.
Though the relationship between population size and
measles transmission has been the subject of many studies,
previous E&W work has only focused on analysing data
from urban districts, leaving a rich dataset of 468 rural
districts almost entirely untouched.

We examine both spatial connectivity and within city
measles transmission in urban and rural areas in 1422 locations
in E&W. In a 1998 paper, Bolker & Grenfell examine the aggre-
gate differences between urban and rural districts, using a
subset of 1302 of these locations [28]. Much of the analysis
in the 1998 paper examines the aggregate dynamics, combin-
ing case data from all urban and rural locations to compare
timing and epidemic intensity. Furthermore, the authors do
not estimate epidemic parameters (such as transmission and
susceptible population) from the data but rather compare
aggregate urban and rural trends to an urban–rural patch
model. These authors leave the question of spatial diffusion
between urban and rural locations largely unanswered. Fur-
thermore, the authors note a strong spatial correlation across
the E&W metapopulation and highlight the necessity of inves-
tigating these spatial patterns in greater detail [19]. This paper
investigates these differences at the individual district level
and probes urban/rural differences at a fine spatial scale.

We may expect to see differences in the disease ecology of
urban and rural locations for several reasons. It is possible
that the decreased population density in rural areas leads to
a fewer contacts within these locations, resulting in slower
transmission of measles in rural areas relative to their urban
counterparts. Variation in birth rates between urban and
rural locations may impact transmission by replenishing the
pool of susceptible individuals at different rates.

Differences in the number or size of schools—the primary
location of outbreaks—may also impact the transmission of the
disease. As susceptible contacts are generally driven by the
school calendar, measles transmission in E&W typically has
a consistent seasonality. We see peaks in transmission when
students return from holidays, when susceptible populations
are at their highest and when susceptible individuals are
coming into frequent contact. If there are differences in the
spatial proximity of schools we may see different transmission
rates or different outbreak patterns. In particular, when schools
are farther apart and mixing between them is relatively weak,
we might observe either multiple small epidemics or slower
progression of the disease through the district [16,17,29,30].

Finally, if the migration or mobility of individuals occurs
at uneven rates between location types, this may impact the
probability of introducing new infections, and therefore
spatial coupling estimates. If population movement between
locations depends on more than just population size we
may see differential case import frequency between urban
and rural areas. For example, people may move between
urban locations with more frequency than from urban to
rural or between rural locations, in which case we will see
lower estimates of spatial coupling in rural locations than in
urban locations. We may expect urban to urban travel to be
more common than urban to rural travel regardless of popu-
lation size. For example, in the USA, COVID-19 has been
comparatively slow to spread to rural areas even as cases
skyrocketed in urban areas [31].

Using estimates of transmission rates and spatial coup-
ling, we compare all urban and rural districts. At the
aggregate, we find a surprising amount of coherence: both
internal dynamics and spatial coupling show consistent
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dependence on population size. We further restrict our
sample to neighbouring urban and rural districts to isolate
the potentially confounding associations between size,
location and urban/rural designation. We find that size is
consistently a more significant driver of epidemic dynamics
than location type. The exchange of outbreaks between
neighbours is dependent on population size, with larger
locations frequently introducing outbreaks to their smaller
neighbours. In this way, these mini-communities mirror
national metapopulation epidemic cascades. However, we
do find slight distinctions in the epidemic behaviour of
urban and rural areas, namely that rural areas are character-
ized by more frequent outbreaks which infect fewer
individuals. This suggests rural areas may sustain epidemics
through internal rescue effects [23], and highlights the impor-
tance of accounting for heterogeneous mixing patterns to
uncover subtle differences in epidemic spillovers.
 erface

17:20200010
2. Data
To explore differences in urban and rural areas,we analysed pre-
vaccination weekly measles incidence data from 1944 to 1965
E&W [5,32]. This dataset is unusually rich, with 954 urban
cities and towns and 457 rural districts. In addition, we used
annual births, population and geographical location of each dis-
trict. For the paired analysis, we use 179 urban districts with a
rural neighbouring district (for a total of 358 districts).

The classification of districts as urban or rural was not
strictly scientific at this time. The system of the era involved
a combination of considerations such as population density
(measured in people per acre), level of urban development,
and the type of local government (e.g. urban council or
parish) [33]. Historical documentation indicates that this
system of classification was at times arbitrary and resulted in
amisclassification rate of approximately 20%according to con-
temporary standards [33]. Still, this classification is a feature of
the dataset and likely represents some amount of structural
difference between locations. Additionally, if the misclassifi-
cation occurred at random or resulted in more frequent
classification of small sparsely populated districts as urban
this would attenuate any differences we detect. Additionally,
we believe our strategy of selecting urban/rural districts will
mitigate any potential misclassifications. As these are neigh-
bouring districts with the same name that have been
distinguished from each other by ‘urban’ and ‘rural’ labels,
we expect the urban districts to be at least more dense than
their rural neighbours, even if they are not dense in a global
sense. In other words, though it is unlikely these data capture
the global range of population density and sparsity, we do
expect that neighbours will differ from each other. In fact, we
were able to obtain land area for 136 of the 179 rural districts
used in the paired analysis, and 78 of the urban districts (73
pairwise complete). We obtained these estimates from the
Wellcome Trust (UKMedical HeritageArchive); major bound-
ary changes in 1972 necessitate obtaining land area estimates
contemporary with the case data. For this subset of districts,
the rural areas are consistently lower density (electronic sup-
plementary material, figure S5). The least dense district is
approximately 0.03 people per acre, and the most dense is
about 28 people per acre. While these do not represent global
extremes of population density/sparsity, they provide
enough variation to explore measles dynamics under different
density conditions.

