
RESEARCH ARTICLE

Age affects myosin relaxation states in

skeletal muscle fibers of female but not male

mice

Lien A. PhungID
1, Sira M. Karvinen2¤, Brett A. Colson3, David D. Thomas1‡*, Dawn

A. LoweID
2‡*

1 Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis,

Minnesota, United States of America, 2 Department of Rehabilitation Medicine, University of Minnesota,

Minneapolis, Minnesota, United States of America, 3 Department of Cellular and Molecular Medicine,

University of Arizona, Tucson, Arizona, United States of America

¤ Current address: Gerontology Research Center, Faculty of Sport and Health Sciences, University of
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Abstract

The recent discovery that myosin has two distinct states in relaxed muscle–disordered

relaxed (DRX) and super-relaxed (SRX)–provides another factor to consider in our funda-

mental understanding of the aging mechanism in skeletal muscle, since myosin is thought to

be a potential contributor to dynapenia (age-associated loss of muscle strength independent

of atrophy). The primary goal of this study was to determine the effects of age on DRX and

SRX states and to examine their sex specificity. We have used quantitative fluorescence

microscopy of the fluorescent nucleotide analog 20/30-O-(N-methylanthraniloyl) ATP (man-

tATP) to measure single-nucleotide turnover kinetics of myosin in skinned skeletal muscle

fibers under relaxing conditions. We examined changes in DRX and SRX in response to the

natural aging process by measuring the turnover of mantATP in skinned fibers isolated from

psoas muscle of adult young (3–4 months old) and aged (26–28 months old) C57BL/6

female and male mice. Fluorescence decays were fitted to a multi-exponential decay func-

tion to determine both the time constants and mole fractions of fast and slow turnover popu-

lations, and significance was analyzed by a t-test. We found that in females, both the DRX

and SRX lifetimes of myosin ATP turnover at steady state were shorter in aged muscle

fibers compared to young muscle fibers (p� 0.033). However, there was no significant dif-

ference in relaxation lifetime of either DRX (p = 0.202) or SRX (p = 0.804) between young

and aged male mice. No significant effects were measured on the mole fractions (popula-

tions) of these states, as a function of sex or age (females, p = 0.100; males, p = 0.929). The

effect of age on the order of myosin heads at rest and their ATPase function is sex specific,

affecting only females. These findings provide new insight into the molecular factors and

mechanisms that contribute to aging muscle dysfunction in a sex-specific manner.
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Editor: Guillermo López Lluch, Universidad Pablo

de Olavide, SPAIN

Received: May 25, 2018

Accepted: September 3, 2018

Published: September 18, 2018

Copyright: © 2018 Phung et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information file.

Funding: This work was supported by the National

Institutes of Health (NIH) grants to DAL (R01

AG031743), and DDT (R01 AR032961, R37

AG26160). LAP was supported by NIH Medical

Scientist Training Program grant T32 GM008244,

NIH T32 AG29796, and F30 AG057108.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0003-4276-4052
http://orcid.org/0000-0002-5784-9289
https://doi.org/10.1371/journal.pone.0199062
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199062&domain=pdf&date_stamp=2018-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199062&domain=pdf&date_stamp=2018-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199062&domain=pdf&date_stamp=2018-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199062&domain=pdf&date_stamp=2018-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199062&domain=pdf&date_stamp=2018-09-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0199062&domain=pdf&date_stamp=2018-09-18
https://doi.org/10.1371/journal.pone.0199062
http://creativecommons.org/licenses/by/4.0/


Introduction

In muscle, myosin uses energy from ATP hydrolysis to perform mechanical work with Ca2+

activated actin during contraction. However, when myosin is saturated with ATP in the

absence of Ca2+, myosin head domains are prevented from associating with actin, so the mus-

cle remains relaxed. Recent work by Cooke and others has shown that there are two distinct

states of myosin in this relaxed condition [1–3] (Fig 1). The biochemical features of the two

states were measured using a nucleotide chase experiment on skinned skeletal muscle fibers,

showing that myosin single-nucleotide turnover is a multi-phasic process [1, 4]. The first

relaxed state is disordered relaxed (DRX), in which myosin heads are free from each other and

the thick filament backbone but do not interact with actin, resulting in orientational disorder

[5, 6]. The lifetime of ATP turnover by skeletal muscle DRX myosin is less than 30 seconds (s),

similar to that measured for ATPase kinetics of purified myosin [2, 7, 8]. The second relaxed

state, designated super-relaxed (SRX), is proposed to be related to the highly ordered interact-

ing head motif observed by X-ray diffraction, electron microscopy, and fluorescence polariza-

tion [3, 9–11]. In the SRX state, myosin binds ATP with extremely slow turnover lifetime

