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Abstract: In this study, Ingots of (Bi, Sb)2Te3 thermoelectric material with p-type conductivity have
been obtained by hot extrusion. The main regularities of hot extrusion of 30 mm rods have been
analyzed with the aid of a mathematical simulation on the basis of the joint use of elastic-plastic body
approximations. The phase composition, texture and microstructure of the (Bi, Sb)2Te3 solid solutions
have been studied using X-ray diffraction and scanning electron microscopy. The thermoelectric
properties have been studied using the Harman method. We show that extrusion through a 30 mm
diameter die produces a homogeneous strain. The extruded specimens exhibit a fine-grained structure
and a clear axial texture in which the cleavage planes are parallel to the extrusion axis. The quantity
of defects in the grains of the (Bi, Sb)2Te3 thermoelectric material decreases with an increase in the
extrusion rate. An increase in the extrusion temperature leads to a decrease in the Seebeck coefficient
and an increase in the electrical conductivity. The specimens extruded at 450 ◦C and a 0.5 mm/min
extrusion rate have the highest thermoelectric figure of merit (Z = 3.2 × 10−3 K−1).

Keywords: bismuth telluride; hot extrusion; thermoelectric material; texture; mathematical simulation;
thermoelectric figure of merit

1. Introduction

Bismuth and antimony chalcogenide based solid solutions are the main thermoelectric
materials used by the manufacturers of thermoelectric cooling and generator modules [1,2].
The materials of thermoelectric module cells work under severe thermal conditions and
loads. The temperature gradients produced in these materials during operation may
induce large thermal stresses which can ultimately cause destruction of the material and
module cell failure. For this reason, the technology of these materials is the key aspect in
the fabrication of thermoelectric devices, its importance being greater when it comes to
the fabrication of miniaturized cooling systems for microelectronics, optoelectronics, and
laser devices where the thermoelectric material quality and reliability requirements are
extremely stringent [3].

Bismuth and antimony chalcogenides have a rhombohedral structure with the R3m
symmetry group, and their physical properties are anisotropic [4]. Their parameters, such
as their electrical conductivity and heat conductivity in the direction of the third order
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symmetry axis and in directions perpendicular to this axis, may differ by several times
(hence the anisotropy of the thermoelectric figure of merit) [5].

The most widely used technologies of Bi2Te3 based materials are zone melting [6–8],
spark plasma sintering [9–12], and hot extrusion [13–15]. The preferable technology is hot
extrusion for which plastic strain produces a predominant grain orientation (i.e., a texture)
in the polycrystalline material and, as a result, the final ingots exhibit good mechanical and
thermoelectric properties [16–18].

Hot extrusion technology is a well-known and practically important process for syn-
thesizing bismuth telluride-based thermoelectric materials. However, the need to increase
the process output and the product quality gives impetus to permanent improvement
of both the geometry of the dies used and the process parameters (e.g., die extrusion
rate) [19,20].

The aim of this work is to obtain homogeneous 30 mm diameter ingots of (Bi, Sb)2Te3
solid solutions by hot extrusion and to study the effect of process parameters on the
structure and thermoelectric properties of the material.

2. Materials and Methods

The p-type conductivity (Bi, Sb)2Te3 thermoelectric material was synthesized by direct
smelting of the raw components taken in the stoichiometric ratio in quartz ampoules at
750 ◦C. The synthesis duration was 2 h. The raw components for solid solution synthesis
were as follows: 99.999 wt.% pure tellurium, 99.999 wt.% pure antimony, 99.999 wt.% pure
bismuth. The synthesized material was crushed in an XS-10 blade mill (Hebei, China). The
as-milled powder size was <500 µm. The thermoelectric material powder was preliminary
compacted in an IP2500 M auto hydraulic press (Armavir, Russia) with a specific pressure
force of 3 g/cm2. The hot extrusion process was carried out in the following mode:
temperature 400 ÷ 500 ◦C, extrusion rate 0.1 ÷ 0.5 mm/min, and extrusion coefficient 10.