Incidence data were aggregated to the biweekly scale for
modelling analysis (described below). The diversity of
locations in terms of geographical space and population
size, as well as the temporal detail of the incidence data
provide an unparalleled and uniquely apt dataset for investi-
gating urban and rural differences in transmission. The
20-year epoch covered by the data allows for a robust study
of outbreaks as well as sufficient opportunities to compare
urban and rural epidemics. Furthermore, pre-vaccination
data allow us to understand transmission patterns without
uncertainty related to vaccination coverage, this provides
the most direct estimates of transmission rates and mixing
dynamics. The urban data used in this paper have recently
been made available [32], the rural data and an R studio
notebook to replicate the results of this paper are available
in the electronic supplementary material. Much of the analy-
sis on the disease dynamics is done using the open source R
package: tsiR [34].
3. Methods
3.1. The time-series susceptible–infected–recovered

model
We compared population dynamics and transmission within
urban and rural using a number of metrics. We first examined epi-
demic fadeouts (time between epidemics) to see if urban and rural
areas differ in the pathogen extinction rates. As these estimates
may be subject to bias due to systematic differences in reporting
rates, we also calculated the number and length of three-week
fadeout which previous research has shown to be robust to
under-reporting [26]. We also computed average birth rates as
well as the coefficient of variation in births. Births may impact dis-
ease dynamics by altering the yearly influx of susceptible
individuals. Finally, directly from the incidence data, we calcu-
lated epidemic growth rates which we expect may correspond to
differences in population mixing. To further assess local disease
dynamics, we use a TSIR model [19,26,35] to obtain estimates of
seasonal transmission. The TSIR model is a discrete time mechan-
istic model where the susceptible dynamics can be modelled as

Stþ1 ¼ Bt þ St � Itþ1: (3:1)

The susceptibles at t + 1 (St+1) are simply the previous suscep-
tibles (St) plus births (Bt) minus the new infections (It+1). The
associated deterministic infected dynamics are

Itþ1 ¼ btStI
a
t : (3:2)

The seasonally varying transmission rate is estimated as β.
The tuning parameter, α acts as a correction factor for moving
from discrete to continuous time [19]. In a purely theoretical
sense α should be equal to unity in continuous time [20], how-
ever, discretized models produce more accurate predictions
with α values slightly under unity [26]. To be consistent with
previous estimates for this dataset, we fixed α to be 0.97 [19,26].

The primary assumption of the TSIR model is over a suffi-
cient period of time, due to the high transmission rate of
measles, everyone should acquire the infection. This allows us
to assume that cumulative cases and cumulative births will be
approximately equal, yielding an estimation of reporting rate.
We can then reconstruct the susceptible population at each
time step. With estimates of both the infected (reported cases
divided by reporting rate) and susceptible dynamics, equation
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(3.2) can be log-transformed into a linear model

log [It þ 1] ¼ logbt þ log St þ a log It: (3:3)

From equation (3.3), we can estimate both the seasonal trans-
mission rate (βt) and an approximate measure of R0 (=βtN, where
N is mean population size). We can also evaluate the seasonality
by calculating the coefficient of variation in βt, this allows us
to measure whether transmission is variable over the year or
relatively constant [29,35,36]. A full discussion of the implemen-
tation of TSIR can be found in [6,35,36]. A discussion of result
sensitivity to estimation procedure (such as the regression type
selected for susceptible reconstruction) can be found in the elec-
tronic supplementary material. Additional information on model
fit and parameter estimates across locations can also be found in
the electronic supplementary material.

3.2. Epidemic coupling
The primary dynamic exchange of interest in this section is con-
tact between susceptible individuals in a single district (local)
with an infected individual from another district (regional),
and whether such contact sparks an epidemic in the susceptible’s
district. In line with previous analysis, we include all other dis-
tricts as regional, and thus we are estimating the epidemic
coupling between one community and all other communities in
our dataset [24]. We use the reconstructed susceptible dynamics
as well as estimates of β to calculate epidemiological coupling for
each location. Following extinction, the local dynamics are con-
verted into a waiting time distribution, for which the
probability that a fadeout will end is governed by the probability
of contact between local susceptibles and regional infectives as
well as the probability that an epidemic will result from such
contact. Spatial contact depends on the probability that a local
individual is susceptible, the probability a regional individual
is infected, and the spatial isolation of the local community
(1/cj, where cj is the coefficient of coupling).

