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While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive
because of predicted structural information that could uncover the underlying function. However, threading tools are generally
compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing
many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have
developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources
efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages
large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently
select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread
and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-
solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable
solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such

as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.

1. Introduction

Modern systems biology holds a significant promise to accel-
erate the development of personalized drugs, namely, tailor-
made pharmaceuticals adapted to each person’s own genetic
makeup. Consequently, it helps transform symptom-based
disease diagnosis and treatment to “personalized medicine,”
in which effective therapies are selected and optimized for
individual patients [1]. This process is facilitated by various
experimental high-throughput technologies such as genome
sequencing, gene expression profiling, ChIP-chip/ChIP-seq
assays, protein-protein interaction screens, and mass spec-
trometry [2-4]. Complemented by computational and data
analytics techniques, these methods allow for the compre-
hensive investigation of genomes, transcriptomes, proteomes,

and metabolomes, with an ultimate goal to perform a global
profiling of health and disease in unprecedented detail [5].
High-throughput DNA sequencing, such as Next-
Generation Sequencing (NGS) [6-8], is undoubtedly one
of the most widely used techniques in systems biology. By
providing genome-wide details on gene sequence, organi-
zation, variation, and regulation, NGS provides means to fully
comprehend the repertoire of biological processes in a living
cell. Importantly, continuing advances in genome sequencing
technologies result in rapidly decreasing costs of experiments
making them affordable for individual researchers as well
as small research groups [8]. Nevertheless, the substantial
volume of biological data adds computational complexity
to downstream analyses including functional annotation
of gene sequences of a donor genome [9]. Consequently,
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bioinformatics components of systems biology pipelines
are subject of intense research oriented on improving their
accuracy in interpreting and analyzing raw NGS data, as well
as on the development of effective computing strategies for
processing large amounts of data.

One of the major challenges in NGS analytics is a
reliable proteome-wide function inference of gene products.
This is traditionally accomplished using sequence-based
methods, which annotate target proteins by transferring
molecular function directly from homologous sequences [10,
11]. Despite a high accuracy of these methods within the
“safe zone” of sequence similarity, their applicability to the
“twilight zone” is more complicated due to ambiguous and
equivocal relationships among protein sequence, structure,
and function [12]. It has been shown that relaxing sequence
similarity thresholds in function inference inevitably leads
to high levels of misannotation [13]. Therefore, low false
positive rates can be maintained only at the expense of
a significantly reduced coverage, which, in turn, hinders
the development of systems-level applications. To address
this issue, combined evolution/structure-based approaches
to protein functional annotation have been developed [14-
16]. Integrating sequence and structural information yields
an improved performance within the “twilight zone” of
sequence similarity, which significantly extends the coverage
of targeted gene products. Furthermore, these methods con-
sider many aspects of protein molecular function including
binding to small organic molecules, inorganic groups, for
example, iron-sulfur clusters and metal ions, and interac-
tions with nucleic acids and other proteins [17]. Structural
bioinformatics approaches offer certain advantages over pure
sequence-based methods; however, these algorithms also
present significant challenges in the context of their practical
implementation. Compared to ultra-fast sequence align-
ments and database searches using, for example, BLAST [18],
protein threading and metathreading that include structure-
based components put significantly higher demands for
computing resources, which becomes an issue particularly in
large, proteome-scale projects.

The last decade has seen a growing interest in using
distributed cyberinfrastructure (DCI) for various bioinfor-
matics applications [19-21]. For example, the MapReduce
programming model along with Hadoop, introduced initially
for massive distributed data processing, was explored [21-
23]. Also, cloud environments are increasingly becoming
popular as a solution for massive data management, pro-
cessing, and analysis [19, 20, 24]. Previously, SAGA-Pilot-
based MapReduce and data parallelization strategies were
demonstrated for life science problems, in particular, such as
alignment of NGS reads [20, 25, 26]. Despite the successful
cloud-oriented implementations of various bioinformatics
tools, significantly fewer studies focused on the porting of
complex structural bioinformatics algorithms to distributed
computing platforms.

In this work, we present a pilot-based implementation
of metathreading for the structural and functional charac-
terization of large datasets of gene products. Specifically,
we developed a pipeline for eThread, a recently developed
metathreading approach [27], tailored primarily for the
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Amazon EC2 distributed computing infrastructure and also
easily extensible for other types of DCIs. eThread integrates
ten state-of-the-art single threading algorithms to accurately
identify template proteins, which can be subsequently used
in both structure modeling and functional annotation. The
latter covers a broad spectrum of protein molecular func-
tion, including ligand, metal, inorganic cluster, protein, and
nucleic acid binding [17]. Since eThread features a diverse
collection of algorithms, its deployment on large multi-
core systems necessarily requires comprehensive profiling
to design an efficient execution strategy. In our previous
study, we performed a rigorous profiling of eThread in terms
of time-to-solution and memory footprint, focusing on the
optimal utilization of resources provided by homogeneous
high-performance computing (HPC) clusters [28]. In con-
trast to HPC machines, which are typically composed of
a large number of identical nodes, modern cloud comput-
ing infrastructures, such as Amazon EC2, provide a wide
selection of instance types comprising varying combinations
of CPU, memory, storage, and networking capacity. These
on-demand instances have different hourly rates; therefore,
in addition to time-to-solution, the efficient processing of
large biological datasets using commercial cloud computing
platforms should take account of the overall cost-to-solution
as well. In this study, we report an effective implementation
of metathreading using a pilot-based multilevel scheduling.
This approach offers significant advantages in terms of the
data, job, and failure management in large-scale structural
bioinformatics applications.