The structure of the samples was studied by X-ray diffraction and scanning electron
microscopy (SEM). The samples for X-ray diffraction studies were disks with a diameter
of 30 mm and a thickness of 3 mm, which were cut from different parts of the extruded
rod perpendicular to the axis of extrusion. After cutting, a broken layer is formed on the
surface of the samples, the structure of which differs from the structure in the volume of
the material. Before the study of the structure, the samples were etched in a solution of
HBr and K2Cr2O7 (1:1) for 5 min to remove the broken layer.

The phase composition of the specimens was studied by X-ray diffraction on a Bruker
D8 instrument (Karlsruhe, Germany) with CuKα incident radiation. The scan time per step
was fixed to 1 s with the step size of 0.02◦ in the 2θ range of 15◦–105◦. The fine structure
(crystallite size and microdeformations) was assessed by comparing the broadening of the
first and second order diffraction peaks (HKL and 2H2K2L) using the reference profile.
The reference was an as-annealed Bi0.4Se1.6Te3 solid solution powder. The texture was
characterized by plotting reciprocal pole figures based on the X-ray diffraction patterns
taken for sections perpendicular to the extrusion axis (so as to evaluate the probability
of coincidence between poles for different planes and the extrusion axis). The statistical
weights of the poles were calculated with normalization with respect to the calculated
reflection intensities. The morphology of bulk specimens was characterized under a
scanning electron microscope (JSM-6480LV, JEOL, Tokyo, Japan). The grain size was
determined using an SEM of the cleaved surfaces. The samples were chipped at room
temperature. As chalcogenide grains cleave preliminarily along the cleavage planes of the
chalcogenide structure, the cleaved surfaces show the grain structure of the material. The
sizes of the cleaved structural features were assessed using the intercept method.

The thermoelectric parameters (electrical conductivity, Seebeck coefficient, thermal
conductivity, and thermoelectric figure of merit) of the materials were measured using the
Harman method at room temperature on 2.5 × 2.5 × 4.0 mm3 samples cut from the ingots
parallel to the extrusion axis [21,22].
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3. Results

The extrusion technology has a number of specific features which may deleteriously
affect the electrophysical properties of extruded branches. The large strain developed in the
extruded material triggers processes which may destabilize the properties of the branches
and impair their parameters.

The conditions of extrusion process (die shape, strain temperature and rate, amount
of strain and workpiece structure) affect the final structure and properties of the extruded
material. One effective method of studying the effect of plastic molding parameters on
the structural parameters of the thermoelectric material is to develop a mathematical
simulation of the extrusion process.

A mathematical simulation of extrusion process can deliver information on a number
of process parameters that cannot be studied experimentally such as stress, strain, and
strain rate fields both at the final stage and in evolution during rod extrusion. Mathematical
simulation provides the possibility of compare the evolution of these parameters with the
development of the structure and to identify the process stages which prove to be the most
critical ones for the structure formation in extruded rods. Simulation of virtual extrusion
processes under various boundary conditions (in particular for different die designs given
the same rod diameter) provides an opportunity to significantly reduce the effort for the
fabrication of expensive equipment. The regularities of the hot extrusion process for 30 mm
diameter rods of the (Bi, Sb)2Te3 thermoelectric material were analyzed by the joint use of
elastic-plastic body approximations.