We want to estimate the probability that contact occurs
and that an epidemic is sparked. In other words:
P(A> B) ¼ P(AjB)P(B). Here, A is the probability of an epidemic
occurring and B is the probability of contact between a local sus-
ceptible individual and a regional infected individual. In order to
estimate the probability of an epidemic, we estimate the number
of susceptible individuals at each time step as in equation (3.1).

We use a modified version of equation (3.2) in which the
expected number of infections is given by

lt,j ¼ bu,j(It,j þ it,j)
aSt,j: (3:4)

I are local infected individuals and i are infections arising
from regional contact, and βu is the seasonal transmission rate
which corresponds to t. We expect β to vary within the year
but to be relatively consistent across years for a single location
j, thus it will fluctuate according to a biweekly indicator u,
rather than continuously over time. We can model the trajectory
of the epidemic as a piecewise-constant (at the scale of a single
generation) birth–death process [21]. If we assume a per capita
birth rate in infections, in this case λ/(I + i), then starting with
one infected individual the number of infected individuals in
the following generation will be distributed according to a geo-
metric distribution with expectation λ/(I + i). Beginning with
I + i infected individuals, we get a sum of I + i geometrics, it fol-
lows that the distribution of infections at t + 1 as a function of
infections at t is

Itþ1,j � NegBin(lt,j, It,j þ it,j): (3:5)

NegBin signifies a negative binomial process with expected
value λt,j, and a clumping parameter It,j + it,j. The probability of
spatial contact between a local susceptible and a non-local
infectious individual is modelled as

1�exp (�cjxt,j�yt,k=j): (3:6)

The proportion of local susceptibles is xt,j and �yt,k=j is the
proportion of infectious non-locals, that is, the proportion of infec-
tious individuals across all districts k which are not district j at
time t. Note that xj,t corresponds to proportions of susceptibles
(Sj,t/Nj,t), and �yt,k=j is the proportion of infectious individuals
(
P

k Ik=j,t=
P

k Nk=j,t). Finally, cj is the coupling coefficient of
location j. This coupling measure is analogous to other variants,
such as the coupling coefficient of the population gravity model
[25]; however, we use this non-parametric (with respect to coup-
ling) version so our estimation procedure (as follows) can be
guided by the epidemic data itself while minimizing a priori
assumptions regarding population movement.

Given contact has occurred, the probability that an epide-
mic does not occur is given by 1/(1 + βt,jSt,j), this is given by
the null probability of the negative binomial distribution
(equation (3.5)) when I = 0 and i = 1. An epidemic will occur by
the complementary probability

1� 1
1þ bt,jSt,j

¼ 1þ bt,jSt,j � 1

1þ bt,jSt,j
¼ bt,jSt,j

1þ bt,jSt,j
: (3:7)

Putting together the probability of spatial contact and the
probability of an epidemic we obtain the discrete-time hazard

(A> B) ¼ P(AjB)P(B) ! h(t, j)

¼
bt,jSt,j(1�exp (� cjxt,j�yt,k=j))

1þ bt,jSt,j
: (3:8)

This is an increasing function with the number of local
susceptibles and the proportion of non-local individuals that
are infectious, it may change with population size if isolation is
size-dependent [24]. Conditional on the local susceptible popu-
lation and regional prevalence of infection, the theoretical
waiting time distribution can be written as the expectation of a
binomial process for which the log-likelihood of the fadeout is
given by

l(cjjIt�1,j ¼ 0) ¼
X

ln(hzt,jt,j (1� ht,j)
1�zt,j ): (3:9)

The binary indicator zt,j is equal to 1 if It,j > 0 and equal to zero
otherwise, and ht,j is given by equation (3.8). We sum over all
observations for which the local infections remain at 0, up until
an outbreak occurs. This allows us to calibrate cj by the moment
an epidemic is sparked. This is an adaptation of the typical bino-
mial likelihood function with the probability of an outbreak
determined by ht,j (and thus the probability of no outbreak is
(1− ht,j)). We sum over all observed outbreaks for each location
and use Newton–Raphson maximum-likelihood estimation to
obtain an estimate of cj from equation (3.9). Note that it is not poss-
ible to estimate c for those communities in which measles is
endemic (i.e. there are no fadeouts). There were 29 communities
(out of 1422) that did not have a sufficient number of fadeouts
to estimate the coupling coefficient, these locations are dropped
from the coupling analysis but are included in the comparison
of other measures of epidemic behaviour.