This paper is organized as follows. Introductions of
eThread, Amazon EC2, and SAGA-based pilot framework
are presented. Then, our pipeline is described along with
key strategies for parallelization. Benchmark results reveal-
ing characteristics of computational tasks required for the
eThread pipeline as well as those associated with EC2 infras-
tructure are presented. We, then, discuss our contributions
and future directions, which are followed by concluding
remarks.

2. Materials and Methods

As schematically shown in Figure 1, the eThread pipeline on
EC2aims to carry out genome-scale structural bioinformatics
analysis efficiently using the SAGA-based pilot framework.
Here, we describe our methods and backgrounds for the
developed pipeline and benchmark experiments.

2.1. eThread, a Scientific Application Comprising Multiple
Standalone Tools. eThread is a metathreading tool and
was developed for predicting protein structure and func-
tion, whose input is a protein sequence [17, 27]. Unlike
other tools based on sequence-based approaches, eThread
is template-based. Template structures are identified in
the PDB library using metathreading that combines the
10 individual threading/fold recognition algorithms. The
machine-learning-based meta-analysis is carried out using
all outputs from these 10 threading programs. The overall
pipeline of eThread is, therefore, a two-step pipeline. The first
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TaBLE 1: Threading tools incorporated in eThread and their workflow structures. For the categorization of computational loads and memory

requirement, see the text.

Program name (version)  Number of subtasks Prerequisite Computational load Memory requirement
THREADER (3.5) 4 PSIPRED (3.2.1), BLAST (2.2.5) Highest Low
SAM-T2K (3.5) 9 BLAST High High
HHpred (2.0) 7 BLAST High Medium
CS/CSI-BLAST (2.1.0) 4 Low Low
COMPASS (3.1) 7 BLAST High High
pfTools (2.3.4) 4 Medium Low
pGenTHREADER (8.9) 4 BLAST High Low
HMMER (3.1.b1) 4 Low Low
SPARKS (20050315) 4 BLAST High Medium
SP3 (20050315) 4 BLAST High Medium
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FIGURE 1: Schematics of the pilot-based eThread pipeline on EC2.
The eThread pipeline can accept a massive number of sequences,
identified from genome-wide sequencing methods such as RNA-
Seq, for example, as input, and carry out metathreading-based struc-
tural bioinformatics analysis including structure modeling. SAGA-
Pilot enables its execution on Amazon EC2 cloud environment to be
efficient by facilitating data and task-level parallelization.

step runs the 10 state-of-the-art threading/fold recognition
algorithms, CS/CSI-BLAST, COMPASS, HHpred, HMMER,
pfTools, pGenTHREADER, SAM-T2K, SP3, SPARKS, and
THREADER. NCBI BLAST is also needed for construction
of sequence profiles for most of tools and PSIPRED is
required for the prediction of secondary structure that is a
preprocessing task for THREADER. We summarize the ten
tools in Table 1. While three-dimensional structures can be
constructed by either MODELLER or TASSER-Lite using
the output from eThread metathreading analysis, in this
work, we only confine our focus on the metathreading
analysis. The effective combination of multiple algorithms
considerably extends the coverage of target sequences by
distantly related templates and increases the overall modeling
accuracy. According to the previous work [27], eThread
systematically detects more structure templates than any
single algorithm producing reliable structural models for 60—
70% of all gene products across a given proteome.

other tools and have dependency for the template library.
Note that these tools were developed by different developers
and their implementation strategies are all different and
heterogeneous, which challenges an efficient execution of
eThread. Previously, profiling of the individual tools using
a single system was reported [28], and here we briefly sum-
marize the results. The computational loads and the memory
requirement for each threading tool were examined using a
set of 110 sequences whose length is distributed between 50
and 600 amino acids. According to the results, we categorize
each tool as “High,” “Medium,” and “Low” for each category as
summarized in Table 1. For the computational load, a tool is
assigned as “Low” if the running time for 110 sequences is less
than 1-2 hours, “Medium” is for tools taking about 10 hours,
and “High” is for tools taking more than 10 hours. Notably,
THREADER requires about 5-19 hours for the data set, which
makes the tool stand out in terms of the running time denoted
as “Highest” For the memory requirement, “High” is for tools
needing more than 3 GB, “Medium” requires between 0.6 and
3 GB, and “Low” is tools requiring up to 0.6 GB. Interestingly,
the memory requirement is highly dependent upon the use of
BLAST in each tool. The reason why THREADER does not
need a lot of memory is that we use our modified version that
separates BLAST tasks out of the tool.