3.1. Mathematical Simulation of Extrusion Process

The scheme of the hot extrusion process for mathematical simulation is shown in
Figure 1. In accordance with the schematic presented above, the geometrical parameters of
the hot extrusion plant were set up as follows: D = 85 mm is the diameter, L = 26 mm is the
length of the workpiece, and θ = 60 deg is the die rounding angle; l = 10 mm is the length
and d = 30 mm is the diameter of the cylindrical section at the die output. Also, a process
rate of V = 0.1 mm/s was set up. The D2/d2 parameter describes the hot extrusion process
efficiency and is referred to as the extrusion ratio.
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The physical and mechanical parameters of the process were chosen in accordance
with earlier work [19]: E = 40 GPa is Young’s modulus, ν = 0.3 is Poisson’s ratio, and
σo = 102 MPa is the elastic to plastic transition threshold stress. The elastic to plastic
transition is illustrated in the stress vs. strain graph in Figure 2. As reported earlier [19],
the friction coefficient between the workpiece and the die is 0.04. The model takes the
friction into account but the calculations ignored it due to the process uses graphite lining
for workpiece slipping.
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3.1.1. Methodical Approach to Calculation of Elastic-Plastic Strains during Hot Extrusion

The methods used in this work are based on a solid-state approach and joint use of
elastic and plastic body approximations in accordance with the fundamentals of the elastic-
ity and plasticity theory [23]. Thermal stresses can be ignored for hot extrusion processes. A
detailed justification of the choice of this approximation was reported earlier [24]. Data on
an alternative approach based on the mechanics of rheological liquid media were provided
elsewhere [25] for cold extrusion of high plasticity materials. We will now consider the
fundamentals of the elastic-plastic approximation used in this work.

The dependence between stresses and strains for an elastic isotropic body are as
follows: if σ1, σ2, σ3 and ε1, ε2, ε3 are the main stresses and strains then, considering them
as being related to the main axes, one can establish the following relationship between them:

σ1 = (λ + 2G) ε1 + λ ε2 + λ ε3, σ2 = λ ε1 + (λ + 2G) ε2 + λ ε3, σ3 = λ ε1 + λ ε2 + (λ + 2G) ε3 (1)

where λ is the Lamé coefficient and G is the shear modulus. Young’s modulus E determines
the relationship between the stress and the relative elongation during tension:

E = σ1/ ε1 = G(3λ + 2G)/(λ + G) (2)

Poisson’s ratio determines the relationship between the transverse strain and the
longitudinal strain:

ν = λ/2(λ + G) (3)

The strain continuity equation is as follows:

∂2εx/∂y2 + ∂2εy/∂x2 = ∂γxy/∂x∂y (4)

The stress balance equations are as follows:

∂σx/∂x + ∂τyx/∂y + ∂τzx/∂z + ρX = 0
∂τxy/∂x + ∂σy/∂y + ∂τzy/∂z + ρY = 0
∂τxz/∂x + ∂τyz/∂y + ∂σz/∂z + ρZ = 0

(5)
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The invariants are as follows:

I1 = σx + σy + σz, I2 = − (σyσz + σzσx + σxσy) + τ2
yx + τ2

zx + τ2
xy (6)

When the plasticity conditions are considered, the hydrostatic pressure is excluded
from the common set of equations and the remainder is referred to as the deviator of
stresses and it is accepted that the latter parameter determines the onset of the plastic
transition and is the only tool to for expressing the plasticity condition. The average stress
is determined as follows:

s = (σx, σy, σz)/3 = (σ1, σ2, σ3)/3 (7)

which is an invariant value. The stress deviator is determined by the components sx, sy, sz,
syz, szx, sxy in accordance with the following equations:

sx = σx − s, sy = σy − s, sz = σz − s, syz = τyz, szx = τzx, sxy = τxy (8)

The strain components determine the average strain:

e = (εx, εy, εz)/3 = (ε1, ε2, ε3)/3 (9)

Then the strain deviator components ex, ey, ez, eyz, ezx, exy are determined by the
following expressions:

ex = εx − e, ey = εy − e, ez = εz − e, eyz = γyz, ezx = γzx, exy = γxy (10)

The mathematical notation of the plasticity condition follows from the Tresca condi-
tion [23] of the greatest tangent stresses, which states that plastic strain onsets at the point
where the greatest tangent stresses reach the value σo/2 which is the constant of a material.
Since the greatest tangent stresses are (σ1 − σ3)/2, Trask’s condition is written as follows:

(σ1 − σ3) = (s1 − s3) = σo (11)