In keeping with previous findings [24], we expect to see high
coefficients of coupling for locations below the critical commu-
nity threshold that are geographically proximate to larger
districts which provide the reintroduction of pathogens. We
expect small isolated areas to have the lowest estimates of coup-
ling because imported infections as a result of human mobility
will be relatively rare and thus the reintroduction of pathogens
will have correspondingly lower probability.
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To illustrate the importance of spatial proximity more expli-
citly, we calculate the correlogram of incidence data across the
entire dataset. This estimates the spatio-temporal correlation of
the incidence data and its dependence on distance. We also
examine districts within 150 km of London. We calculate the cor-
relation of incidence data for each of these districts relative to
London and use a generalized linear model to estimate the
association of distance, population size and district type on
similarity to London’s case data.

3.3. Principal components analysis on paired data
Probing differences further, we then subsetted our analysis to
neighbouring urban and rural districts to isolate space from
size and location type. These districts are adjacent and non-over-
lapping such that they allow us to control for spatial proximity
and measure the relative influence of urban versus rural status
and population size. These districts are sampled from a variety
of spatial locations across E&W so the results are not a feature
of a single area.

We selected a representative sample of 179 pairs (a total of
358 districts) below the CCS and used principal components
analysis (PCA) to uncover the correlations between demographic
characteristics (birth rates) and estimated parameters (susceptible
fluctuations, transmission rates) and subsequently to see how
urban and rural areas vary across these numbers. PCA is the
eigenvalue decomposition of the covariance matrix of scaled cov-
ariates. We scale the data so each variable column has zero mean
and unit variance, this ensures variables with larger values are
not given greater weight due to their higher variance. Eigenvalue
decomposition factorizes a matrix into its canonical form. It pro-
duces the vectors that (ranked by their eigenvalues) explain the
most variance within the data. PCA uses an orthogonal trans-
formation to project a matrix possibly correlated covariates
onto a new uncorrelated basis space. PCA has been used to
identify the genes that are responsible for the most population-
level variation populations [37] as well as to isolate dominant fre-
quencies in complex signals [38].

This method demonstrates (1) how variables are related to
each other, (2) which variables are most influential in terms of
looking for differences in the data and (3) whether population
size or urban/rural designation influence how locations score
on these maximal variance vectors. PCA enables an investigation
of multiple variables simultaneously as well as isolating the
importance of variables rather than testing each covariate separ-
ately. We withhold urban and rural indicators as well as
population size so we can test their influence on the projections.
After obtaining our principle components (eigenvectors), we pro-
ject each location onto the first two principal components (the
vectors responsible for the two dimensions of most variance).
We compare each city’s score with its rural neighbour to assess
the influence of space. If space is the primary driver, we expect
each location to be similar to its neighbour. We also compare
the scores by population size. Finally, we calculate the euclidean
difference between each pair, this gives us a measure of how
different each location is from its neighbour across the dimen-
sions of highest variance. We then check the association of this
distance with their difference in size. These comparisons together
demonstrate the comparative influence of space, size and
environment.

3.4. Epidemic exchange in paired locations
We further attempt to disentangle the importance of district type
by investigating the timing and duration of epidemics between
pairs. Many of the paired districts are small (median population
15 000; range 700–250 000), and fitting the TSIR model to
locations can be challenging due to frequent and lengthy extinc-
tions. Making comparisons directly from the time series enables
us to concretely measure timing and coordination of epidemics to
assess how and if districts interact with each other. In particular,
we evaluate the proportion of rural epidemics which occur
during a simultaneous epidemic at its urban neighbour. Simi-
larly, we assess which member of each pair leads or lags in
local epidemics. For each pair of districts, we evaluate the pro-
portion of its epidemics which are preceded by an epidemic in
it is neighbouring district. These proportions provide a measure-
ment of how many epidemics can be attributed to the urban or
rural component of each pair of districts. We also compare the
total number of outbreaks and the number of large epidemics
(greater than 14 weeks) between pairs.
4. Results
4.1. Aggregate urban and rural comparison
Investigating aggregate differences, such as epidemiological
spatial coupling and fadeouts, between urban and rural dis-
tricts, we find a consistent relationship with population size
but no obvious difference by urban or rural designation.
These findings are consistent with previous estimates for
urban districts [24,28]. Coupling increases log-linearly with
population size for both urban and rural areas indicating
that imports increase with population size (figure 1). The
analytical relationship between fadeouts, coupling, and
population size is thoroughly investigated in Bjornstad
et al’s 2008 paper [24]. As population size increases, so too
does the susceptible class, this increases sensitivity to imports
and increases the probability of an epidemic. Probabilistically,
this increased sensitivity leads to fewer ‘missed’ epidemics
and consequently reduces the proportion of fadeouts, even
if import rates are consistent across locations. We are primar-
ily interested to see if the advantages associated with
increasing population size are different for urban and rural
areas. Figure 1 would suggest the returns to population size
are consistent. However, we know that the opportunity for
imports also increases with proximity to endemic locations
so to isolate the impact of urban and rural designation, we
need to further control for this proximity.