The basic structure of eThread is further illustrated with
the simplest serial algorithm in Algorithm 1. First of all, all
threading tools have a similar internal workflow, comprising
preprocessing, two main tasks performed against chain and
domain template libraries, and postprocessing tasks. The
preprocessing step varies among the tools, and, again, some
require running other tools such as BLAST or PSIPRED
to prepare their input for the main tasks. Notably, all of
threading tools are not developed to support any parallelism
for multicore or multinode systems, implying that data
parallelization would be a good strategy in the case of mul-
tiple sequences and that task-level parallelization that runs
concurrently independent subtasks is desirable as indicated
in the loops of Algorithm 1. BLAST has been available as
multithreading or MPI-based, but for the simplicity and a
practical reason (relatively low portion for the total time-to-
solution), a single or two-thread execution is only considered.
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TABLE 2: The summary of EC2 instance types used for this study. For the instance type, E stands for economical, G for general purpose,
M for memory-optimized, C for compute-optimized, and S for storage-optimized, following the description from Amazon. Nonsupporting
threading tools are identified based on the profiling results of the previous work [28]. The cost information is obtained from the AWS site as

of this writing and the unit is $0.02 which is the pricing for tl.micro.

Instance Type Number of cores Memory (GB) Nonsupport threading tools Relative cost
i x 1 o Mhcomssawm
ml.small G 1 1.7 COMPASS, SAM-T2K, pGenThreader

ml.medium G 1 3.7 SAM-T2K 6
ml.Jarge M 2 75 None 12
cl.medium C 2 1.7 COMPASS, SAM-T2K, pGenThreader 725
clxlarge C 8 7 None 29
hil.4xlarge S 16 60.5 None 155

Data: N protein gene sequences
Result: Gene annotation and tertiary structure
fori=1to N do
read ith sequence
foreach 10 threading tools do
if pre-processing then
do pre-processing
end
do domain processing
do chain processing
do post-processing
write output
end
/# now meta-analysis step using all
outputs from 10 threading tools
*/
read all outputs
do meta-analysis
end

ALGORITHM I: Serial algorithm for eThread.

Regarding BLAST tasks, it is worth noting that tools such as
THREADER, COMPASS, and SAMT2K invoke BLAST as a
one-time preprocessing step, whereas HHpred, SP3/SPARKS,
and pGenTHREADER are implemented to contain it within
iterative tasks. This means that BLAST can run separately
for the former three tools, whereas the latter three tools
are difficult to separate BLAST. Taken together, in spite of
common structures among the 10 threading tools, significant
challenges exist for an optimal execution due to the difficulty
of customizing possible task-level and data parallelization
for each tool, which is further complicated by significant
overhead stemming from the heterogeneous nature of EC2
infrastructure.

2.2. Amazon EC2 Infrastructure. Amazon provides the EC2
cloud computing environment which is an IaaS cloud [20].
This infrastructure is, in many ways, promising for large-
scale scientific applications such as eThread, but distinctively

different from traditional HPC environments. For example,
Amazon Machine Image (AMI) is easily created, reusable,
and maintained, consequently lowering the cost of installa-
tion and maintenance of required standalone tools. This is
greatly beneficial for most of bioinformatics pipelines that are
often composed of many open source tools whose develop-
ment, update, and extension are nonuniform and frequent
and have no connection to each other. For instance, threading
tools are often developed with a specific OS environment,
mostly Linux-like Oss, but developers could not test many
different OS variants. We found that some tools such as SP3,
SPARKS, and SAMT2K were not easily installed with Ubuntu
but had no issue with CentOS or RedHat. Therefore, an easy
way to avoid hassles associated with a compatibility issue is
to create a specific AMI best for each threading tool with the
most favorable Linux distro, which is likely to be the same one
used by the developers, and then to reuse it for upcoming new
releases of the tool.

For the eThread pipeline development, we chose to build
one AMI configured for each single threading tool along
with other additional programs needed, but it is also possible
to install multiple tools in a single AMI. EC2 provides
multiple types of instances and an end user is charged
depending upon types of instances, running times, and
storage options. Instance types are different in types of cores,
the number of cores, memory sizes, instance storage, and
network performance. The instances we used for this study
are summarized in Table 2 and are chosen to represent several
different categories such as economical, general, memory-
optimized, compute-optimized, and storage-optimized cases.
The external storage option is also a factor for the payment,
and we need to use S3 and EBS as described in more detail
later. It is also noted that while instances as a cluster are
available from EC2, the developed pipeline, as powered by
SAGA-Pilot, is able to execute large-scale calculations by
coordinating individual VMs without a cluster environment.
In summary, on-demand computing promised by IaaS cloud
such as EC2 has a great potential for large-scale scientific
applications and a lot of benefits once a user considers
carefully the effective use of complex and heterogeneous
infrastructure comprising many different instance types.
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2.3. SAGA-Pilot Abstraction. An efficient utilization of dis-
tributed cyberinfrastructure is essential for a distributed
application such as our eThread pipeline [20]. SAGA-Pilot
abstraction provides an effective decoupling between the
compute oriented tasks and associated data management
[29, 30]. This alleviates the burden of the application to
be confined with a particular resource for scheduling com-
pute and data units. BigJob is a SAGA- (Simple API for
Grid Applications-) based pilot framework which utilizes a
Master-Worker coordination model [31]. It comprises high-
level and easy-to-use APIs for accessing distributed resources
and provisioning of job submission, monitoring, and more.
It has been successfully utilized for efficient executions of
loosely coupled and embarrassingly parallel applications on
distributed cyberinfrastructure [25, 26]. BigJob has three
major components. First, Pilot-Manager is responsible for
the orchestration of pilots (Pilot-Compute and Pilot-Data)
which run locally or on remote resources for assigned tasks.
Pilot-Manager maps a data unit to a compute unit. BigJob
is built upon SAGA Job API which invokes SAGA adaptors
for submitting jobs to target resources while all details are
hidden to BigJob level API. For this work, we use the Amazon
Web Services adaptor, one of the many available SAGA
adaptors. Second component is Pilot-Agent that collects local
information of a system and is responsible for executing
the compute unit(s) and placing the data units appropriately
on the resource where the tasks are submitted. Finally, a
coordination service, employing a redis server, helps in coor-
dination and communication to facilitate the control flow and
data exchange between Pilot-Manager and Pilot-Agent [32].