This condition determines the similar values of the yield stress σo for uniaxial tension
and compression. One of the requirements imposed on the plasticity condition is its
invariance with respect to the coordination axes. Moreover, it is assumed that the average
normal stress does not affect the plasticity and that, therefore, the plasticity condition can
only be expressed in stress deviator components. This results in the necessity of studying
the invariance of the stress deviator. The stress invariants J1, J2, J3 are introduced formally
and by analogy with the stress invariants I1, I2, I3:

J1 = sx + sy + sz, J2 = − (sysz + szsx+ sxsy) + s2
yx + s2

zx + s2
xy (12)

The simplest case corresponds to J2, which is considered constant and referred to as
the von Mises condition:

2J2 = s2
1 + s2

2 + s2
3 = 2σo

2/3 or (σ2 − σ3)2 + (σ3 − σ1)2 + (σ1 − σ2)2 = 2σo
2/3 (13)

where σo is the constant of the material.
In accordance with the von Mises condition [23], flow occurs when the shape change

elastic strain energy reaches the characteristic value for the material in question.
Ignoring elastic strains we will consider plastic flow for a two-dimensional (2D) case.

The principal stress in the z axis direction will then be 1
2 (σ1 + σ2). In this case the von Mises

plasticity condition takes on as follows: σ1 − σ2 = 2k, where k= σo/31/2. For the stress
components along the xy axes, this expression follows:

1
4

(σx − σy)2 + ∂τxy
2 = k2 (14)
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For a 2D case the stress balance Equation (5) have the following form:

∂σx/∂x + ∂τxy/∂y = 0
∂τxy/∂x + ∂σy/∂y = 0

(15)

Repeatedly differentiating Equation (15) and subtracting it, we obtain taking into
account Equation (11) the following:

∂2τxy/∂x2 − ∂2τxy/∂y2 = ± 2∂2/∂x∂x
√

(k2 − τxy
2) (16)

Equation (16) is solved relative to τxy. From the calculated stresses one can find the
strain rate:

sx = 2ϕε’x, sy = 2ϕε’y, sxy = 2ϕγ’xy (17)

The tangential friction stress is related to the stress normal to the surface by the
following relationship: σt =−µσn t, or for acting forces: ft =−µfn t, where ft is the tangential
friction force, fn is the normal force, σt is the tangential friction stress, σn is the normal
stress, µ is the friction coefficient, and t is the tangential vector in the velocity direction.

3.1.2. Results of Mathematical Simulation of Extrusion Process

The extrusion process was simulated using the Crystmo/Marc finite elements simula-
tion complex [26]. The mathematical model developed allowed us to carry out a virtual
simulation of extrusion process which resulted in the extrusion of cylindrical specimens 20
and 30 mm in diameter. During the calculation, the computational (Lagrange’s) mesh and
the specimen shape changed in time at sequential steps of the extrusion process, suggesting
that the specimen output from the die starts as early as in 150 s.

For cylindrical specimen 20 mm in diameter the main zones of the stress-strain speci-
men state have been analyzed in [27], which determine its strength (the high compression
zone) and quality (the structure formation zone and the potential longitudinal cracking
zone) for the stage of specimen output from the die.

For cylindrical specimens 20 mm in diameter, Figure 3 shows the evolution of the
computational (Lagrange) mesh and the specimen shape in time at sequential steps of the
extrusion process, suggesting that the specimen output from the die starts as early as 140 s.
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For cylindrical specimen 30 mm in diameter the distributions of the plastic flow
velocity V isocontours suggest that at an early process stage (t = 90 s), the flow velocity is
higher at the die wall. This is accounted for by the greater contribution of material pressing
from the sides (Zone 1) to the center where the compression degree is the highest. However,
at the stage of specimen output from the die (t = 360 s) the radial flow profile changes so
that the flow velocity in the center becomes greater than near the die wall (Figure 4).
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The key parameter for analysis of the stress-strain state of specimens is the time
corresponding to the start of specimen output from the die. The absolute mass transport
velocity in the conical section of the die (marks 6 and 7) and at the die output is 0.78 mm/s.
Near the die surface (marks 1 and 2) the extruded material undergoes counter flow, its
zone being expanded in the course of extrusion until the end of the process.