Additional comparisons of TSIR parameters such as
transmission rate (β) and R0 reveal variation with population
size, but urban and rural locations remain consistent (elec-
tronic supplementary material, figure S5). The proportion of
biweeks without cases correspondingly decreases with popu-
lation size for both urban and rural areas. However, figure 1
further demonstrates the importance of spatial proximity to
large metropolitan areas such as London, Birmingham, Man-
chester, Liverpool and Leeds in terms of both urban/rural
designation as well as population size.

Figure 1b shows the spatio-temporal correlation of inci-
dence in urban and rural areas across the entire dataset. We
see that correlation decreases with distance for both urban
and rural areas, though the urban decline is more precipitous.
The spatial correlation of population size is approximately
0.13 for near neighbours but it falls below to statistically
zero after about 40 km. It is likely that population scaling as
well as urban/rural distinction is a factor in this correlation.
Locally, population is spatially correlated; at the national
scale, the correlation is smaller due to the number of small
districts and parish between the largest urban centres. The
correlation of incidence, population size, and urban/rural
status is non-negligible (electronic supplementary material,
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Figure 1. Epidemic coupling and outbreak dynamics in urban and rural E&W 1944–1965. (a) Plots the longitude and latitude of each of the 1422 locations colour
coded by urban–rural status and scaled by mean population size. The five largest locations (London, Birmingham, Manchester, Liverpool and Leeds) are marked by
red crosses. (b) Patterns of measles incidence show strong spatio-temporal correlation across E&W with a strong dependence on distance. While correlation of
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figure S1 and table S1). This highlights the importance of con-
trolling for these spatial features to assess differences in
epidemic connectivity and infection dynamics between
urban and rural districts. Districts tend to be closer to districts
of the same type (e.g. rural districts are closer to other rural
districts) and large urban districts are more likely to have
large urban neighbours. Due to the importance of spatial
proximity in regard to imported cases, it is necessary to iso-
late the effect of proximity from population size in order to
further understand any potential urban and rural differences.

For example, examining districts within 150 km of
London, we see a mean correlation in case reports of 0.48.
Locations within 25 km of London have an average corre-
lation of 0.67. Using a generalized linear model, we
estimate that an increase of 10 km in distance is associated
with a decrease in case correlation of −0.024, and an increase
in population of 10 000 individuals is associated with an
increase in correlation of 0.027 (details available in the elec-
tronic supplementary material, table S1). This means that
10 km of distance is comparable to a decrease in population
of 10 000 people in terms of the mean correlation with
London. Within 50 km of London there are 103 urban dis-
tricts and only 21 rural districts. These results indicate the
importance of controlling for the spatial influence of large
cities when comparing urban and rural districts. Though
we could attempt to investigate all locations in this way, it
is a significant task to discover which large cities are influen-
cing the epidemics for each district, particularly those in the
hinterland, where many signals may mix and epidemics are
comparatively rare [32].
4.2. Urban and rural district pairs: principal components
analysis

When we subset the data to the selected paired districts
(mapped in figure 2a) we observe a modest difference
between urban and rural areas when applying principal com-
ponents analysis to the estimated parameters. This
decomposition shows that the two most variable axes of
difference are (1) high coupling versus long fadeouts and
(2) variation in seasonal transmission versus growth rates.
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The first principle component (PC 1) accounts for 36% of
the total variance in the data (electronic supplementary
material, table S4). It is an axis which measures the data
with coupling at one extreme (positive values) and fadeout
length at the other (negative values). In other words, the
spectrum which accounts for the most variance in the data
is merely the separation of dynamics between locations
which receive regular imports and demonstrate synchrony
with the larger metapopulation, and isolated districts which
experience long droughts of infection.

The second component (PC 2) explains 26% of the total
variation in the data (electronic supplementary material,
table S4). This component projects districts on an axis with
variation in transmission (β) at one end (negative values)
and growth rates on the other (positive values). In qualitative
terms, this suggests that epidemics generally exhibit rapid
epidemic spread or strong seasonal variation in transmission.
In other words, locations with explosive epidemics tend to
have less seasonal variation, implying outbreaks are more
randomly spread throughout the year. Similarly, locations
with more seasonal transmission experience epidemics
which spread at a relatively slower pace. A district with a
negative score on this axis will be characterized by high sea-
sonality, indicating regular epidemics fed by relatively
constant susceptible pools. A district with a positive score
on the second component will likely have stochastic and
explosive epidemics rather than annual or biennial school-
based outbreaks (figure 2). We observe slight and statistically
insignificant differences between urban and rural districts.
On average, rural areas have slightly higher coefficients of
coupling compared to urban areas. Conversely urban areas
have on average fewer, more potent outbreaks.