With Amazon EC2 infrastructure, a current SAGA-Pilot
implementation handles the data management between tasks
and S3 is configured to be used for the data store as default.
In other words, any task once completed deposits predefined
output into S3 storage and the next task is able to locate the
output as its input.

Application workload management is also provided by
Pilot APIs as follows. Pilot APIs comprise compute-unit
and data-unit classes as primary abstraction. Using these, a
distributed application can specify a computational task with
input and output files [29, 32]. Once compute-units and data-
units are submitted, they are queued at the redis-based coor-
dination service and are processed recurrently by a scheduler.
Importantly, Pilot-Manger’s asynchronous interface allows an
instantaneous response without delay, which facilities BigJob
to complete the placement of compute/data-unit and thus is
effective for dealing with a large number of tasks.

2.4. Benchmark Data Set. For all benchmarking experiments,
manually curated 110 protein gene sequences whose lengths
are distributed between 51 and 600aa (amino acids) are
prepared (see Table 3). These 110 sequences were used for
runtime analysis of the EC2 instances against the 10 threading
tools, the two additional tools, PSIPRED and BLAST, and
meta-analysis similar to the previous work [28]. Most of
benchmark experiments with the developed pipeline pow-
ered by SAGA-Pilot are carried out using 20 sequences
chosen among 110 as described in Table 3.

TABLE 3: Benchmark data sets.

Length range (aa) 110 sequences 20 sequences
51-100 10 2
101-150 10 2
151-200 10 2
201-250 10 2
251-300 10 2
301-350 10 2
351-400 10 2
401-450 10 2
451-500 10 1
501-550 10 1
551-600 10 2

Start main script

I Launch EC2 instance via pilo

 DuatransertoBC2

Preprocessing of

Main processing of

threading tools

FIGURE 2: Overall workflow of the pilot-based eThread pipeline on
EC2.

3. Results

3.1. Development of Pilot-Based eThread Pipeline. The sche-
matic workflow of our developed pipeline is shown in
Figure 2. The pipeline carries out four major steps that need to
be taken sequentially for each input sequence. They are VM-
launch, preprocessing, main processing, and eThread meta-
analysis. Data transfer is needed between tasks and compute
resources involved and is not examined in this work due to
relatively insignificant contribution to the time-to-solution or
the charge. For example, only less than 5 seconds are needed
for moving 20 input sequences into EC2 and managed by the
main script in the beginning of a pipeline job.

The main script of the pipeline, located in a local machine
owned by a user, starts with an initialization of Pilot service
instances, each of whom manages an EC2 VM creation, job
submissions to the Pilot instance(s), and data transfer if
needed. Importantly, SAGA-Pilot allows the pipeline to mon-
itor the status of individual subtasks constituting eThread



Data: N protein gene sequences
Result: Gene annotation and tertiary structure
forall N sequences do in parallel
read sequence
forall 10 threading tools do in parallel
if pre-processing then
do pre-processing
end
forall domain, chain do in parallel
do main processing
do post-processing
endfpar
write output
endfpar
/* now meta-analysis step using all
outputs from 10 threading tools
*/
read all outputs
do meta-analysis
endfpar

ALGORITHM 2: Task-level parallel algorithm for eThread.

and thus can conduct the workflow efficiently to maximize
the use of available resources on the fly while supporting
various optimization scenarios. By exploiting this feature,
data parallelization and task-level parallelization are easily
implemented. For example, a simple task-level parallelism
could be designed as shown in Algorithm 2. Multiple VMs
are created and each VM or the number of VMs is assigned
for tasks of each threading tool. By considering required
workloads and computational requirements such as memory
footprints, threading tools can be executed concurrently on
proper VM(s). On the other hand, this simple parallelism
scenario is likely to be inefficient if differences in threading
tools and instances are significant. In this work, our primary
contribution is to examine those multifaceted parameters
associated with EC2, using 110 sequences as well as its subset,
20 sequences, and to demonstrate our pipeline capabilities
toward the optimization solution of eThread execution.