In article [27], similar data corresponding to Figures 4 and 5 are cited for 20 mm rod
extrusion process.

Figure 5 shows the distributions of the principal maximum stresses and total maximum
strains for extrusion of a 30 mm diameter rod.

The stress distribution shown in Figure 5 suggests that at the die throat between side
marks 1 and 4 the stress is negative, varying from −280 to −27 MPa which corresponds
to a reduction of the tensile stress with an increase in the distance from the press position.
Downstream of mark 4 the stress sign changes and the corresponding compression stress
reaches approximately 75 MPa. Below marks 6–7 (at the cylindrical die section) and in the
free part of the specimen, the radial stress inhomogeneity spans from 67 MPa compression
(at the die wall) to 70 MPa tension (in the specimen center). The overall radial stress scatter
in the specimen at the die output is about 70% of the respective scatter for extrusion of a
20 mm diameter rod. The strain distribution suggests that the greatest strain (7.0 and 14.0)
is developed at the corner point of the die (Figure 5b, marks 1–2). Between marks 2 and 5
the strain decreases to 3.7. Below marks 6–7 and in the free part of the specimen, the strain
decreases to 1. This section exhibits radial strain scatter corresponding to the respective
changes in the stress state of this specimen section. The comparison of two variants of the
die (20 and 30 mm in diameter) shows that more homogeneous strain is developed during
a hot extrusion through 30 mm die.



Materials 2021, 14, 7059 8 of 14Materials 2021, 14, 7059 8 of 15 
 

 

 
Figure 5. Distribution of main maximum stresses ×107 MPa (a) and total maximum strains for extru-
sion of 30 mm diameter rod (b). 

The stress distribution shown in Figure 5 suggests that at the die throat between side 
marks 1 and 4 the stress is negative, varying from −280 to −27 MPa which corresponds to 
a reduction of the tensile stress with an increase in the distance from the press position. 
Downstream of mark 4 the stress sign changes and the corresponding compression stress 
reaches approximately 75 MPa. Below marks 6–7 (at the cylindrical die section) and in the 
free part of the specimen, the radial stress inhomogeneity spans from 67 MPa compression 
(at the die wall) to 70 MPa tension (in the specimen center). The overall radial stress scatter 
in the specimen at the die output is about 70% of the respective scatter for extrusion of a 
20 mm diameter rod. The strain distribution suggests that the greatest strain (7.0 and 14.0) 
is developed at the corner point of the die (Figure 5b, marks 1–2). Between marks 2 and 5 
the strain decreases to 3.7. Below marks 6–7 and in the free part of the specimen, the strain 
decreases to 1. This section exhibits radial strain scatter corresponding to the respective 
changes in the stress state of this specimen section. The comparison of two variants of the 
die (20 and 30 mm in diameter) shows that more homogeneous strain is developed during 
a hot extrusion through 30 mm die. 

3.2. Structural Study of Extruded Rod 
Structural study of 30 mm diameter extruded rods of (Bi, Sb)2Te3 solid solution 

showed that the initial press workpiece has a texture in which the (0001) cleavage planes 
are perpendicular to the strain direction. A strain texture starts to form in the center of the 
transition zone. Thereafter, the strain texture develops, the predominant grain orientation 
being such that the (0001) cleavage planes are parallel to the extrusion axis. The micro-
structure image presented in Figure 6 shows elongated grains or grain agglomerations 
along the extrusion axis. The extruded rod has a channel in the center in which the flow 

Figure 5. Distribution of main maximum stresses ×107 MPa (a) and total maximum strains for
extrusion of 30 mm diameter rod (b).