With regard to where districts fall on PC 1 and PC 2,
figure 2b shows districts either tend to have higher coupling
estimates (positive on PC 1) accompanied by high variation
in beta (negative on PC 2), or long fadeouts (negative on
PC 1) and high growth rates (positive on PC 2). Therefore,
if we interpret the two-dimensional space created by PC 1
and PC 2 we see that the majority of variance in the data
can be described as a spectrum from areas with strong epi-
demic coupling and consistent seasonality and one extreme
and infrequent violent epidemics at the other extreme. This
is consistent with previous studies of large and small urban
locations [5,21,22].

The space created by the first and second principal com-
ponents has a plausible association with population size. We
expect large places to receive more import cases and thus to
have larger coupling estimates and shorter time between epi-
demics. We also expect large places to have more regularity
in seasonal transmission as dictated by the school calendar,
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while smaller places are more vulnerable to random outbreaks.
We also see that the largest outliers in the data (third quadrant)
have long fadeouts and high susceptible population remaining
after each epidemic. This suggests that a few locations in the
data have very long interepidemic periods with few outbreaks
which are not sufficient in size to diminish the susceptible
population. This is consistent with previous studies of measles
dynamics in E&W [5,21,22].

Principle component results demonstrate no statistically
significant difference between urban and rural areas. When
comparing adjacent districts we see district neighbours
do not resemble each other (figure 3c,e) and that population
is the main driver of differences both in terms of raw projec-
tions (figure 3b,d ) as well as in determining the difference
between urban and rural pairs (figure 3a). We classify the
difference between pairs as the euclidean distance between
the district’s scores on the first and second principal com-
ponents. We see that this difference is well explained by the
per cent difference in population size. This suggests size,
rather than space is the predominant driver of variation in
disease dynamics.

Though urban and rural areas may not differ systemati-
cally, the analysis to this point does not describe how
neighbouring towns and cities interact with each other.
Although pairs do not demonstrate coherence in their scores
on PC 1 and PC 2, we know infections move through space
and expect to see some evidence of epidemic interactions
between neighbours. In order to investigate these district
pairs in more detail, we examine the case data directly.
4.3. Urban and rural district pairs: epidemic exchange
Projections on the first component demonstrate that urban
areas may have longer fadeouts and lower estimates of coup-
ling than rural neighbours. Since uncertainty around
estimates of coupling can be large, particularly for larger dis-
tricts, we examine the differences between urban and rural
epidemics directly from the case data. Consistent with the
dynamics suggested by the results of PCA, we find that
rural areas fade out less and for shorter periods of time,
resulting in more frequent, smaller epidemics (figure 4c,d ).
By contrast, urban areas are characterized by more regular
short epidemics (figure 4c,d ). Urban and rural areas do not
differ in the number of large (final number of infections
greater than the mean) outbreaks, which increases consist-
ently with population size for both district types (electronic
supplementary material, figure S4(B)).

We additionally find that larger districts tend to lead the
epidemics of their smaller neighbours. The relationship
between the difference in population and the proportion of
epidemics lead in each location is strong (figure 4a). Larger
places appear to act as a importer of cases to their smaller
neighbours, mirroring national patterns of epidemic spillover
at a small scale. An example of such a pair can be seen in
figure 4b. This suggests transmission cascades from larger
places to smaller places in concurrence with previous find-
ings [39], but replicated at a local scale. We do find a
nominal, though significant difference between urban and
rural areas particularly at smaller sizes. Urban areas have
fewer, larger outbreaks when compared to rural areas of com-
parable size (figure 4c,d ). This difference is slight though
statistically significant if we look exclusively at small areas.
Large urban and rural areas do not demonstrate a statistically
significant difference. This indicates small urban populations
may be nominally more well mixed than small rural popu-
lations. Though this may seem intuitive and obvious it is
important to keep inmind the crucial role of schools inmeasles
dynamics. The population mixing rates relevant to this system
are those of school-age children. These results therefore indi-
cate that urban schoolchildren may be better mixed, with
more cross-school mixing, than rural counterparts. Alterna-
tively urban areas may have fewer schools compared with
rural counterparts, creating more concentrated contagion
hotspots relative to rural districts.

As a robustness check, we compare these same measures
using population density for the subset of districts for which
we have estimates.We see that differences in population density
correspond well to final size estimates, but do not explain epi-
demic leads and lags (electronic supplementary material,
figure S7). In particular, we see that denser areas generally
have larger and fewer outbreaks, while less dense locations
have more, smaller outbreaks. Additionally, relative density
shows no correlation with epidemic leads or lags. Though
these results represent only a subset of the paired data, they
increase our confidence in the veracity of the small differences
we observe.
5. Discussion
Understanding how transmission may vary between rural (or
sparsely populated) and urban (or densely populated) areas
is a critical area of research in a rapidly urbanizing world.
The United Nations predicts that nearly 70% of the global
population will live in urban areas by 2050. Though previous
analysis on this unique detailed dataset has suggested
measles transmission is size and density-independent with
a strong seasonality in transmission and signature of conta-
gion movement between locations [26], the urgency of
contemporary changes necessitates a more complete under-
standing of potential differences across settings. Previous
analyses have been limited to urban areas. Expanding this
to include rural areas provides a more complete understand-
ing of metapopulation dynamics and variation across space
and urban/rural district type. The complete and rich nature
of this dataset make it uniquely suited to be an initial case
study for such investigations.