3.2. Profiling EC2 Infrastructure Using 110 Sequence Bench-
mark. How to run eThread on EC2 is critically important
since the cost and the time-to-solution will increase con-
siderably without optimization, and to some extent, making
the pipeline unpractically expensive or time consuming for
genome-scale analysis. Note that, due to the charging scheme
from Amazon, two conditions for the optimization are not
equivalent. For example, in Figure 3, the time-to-solution
and the cost are compared when different instance types are
used. The data shown is with pfTools and the 110 data set
is used. We also report CPU utilization with error bars. The
results are obtained by running command line scripts for each
tool in a specific VM and thus reflect how a CPU core in
each instance performs with respect to the time-to-solution
and the cost. HMMER, CS/CSI-BLAST, THREADER, and
pfTools are only tools requiring relatively small memory
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footprint and thus could run on all instances including
tl.micro as shown. Our benchmark was completely carried
out for 10 threading and two standalone tools, PSIPRED and
BLAST. We found that the same trend is observed consistently
among the results obtained for other tools (not shown). First
of all, different cores in different instances are not the same;
in particular, tl.micro is the slowest. While hil.4xlarge is the
most expensive one, obtained results indicate that a core in
this instance seems to be slower than those in other instances
such as the two cl instances and even than ml.medium and
ml.large. On the other hand, in terms of cost, hil.4xlarge
is worse, while tl.micro and two cl instances ranked in the
top list. Interestingly, the utilization of CPU is not always
100% as shown in the third figure of Figure 3, for which
we will discuss more details later for possible explanations.
tl.micro instance is somewhat different from other instances
in many ways. It costs a lot less, and is often free with special
promotion from Amazon, thus being adequate for running
many subtasks, but the small memory, 0.6 GB, prohibits
running many tools including SAM-T2K, pGenTHREADER,
COMPASS, SPARKS, and SP3. Also, in spite of a possible
execution for THREADER, the huge computing load, due to
its underpowered capacity, prohibits practically its usage with
this instance.

3.3. Profiling Computational Tasks for the eThread Pipeline
on EC2. Contrast to the execution mode of eThread using
a single computer system or a cluster system, the eThread
pipeline implemented with SAGA-Pilot cannot avoid an
overhead due to its underlying Master-Worker model. The
overhead, first of all, arises from the data transfer between a
local machine that runs the main script and remote compute
resources in EC2 (indicated as orange in Figure 2) and the
data exchange between elementary tasks managed by SAGA-
Pilot, which is insignificant (data is not shown).

The coordination mechanism with SAGA-Pilot for tasks
running in distributed resources is generally insignificant
compared to main tasks associated with target applications
of interest [20, 25, 30]. On the other hand, VM launch takes a
certain amount of times and is unavoidable in our pilot-based
implementations, which is, therefore, measured as a part of
runtime analysis.

Profiling elementary subtasks in the workflow of the
eThread pipeline is important for parallelization strategies.
Using the pipeline, we conducted benchmark experiments
to gain insights into relative computing loads across the
tools against all instances we consider for this work. In
Figure 4, we present the results comparing time-to-solutions
across those tools when using ml.large and hil.4xlarge. The
input sequences are 20 sequences. In accordance with the
previous work [28], the pipeline-based execution reveals
a broad distribution of computational loads and memory
requirements across the tools. Also, expected speed-ups,
due to multicore utilization, are indicated. In particular, the
execution of THREADER is, when hil.4xlarge (16 cores) is
used, now much reasonably down to about 1,660 min that
becomes just two or three times more than time-to-solution
of tools grouped as “High” in terms of computational loads.
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FIGURE 4: Pilot-based profiling of tools using different EC2 instan-
ces. Comparison of time-to-solution for the 10 threading tools,
two standalone tools, BLAST and PSIPRED, and meta-analysis step
is presented. Cases with ml.large (red) and hil.4xlarge (blue) are
shown and 20 sequences are used. Note that THREADER with
ml.large takes 2897 mins which is not fully shown.

As reported in the previous work, the meta-analysis step of
eThread does not need significant computing resource and is
not expected to change much with different infrastructure. In
fact, this step is not expected to be more optimized internally
with task-level parallelism except data parallelization of input
sequences. We will focus, primarily, on the optimization of
the first step before this meta-analysis that comprises 10
threading tools and preprocessing steps.

Here, we would like to stress a possible future strategy,
in order to gain more insights into the current underlying
structure of eThread pipeline. As stated in the previous
section, some tools such as THREADER, COMPASS, and
SAMT2K need to run BLAST, but also further can be
modified to run it in a separate subtask. In fact, THREADER,
since the previous work [5], is already modified, resulting
in, compared to COMPASS and SAMT2K, the fact that
THREADER requires relatively lower memory footprint.