3.2. Structural Study of Extruded Rod

Structural study of 30 mm diameter extruded rods of (Bi, Sb)2Te3 solid solution
showed that the initial press workpiece has a texture in which the (0001) cleavage planes
are perpendicular to the strain direction. A strain texture starts to form in the center
of the transition zone. Thereafter, the strain texture develops, the predominant grain
orientation being such that the (0001) cleavage planes are parallel to the extrusion axis. The
microstructure image presented in Figure 6 shows elongated grains or grain agglomerations
along the extrusion axis. The extruded rod has a channel in the center in which the flow of
material is far more intense as compared with the rest of the initial section of the extruded
rod. This strain pattern can be accounted for by opposite pressing of the material by the
outer layers.
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Figure 7 shows the microstructure and inverse pole figures of wafers cut out from the
working part of the rod perpendicularly to the extrusion axis. The microstructure image
clearly resolves grains or grain agglomerations with close orientations elongated in the
extrusion direction. The elongation and orientations of the grains reflect the plastic flow
pattern and its radial homogeneity. The texture of the extruded rod is almost similar in the
longitudinal direction, the predominant grain orientation being with the cleavage planes
parallel to the extrusion axis.
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Figure 8 shows diffraction patterns for wafers cut out from the middle part of the
extruded rod for different extrusion temperatures.
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Phase analysis data suggest that all of the test materials are single phase. The diffrac-
tion patterns exhibit only the (Bi, Sb)2Te3 solid solution reflections. However, the diffraction
peak intensity ratio varies depending on extrusion temperature. For the purposes of il-
lustration, Figure 8 shows intensity ratio between the (110) line for which the cleavage
planes are parallel to the extrusion axis and the most intense line for the textureless material
(105). With an increase in the extrusion temperature, the texture of the material degrades.
As the extrusion temperature grows from 430 to 450 ◦C, there is a slight change in the
intensity ratio of the diffraction peaks, whereas the quantity of the grains whose cleavage
planes are parallel to the texture axis remains almost the same at these temperatures. The
texture degradation becomes considerable as the extrusion temperature increases to 470 ◦C.
The texture of the material does not change noticeably depending on extrusion rate. An
increase in the extrusion rate leads to a decrease in the quantity of defects in the grains.
Table 1 summarizes characteristics of the fine structure of the material, i.e., sizes of coherent
scattering regions (CSR) and microstrain.

Table 1. CSR size and microstrain in (Bi, Sb)2Te3 solid solutions as a function of extrusion rate.

Extrusion Rate, mm/min CSR Size, nm Microstrain, %

0.1 120 0.16
0.3 115 0.12
0.5 125 0.08

Fine structure characterization (determination of coherent scattering region sizes and
microstrain) of the test material showed that the microstrain degree decreases with an
increase in the extrusion rate. The average size of coherent scattering regions depends on
the extrusion rate (albeit slightly).

Figure 9 shows images of the cleave surface structure for solid solutions obtained at
different extrusion rates. Since bismuth and antimony chalcogenide based solid solutions
are cleaved mainly along their cleavage planes, their cleave surface images exhibit textures
reflecting the grain structure of the material. Specimens extruded at different temperatures
have almost similar sizes of structural features (about 1–5 µm). Only the cleave surface
image of the specimen extruded at 470 ◦C shows pores (Figure 10c). These pores can
be seen both along the grain boundaries and inside the grains. Pore formation at this
extrusion temperature can be accounted for by coagulation of point defects and/or changes
in stoichiometry due to tellurium evaporation.
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3.3. Thermoelectric Properties of Extruded (Bi Sb)2Te3 Solid Solutions Depending on Extrusion
Temperature and Rate

Figure 10 shows electrical conductivity, Seebeck coefficient, thermal conductivity,
and thermoelectric figure of merit as a function of extrusion temperature for different
extrusion rates.