This analysis shows that infectiousdynamics are not uniform
across locations. However, whilewe find an inverse relationship
between infectious disease fadeouts and coupling of locations to
the larger metapopulation, and between epidemic growth rates
and seasonality, urban and rural locations follow the same pat-
tern in spite of potential structural differences. Although we
see a slight difference on average between urban and rural
areas when controlling for location and population, the overall
patterns are consistent. Population size is the most significant
driver of epidemic dynamics (though total number of births is
a comparable predictor and highly correlated with population
size). Additionally, while location does appear to impact
dynamics, the similarity by pairs is not what we would expect
if differences were entirely spatial (figure 3). The difference in
population sizes appears to explain many of the differences we
observe. These findings are generally consistent with Ferrari
et al.’s results for Nigerian measles epidemics [16]. Ferrari et al.
find a rural/urban gradient characterized by reduced seasonal
amplitude in sparsely populated settings as well as climatically
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driven contact rates. Cross-location contact rates are even more
sporadic in theNigerian context, indicating thatmuchof the con-
sistency between urban/rural locations in E&W is likely driven
by a consistent seasonal forcingmechanism (school calendar) as
well as more frequent cross-location mixing.
In addition to confirming similarity between urban and
rural areas, principal components analysis shows an important
difference in large (above 10 000) and small (below 10 000)
populations. Larger places can be characterized by more fre-
quent epidemics with a typical seasonal signature, while
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small places are characterizedbystochastic epidemicswhich are
slower and do not deplete susceptible populations. This con-
firms that small places inherit epidemics as spillover from
bigger neighbours (figure 3). When we investigate epidemic
interactions between urban and rural areas we find size is the
most important when determining which location will kick
off a local epidemic (figure 4). In other words, we see large
scale metapopulation dynamics mirrored in these urban and
rural pairs. The larger member of each pair seems to serve as
an epidemic feeder for its smaller neighbour. In this case, it
does appear to be size which drives the influx of cases rather
than urban/rural status. The differences are most profound
when population sizes are substantially divergent (on the
order of 100–300%). When urban and rural neighbours are of
comparable size, there is no clear epidemic leader (figure 4).

On average, urban epidemics are containedwithin (in a tem-
poral sense) their rural neighbour epidemics, 23% of the time;
rural epidemics are contained within urban epidemics only
14% of the time on average. If we examine pairs for whom the
urban location is approximately twice the size of the rural
location, we see that 54% of rural outbreaks are contained
within the larger urban outbreak. If we examine the converse,
when urban areas are half the size of their rural neighbours,
we see that 37% of outbreaks in these small urban centres are
contained within those of their rural neighbours.

Urban districts have 38 individual outbreaks on average,
while rural districts have approximately 53. Urban districts
have about 5.5 large epidemics on average and rural areas
have 7. In terms of final size, urban outbreaks result in 96
infections on average, while rural outbreaks have a mean
number of infections of 61. In summary, urban districts
have fewer outbreaks which infect a greater number of resi-
dents compared to their rural neighbours. These numbers
correspond the slight differences we see in figure 4c,d.

Urban districts lead their rural counterparts 27% of the
time and rural districts lead urban neighbours 44% of the
time. The lag time between urban and rural neighbours on
average is near zero (−0.2 for urban and 0.18 for rural). Exam-
ining urban districts that are twice the size of rural
neighbours, urban districts lead epidemics by about two
weeks and lead 67% of epidemics. Analogously, rural dis-
tricts that are twice as large as their rural counterparts lead
by about 1.3 weeks on average and lead epidemics 57% of
the time. This indicates the importance of relative population
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size in a competing destination’s framework of receiving
imported cases. It may indicate that the increase in receiving
cases as a result of increasing population size is greater for
urban areas than for rural areas. In other words, larger
urban areas are marginally more attractive for cases than
rural counterparts. It is also sometimes the case that rural dis-
tricts completely or mostly surround urban neighbours, for
these districts early rural outbreaks may be the result of inci-
dental rural infection en route to urban districts. However,
more explicit data on population movement patterns, particu-
larly those of children, are necessary to verify this argument.
It is also possible that epidemics in urban districts create
multiple rural echos, producing multiple smaller epidemics.

Controlling for population size, we observe a small
though statistical significant difference in epidemic behaviour
between urban and rural districts (electronic supplementary
material, figure S6). Rural areas have more frequent, smaller
outbreaks while urban neighbours have relatively fewer,
larger epidemics. This confirms previous findings that aggre-
gated urban dynamics showed more intense epidemics
relative to aggregated rural data [28]. Here, we have explicitly
shown this behaviour at the district level, controlling for
space and proximity to large cities.