Additionally, the two main processing tasks of each
treading tool against chain and domain libraries could be run
separately, and this possible parallelization helps to achieve
the overall optimization easily and significantly. We measure
the portion of chain and domain tasks, and the results in the
case of pfTools are presented in Table 4. Times for their post-
processing tasks as well as VM launch times are also reported.
First of all, the relative portion between chain and domain
is consistently found as 60% versus 40% across all instances,
which is in accordance with the previous work [28]. However,
tl.micro shows an exception such that the ratio is changed to
49% versus 51%. VM launch times are a bit fluctuating but its
portion is insignificant except the cases with two expensive
instances, cl.xlarge and hil.4xlarge, since the speed-up for
the main tasks is now decreased a lot due to multiple cores.
In fact, the number of sequences, 20 in this benchmark, is
far less than the number of sequences for a genome-scale
analysis, and pfTools is a relatively less compute-intensive



TABLE 4: Breaking the time-to-solutions of the main processing
step into subtasks. Four subtasks corresponding chain and domain
libraries and their postprocessing are measured along with VM
launch times. Results are with pfTools. Units are in minutes.

VM Chain Domain Chain . Domain.
launch postprocessing postprocessing
tl.micro
1.9 316.5 331.6 33.4 21.5
ml.small
1.3 1371 90.1 9.7 7.9
ml.medium
1.3 62.2 42.9 6.1 4.4
ml.large
1.2 31.1 21.5 3.4 2.7
cl.medium
1.3 32.8 22.5 3.9 31
cl.xlarge
1.3 9.5 6.5 1.1 1.2
hil.4xlarge
1.5 7.7 53 1.3 1.2

TaBLE 5: Time for launching an instance. Averaged values of 6
repeated experiments are shown with standard deviation.

Launching time (min)

Instance (standard deviation)
tl.micro 1.99 (0.2)
ml.small 1.86 (0.08)
ml.medium 1.80 (0.15)
ml.large 1.70 (0.08)
cl.medium 1.68 (0.17)
clxlarge 1.69 (0.08)
hil.4xlarge 2.01(0.16)

tool, implying the insignificant contribution from relative
portions of VM launch as well as postprocessing tasks,
compared to the main processing tasks.

3.4. VM Launch Time. While parallelization provides a
chance of optimized execution, it is also true that the SAGA-
Pilot-based pipeline running on EC2 cannot avoid some
amounts of overhead associated with the use of distributed
cyberinfrastructure and thus it is important to know how
much they contribute. We carried out the dedicated experi-
ments for measuring VM launch time and obtained results
are presented in Table 5. In fact, VM launch time is affected by
many factors and thus varies depending upon the conditions
(e.g., compare the values reported in Table 4), but the range
of fluctuations is typically a couple of minutes in general.
Opverall, according to the experimental results, our bench-
marks clearly show that the overhead arising from the
use of SAGA-Pilot and the remote EC2 infrastructure is
seemingly not significant, which is, in particular, becoming
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FIGURE 5: Time-to-solution of each elementary step in the pipeline
using 2 VMs. Results are obtained with 20 sequences and pfTools
are used. The times for VM launch (black), threading against chain
library (red), threading against domain library (blue), postprocess-
ing for chain (green), and postprocessing for domain (yellow) are
shown together.

more justifiable as the size of computation with the pipeline
is scaled up with more sequences and longer sequences.

3.5. eThread Pipeline and Its Optimal Execution. Presumably,
the key question on how to implement an efficient execution
of the eThread pipeline on EC2 infrastructure is directly
related to the question on how to distribute subtasks on a
heterogeneous resource pool.

To demonstrate the agile capacity of our pipeline, we
conducted more complex parallelization scenarios. First of
all, two VMs are launched for each tool and results with 20
sequences are shown in Figure 5. As expected, more gains
in time-to-solution are obtained since more cores from both
VMs and the separate execution of the two main tasks are
utilized to run multiple sequence calculations.

Apparently, it is not difficult to understand why the case
of tl.micro-cl.xlarge outperforms other cases considering
the inclusion of high performance 8-core cl.xlarge. On the
other hand, the performance difference among other cases is
not easy to predict, because the performance depends upon
how subtasks are distributed and executed. When multiple
sequences and multiple instances are considered, the key is
to consider an efficient job distribution.

4. Discussion

4.1. eThread on EC2. Scientific applications such as eThread
need large-scale computation as shown with 110 sequences.
While often traditional HPC systems could be effective
for such computational demands, many life science appli-
cations including eThread could find more benefits with
cloud environments. Indeed, unlike scientific applications
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TABLE 6: Summary of benchmark results for time-to-solution (TTS) and cost-to-solution (CTS). The 20-sequence data set is used. Among
the complete benchmark experimental results obtained for all threading tools, we chose three threading tools here for the sake of space. TTS

is in minutes and CTS is in US dollars based on the pricing as of this writing.

VM type TTS CTS TTS CTS TTS CTS
HMMER SP3 THREADER
tl.micro 331 0.01 N/A N/A 96905.8 32.30
ml.small 29.0 0.03 1312.3 1.31 27842.2 27.84
ml.medium 19.6 0.04 670.7 1.34 11551.2 23.10
ml.large 9.8 0.04 458.0 1.83 2897.2 11.59
cl.medium 10.6 0.03 356.7 0.86 6833.8 16.52
cl.xlarge 6.1 0.06 118.6 115 2019.3 19.52
hil.4xlarge 5.8 0.30 105.7 5.46 1552.2 80.20

TaBLE 7: Comparison of pipeline-based time-to-solutions with ideal limits. Ideal limits are obtained from the benchmark results of 20

sequences divided by the number of cores in an instance. Units are minutes.