As can be seen from the data presented in Figure 10, an increase in the extrusion
temperature leads to an increase in the electrical conductivity of the solid solutions. At
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each experimental extrusion temperature, the electrical conductivity of the solid solutions
decreases with an increase in the extrusion rate. The Seebeck coefficient increases slightly
with an increase in the extrusion temperature from 430 to 450 ◦C and decreases noticeably
with an increase in the extrusion temperature to 470 ◦C. The dependence of thermal
conductivity on the extrusion temperature correlates well with the electrical conductivity
curves. The minimum value of thermal conductivity has a sample obtained at an extrusion
rate of 0.1 mm/min. This is explained by the fact that at a low value of the extrusion
rate, the compaction process proceeds with the formation of many structural defects. The
thermal conductivity of the samples obtained at an extrusion rate of 0.3 and 0.5 mm/min
practically does not differ at comparable extrusion temperatures. At comparable extrusion
temperatures, the Seebeck coefficient increases with an increase in the extrusion rate. The
thermoelectric figure of merit changes nonmonotonically with an increase in the extrusion
temperature and has a clear peak at a 450 ◦C extrusion temperature. Similarly, the Seebeck
coefficient changes in Figure 10b. An increase in the extrusion rate leads to an increase in
the thermoelectric figure of merit. The specimens extruded at 450 ◦C with a 0.5 mm/min
extrusion rate have the highest thermoelectric figure of merit (Z = 3.2 × 10−3 K−1).

When the extrusion temperature changes from a temperature of 430 ◦C to 450 ◦C, the
values of electrical conductivity and the Seebeck coefficient simultaneously increase, and
the study of the fine structure shows a decrease in the value of microdeformations at a
temperature of 450 ◦C. Such a change in the electrophysical parameters is probably due
to a decrease in grain defects and an increase in the mobility of the main charge carriers.
Comparison between the data on the structure and properties of the material suggests that
primary recrystallization onsets at 470 ◦C and leads to structure degradation. Furthermore,
boundary migration during primary recrystallization changes the carrier concentration.
On the one hand, deformed defects that produce acceptor levels are annealed and, on
the other hand, point defects are generated during high-angle boundary migration in the
course of recrystallization. In our opinion, the acceptor levels are associated with defect
formation during plastic strain due to the intersection of dislocations migrating in different
slip planes. Since the main type of defects in the bismuth telluride based solid solutions
are tellurium vacancies and cation atoms in antisite positions, the thermal impact during
extrusion may cause bismuth atoms to substitute tellurium ones in the antisite positions.
Both of these mechanisms lead to the formation of acceptor centers.

The hypothesis of the onset of primary recrystallization in the p-type conductivity
material at 470 ◦C is confirmed by electrophysical data since the electrical conductivity
increases and the Seebeck coefficient decreases at this temperature. This change of the
electrophysical parameters is caused by an increase in the carrier concentration which
is plausible since the defect generation is the most intense at the recrystallization center
formation temperature.

The data on the structure and thermoelectric properties reported herein suggest that
the optimum extrusion temperature for the (Bi, Sb)2Te3 solid solutions is 450 ◦C. At this
extrusion temperature, the materials do not contain pores and have a fine-grained structure
with a clear axial texture for which the cleavage planes of the grains are oriented along the
extrusion axis.

4. Conclusions

30 mm diameter ingots of the (Bi, Sb)2Te3 thermoelectric material were produced
by hot extrusion. Mathematical simulation showed that extrusion through a 30 mm
diameter die produces a homogeneous strain. Variations of the process temperature
revealed regularities in the structure formation and allowed us to choose the optimum
extrusion mode for the selected temperature range. We show that p-type conductivity
(Bi, Sb)2Te3 solid solutions with the best properties are obtained at a 450 ◦C extrusion
temperature. At this extrusion temperature, the strain texture is retained and pores do
not form. We show that the quantity of defects in the grains of the (Bi, Sb)2Te3 solid
solutions decreases with an increase in the extrusion rate. The specimens extruded at
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450 ◦C with a 0.5 mm/min extrusion rate have the highest thermoelectric figure of merit
(Z = 3.2 × 10−3 K−1).
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