To verify this behaviour with known population densities
and mixing rates, we simulate epidemics in a number of com-
munities. We vary the total size, number of patches (as a proxy
for multiple infection hotspots), and mixing rates between
patches. We then examine fadeout proportions and final
sizes across a combination of patch numbers and mixing
rates for each community size (figure 5). We assume the popu-
lation and birth rates within each patch are equal and the
within-patch transmission rate is constant for an R0 of 20, a
reasonable estimate for measles [27]. Across-patch trans-
mission rate is fixed at 1%, 5%, 10%, 15%, 20%, 40% and 80%
of the within-patch rate. From the simulated incidence data,
we calculate the average number of fadeouts and the average
final size of outbreaks. As expected, increasing patches
reduces the final size of each epidemic and reduces the fadeout
proportions. Additionally, increasing the across-patch mixing
rate increases the final size and increases the proportion of
fadeouts. This is congruent with the slight difference we
observe between small urban and rural districts.
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Heterogeneous contact patterns in rural areas may be driv-
ing these subtle differences relative to urban areas which may
be closer to well mixed. Rural districts may have several trans-
mission hotspots (schools) distributed over a greater area.
Strong within-school mixing coupled with weak across
school mixing rates would result in multiple small outbreaks.
By contrast, a denser urban area will provide more opport-
unities for mixing even when multiple schools exist leading
to fewer, larger outbreaks, as demonstrated by the simulation
results in figure 5.
rnal/rsif
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6. Future work
School-level data are crucial for further disentangling differences
betweenurbanand rural areas. Specifically, schooldatacouldelu-
cidate whether rural areas are receiving more cases than urban
areas or if multiple hotspots are producing multiple epidemics
from within the community. However, to our knowledge ade-
quate data for this time period does not exist in an appropriate
scale to address this question. Furthermore, even if we optimisti-
cally assume urban and rural designations are substantive in
these data, it is also true that urban and rural distinction in
E&W is not comparable to global differences in urban and rural
environments. That is, rural areas are denser than global rural
extremesandurbanareas are smallerand lessdense thancontem-
porary megacities. Despite this, our exhaustive analysis of urban
and rural disease dynamics in this detailed dataset provides a
strong first examination of possible differences.

An additional challenge in this context is the age profile of
the susceptible class (typically schoolchildren, aged between
5 and 10 years), as well as the primary transmission location
(schools). The movement pattern of schoolchildren is unlikely
to exhibit as much variation in mobility or contact rates across
contexts; this may be especially true in E&W during this time
period where school attendance is compulsory for young
children. As the majority of contacts for this age group
occur in school settings, there is likely not as much variability
in these contact rates in urban versus rural settings relative to
other types of contact.

Extrapolation of these findings to other contexts is limited
to acute immunizing pathogens in countries of similar levels
of development. However, we would expect the differences to
be more pronounced in countries with more variation in
urban/rural settings. Though it is likely that the districts in
this dataset do not adequately reflect urban/rural differences
in other countries, the methods in this paper may serve as a
useful framework for urban/rural analysis in other contexts.

In thewake of contemporarymeasles outbreaks and declin-
ing vaccine coverage, comprehension of measles transmission
has gained renewed urgency. Understanding transmission
overmetapopulation structures is vital for predicting outbreaks
and planning interventions. Additionally, understanding the
spread of disease over different population densities and
mixing patterns is crucial in a rapidly urbanizing world. This
analysis illustrates the cascading of disease transmission even
at local levels, suggesting the larger of two populations is at
greater risk of infection holding geographical location relatively
constant. Furthermore, it suggests transmission may be slightly
more rapid in dense areas but that persistencemay be greater in
sparse areas. The strength of transmission across locations high-
lights the potency ofmeasles infection across scales. In addition,
case data demonstrates that infections cascade from endemic
areas to places of next-largest size, and that this pattern persists
even at extremely local scales. In general, this suggests the
importance of targeting interventions in large population
centres were disease outbreaks can grow to epidemic levels
and instituting control strategies to prevent disease from
travelling to subsequent locations. Finally, results on rural trans-
mission highlight the importance of understanding local
population mixing patterns and maintaining records on the
number and spatial distribution of community hotspots.

Further research is necessary to build a comprehensive
understanding of transmission in urban and rural areas. In
particular, more detailed data on population densities
within urban/rural areas as well as mixing patterns will be
critical in untangling the pace and persistence of epidemics.
In particular, similar studies in contexts with greater variation
in urban and rural settings could help elucidate the impact of
density on mixing rates for this particular susceptible class. In
addition to highlighting slight differences between urban and
rural districts within a metapopulation, this work demon-
strates the importance of the spatial scale of reporting for
estimates of disease transmission. Aggregating several trans-
mission zones into one reporting region may reduce
estimates of contagion and overestimate import rates.
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