Tools Pipeline Ideal limit Pipeline Ideal limit Pipeline Ideal limit
ml.small clxlarge hil.4xlarge

SAMT2K 1271.0 1055.7 224.5 65.6 168.3 35.7
SP3 1312.2 1124.4 118.6 68.1 105.7 33.0
CSBLAST 25.2 15.4 1.23 4.4 0.47
HMMER 29.0 16.0 1.0 5.8 0.6
pfTools 244.8 226.0 18.3 12.8 15.5 9.2
THREADER 27842.2 23744.0 2019.3 1488.0 1552.2 1090.4
SPARKS 1021.8 1037.7 80.0 54.3 73.3 41.8

in other scientific domains, applications in life sciences are
likely to be data-intensive and need to be implemented
as pipelines, which makes HPC environments somewhat
unfit. On-demand computing provided by EC2 is readily
beneficial for data parallelization and task-level paralleliza-
tion as examined with our pipeline for eThread in this
work. Furthermore, the use of AMIs provides advantages
for installation and maintenance of standalone tools and the
AMIs are later reusable for other TaaS environment such as
OpenStack-based clouds. SAGA-Pilot is an ideal solution to
build such pipelines since it allows a rapid, powerful, and
agile implementation for various and changing goals and
strategies.

One of important challenges for the use of EC2 for
eThread is to understand various factors of the IaaS infras-
tructure that affect the time-to-solution and the cost. For
that purpose, we conducted benchmark experiments for
estimating computational loads and corresponding costs
and demonstrated the capability of our pipeline toward the
optimization of its execution for massive input sequences.

First of all, in Table 6, the overall summary of benchmark
results with respect to time-to-solution and cost-to-solution
is presented. We conducted all possible combinations of
threading tools and instance types shown in Tables 1 and 2,
among which three threading tools are chosen for the table.
Again, the benchmark is conducted with the 20 sequences
and all cores in a VM are being utilized by SAGA-Pilot.
Obviously, an optimal execution with respect to cost-to-
solution is very different from the one with time-to-solution.
Also, the results suggest that an optimal solution is not

easily achieved unless the parallelization is fully managed. For
example, SAGA-Pilot, as default, takes multiple subtasks as a
single pilot job and executes them by using all cores available
at the moment. Therefore, it is hil.4xlarge that wastes a lot
of computing resources, that is, cores in the second round
for 20 subtasks. Nonetheless, the results obtained and shown
in Table 6 suggest that the optimization can be pursued
by considering the main factor, cost, or computing time,
independently. Here, we also note that the real cost could be
different from the estimation in Table 6 due to the fact that
the pricing scheme is changing over the time and that there
is a promotional pricing with free tier. In addition, Amazon
pricing, which is per instance-hour for each instance and thus
does not allow partial hour usage, could result in slightly more
costs. Finally, RHEL pricing is a little bit higher than other
open source linux OSs and other costs including the use of
EBS volume could be added.

In Table 7, we compare experimental results using SAGA-
Pilot and estimated ideal limits using the same 20 sequences
out of 110 benchmarks (see Figure 3 for the results with
110 sequences with pfTools). The ideal limit is the time
when the benchmark time-to-solution of 20 sequences is
divided by the number of cores. The difference shows how the
simple parallel implementation using the default parallelism
support with SAGA-Pilot works. As expected, our pilot-based
results take more time than ideal limits, implying simply
the mix of unattainable conditions with the finite number
of subtasks and the need of improving the current parallel
implementation for further speed-up, in particular, with the
instances having multiple cores.
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The most significant factor for such discrepancy is under-
standable with the current implementation for concurrent
executions of subtasks. With the efficient job monitoring
capacity provided by SAGA-Pilot, all available cores in
multicore instances are guaranteed to be utilized and thus
contribute speed-up, but there still exists an inefficient utiliza-
tion of resources. For example, when subtasks corresponding
to 20 sequences are distributed into 16 cores, it is highly likely
to have idling cores that complete assigned tasks early but
need to wait until the last task to be ended by other cores.
This is apparently indicated with the fact that the difference
from the ideal limit is less significant with the single core
instance, ml.small, compared to the dual core cllarge and
more apparently to 16-core hil.4xlarge. This suggests strongly
that a better strategy is needed to fully utilize all cores during
the time-to-solution. Less computationally demanding tasks
with certain tools are more likely affected by nonmajor tasks
such as VM launch and another overhead, but overall the
expected portion is minimal, suggesting that, to optimize the
entire eThread, the key strategy should be the combination
of efficient input data parallelization as well as speed-up of
tools such as THREADER and “high” computation tools. As
we demonstrated, if the case is with mixed instances (see
Figure 6), more complicated underlying mechanisms should
be considered arising from different CPU performance, the
number of cores, and others such as memory. Finally, many
features associated with EC2 are not easy to understand with
respect to the performance. For example, we observed that
the performance of tl.micro is difficult to predict, which can
be glimpsed with the two different experiments presented in
Figure 5 and Table 4. Two data sets clearly show that tl.micro
produces very different outcomes from other instances, in
particular, indicated with the relative ratio between chain
and domain. Also, in many cases, tl.micro produced unpre-
dictable performance and we suspect, and the information
from the explanation from Amazon website, that this is due
to a special configuration for this instance to be optimized
for low throughput and to be cheaper but not appropriate for
computation requiring consistent performance.

4.2. Toward Efficient Dynamic Scheduling-Based eThread
Pipeline for Genome-Scale Structural Genomics Analysis. Ide-
ally, the best strategy is to implement dynamic scheduling,
illustrated in Algorithm 3, that exploits task-level parallelism
and data parallelization effectively by dynamically identifying
the best resource mapping for upcoming tasks and data trans-
fer. When such an algorithm for dynamic resource mapping
exists, SAGA-Pilot can implement it in a straightforward
fashion into the pipeline.

Here, to give some insights into such an idea, we describe
our exemplary dynamic scheduling, which is currently being
evaluated and will be reported as a part of our service
elsewhere (see the high-level concept in Algorithm 4). First,
by using the obtained 110 sequences benchmark results
against each instance type, we train the model for time-to-
solution and memory requirement of all threading tools and
subtasks relevant for EC2 instance types. This trained model
is being used for estimating prospective running times of
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FIGURE 6: Time-to-solution of each elementary step in the pipeline
using 2 heterogeneous VMs (a). Single VM results are presented for
comparison (b). Results are obtained with 20 sequences and pfTools
are used.

input sequences. After sorting all input sequences based on
their prospective time-to-solution as well as the optimized
solution of scheduling all tasks, we start to run them from
the longest one in a sorted order. Whenever a subtask is
finished, we compare the difference between the real one and
the predicted one. If the difference is large enough to leading
to the change in an entire time-to-solution, we rearrange the
order of remaining tasks to achieve a lower time-to-solution.
Therefore, an optimized execution of the pipeline could be
achieved by dynamically seeking the best resource mapping.

4.3. Future Directions. In addition to the implementation
of dynamics scheduling, to further achieve more optimized
executions of eThread on EC2 or similar DCI, we could
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Data: N protein gene sequences
Result: Gene annotation and tertiary structure
forall the N sequences do
read sequence
forall the 10 threading tools do
forall the domain, chain do
while task to run do
estimate tts, memory footprint
map available resource
if pre-processing then
do pre-processing
end
do main processing
do post-processing
end
end
write about
end
end
for N sequences do in parallel
/+ now meta-analysis step using all
outputs from 10 threading tools
®/
read all outputs
do meta-analysis
end

ALGORITHM 3: Proposed algorithm combining task-level paral-
lelism and dynamic scheduling for eThread on EC2.

/+ When an elementary task finished,
compare the real TTS and the estimated
one, and if the difference is large, do
the following new dynamic scheduling

for remaining tasks */
Function:
sort time-to-solutions of all remaining elementary
tasks

foreach remaining tasks do
do map each elementary task to an instance
available in order using sorted results
end
end

ALGORITHM 4: Simple dynamic scheduling implementation for
eThread on EC2.

consider other task-level parallelization and data paralleliza-
tion ideas that we do not present in this work. For example,
since BLAST has been developed as multicore or multinode
(i.e., MPI support) implementations and data parallelization
with BLAST to distribute chain and domain library searches
are possible, we can further divide into many subtasks from
each elementary task. This gives also a benefit for memory
footprint and thus is beneficial to use less power but more
number of instances. For example, SAMT2K requires 6 GB
RAM due to its BLAST task and could be implemented with

1

such parallel BLAST. Our approach is mostly scale-out at
this point but needs to consider scale-up approaches with
advanced accelerator techniques such as GPGPU, Intel Phi,
and other emerging technologies including IBM Coherence
Attach Processor Interface (CAPI).

5. Conclusion

eThread is expected to play an important role for genome-
scale structural bioinformatics analysis. In spite of its bet-
ter performance and structural information, in particular,
for annotation purposes, required computational demands
hinder its usage. To address such a challenge, we devel-
oped the SAGA-Pilot-based eThread pipeline and conducted
benchmarks aiming at the efficient use of Amazon EC2
infrastructure. With demonstrative examples, we show the
support of various data and task-level parallelization sce-
narios on heterogeneous resources available from Amazon
EC2, implying that further optimization ideas including
dynamic scheduling could lead to eThread as a practically
powerful tool. Other IaaS cloud environments, employing
open standards such as OpenStack, are immediately ready to
run the eThread pipeline.

Among many potential uses, the eThread pipeline has
been developed as a genome-scale annotation tool as a part
of an integrative Next-Generation Sequencing (NGS) data
analytics. Our continuing effort to build NGS data analytics
science gateway, which focuses on utilization of scalable
distributed computing and storage resources, is underway
(see http://dare.cctsu.edu/), which provides a service of
the eThread pipeline [33]. Based on our benchmark results
and demonstrative experiments, our eThread pipeline is
expected to be a viable solution for genome-scale structural
bioinformatics and structure-based annotation, particularly,
amenable for small genomes such as prokaryotes, even at this
moment in a whole-genome scale or personalized medicine
for predicting the consequence of mutations occurring in
individuals, and easily extensible to utilize other types of
distributed cyberinfrastructure (DCI).
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