(>100 s), and the two heads are proposed to be ordered in an auto-inhibitory complex. In
vitro, relaxed fast skeletal muscle fibers typically contain ~70% DRX and ~30% SRX myosin [1,

2]. The SRX state is emerging as an important player in the regulation of muscle contraction

and is helping address decades-old discrepancies in the myosin field. Specifically, the high rate

of ATP turnover by purified myosin in solution relative to ~10-fold slower ATP turnover in

muscle fibers is explained by the decreased SRX content in purified myosin [7, 8, 12, 13].

Based on biochemical characterization of the SRX, it was observed that the myosin auto-

inhibitory state can be regulated by several factors (Fig 1). SRX can be rapidly mobilized into

DRX or the active states in response to regulatory allosteric cues such as increased intracellular

[Ca2+] or ionic strength, interaction with myosin binding protein C (MyBP-C), phosphoryla-

tion of the myosin regulatory light chain (RLC), passive strain, and/or decreased temperature

[1–3]. Among these regulators, RLC phosphorylation is associated with muscle thermogenesis,

disease, and aging [14–16].

Fig 1. Schematic summary of myosin biochemical and structural states in muscle. Yellow: actin, blue: myosin heavy chain, green: essential light chain

(ELC), red: regulatory light chain (RLC), orange: MyBP-C, Ca2+: calcium ion, T: temperature, Phos: phosphorylation of RLC and/or MyBP-C. Actin

filaments are activated by Ca2+ (which binds to troponin, not shown) allowing myosin heads to be activated by actin binding followed by rapid turnover of

ATP and molecular force generation. When Ca2+ is removed and ADP is replaced by ATP, myosin heads return to DRX, which can then cycle to and from

SRX. When myosin heads are not ordered on the thick filament backbone (as in SRX), they are disordered and can rotate about in the interfilament space,

as depicted by gray double-headed arrows in DRX.

https://doi.org/10.1371/journal.pone.0199062.g001
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Physiological roles of the SRX state are still under investigation, and our interest here is its

possible mechanistic role in dynapenia, the age-related loss of muscle strength, force, or power

independent of muscle size, neurological or muscular diseases [17]. Such age-related impair-

ments of skeletal muscle contractility are more prominent in post-menopausal women com-

pared to men in the same age group [18]. The more rapid decline in muscle function in

women has been attributed, at least in part, to the loss of ovarian hormones [18–20] and has

been substantiated in studies on ovariectomized mice in which estradiol replacement improves

muscle contractility [21–24]. Moreover, our group previously reported that estradiol defi-

ciency disrupts the SRX state, supporting the hypothesis that estradiol signaling plays a role in

the regulation of basal myosin function [25].

The first objective in the present study was to refine the method of analyzing fluorescence

data to achieve improved measurement of the basal myosin ATP turnover activity in skeletal

muscle fibers. Intrigued by how estradiol affects myosin and can reversibly regulate slow ATP

turnover by SRX myosin [25], we hypothesized that muscle from aged, ovarian-senescent

female mice would have altered SRX ATPase activity compared to their younger counterpart.

We have tested this hypothesis using the fluorescent nucleotide chase method, and we com-

pared male and female mice to provide insight on the relative importance of age and sex.

Methods

Animals

Male and female C57BL/6 mice aged 3 and 22 months were acquired from the Aged Rodent

Colony maintained by the National Institute on Aging (n = 4 per group except aged female = 7).

Mice aged 3 months are equivalent to 20 year-old humans, representing young matured adults.

At 22 months, a mouse is equivalent in age to a 60 year-old human, and the process of ovarian

senescence in female mice is completed [26]. Young adult mice were used in experiments at

3.5 to 4 months of age, and the Aged mice were kept in an SPF facility at the University of Min-

nesota until they reached 26–28 months of age. Thus, female mice were estrogen deficient

(due to ovarian senescent) for 4–6 months and for both female and male mice, age-related dec-

rements in muscle function are known [27, 28]. Mice were housed by sex in groups of 3–5 and

had access to chow and water ad libitum. The room was maintained on a 14:10 light:dark

cycle. On the day of sacrifice, mice were anesthetized by an i.p. injection of pentobarbital

sodium (100 mg/kg body mass), and psoas muscles were harvested. Mice were euthanized by

overdose (200 mg/kg pentobarbital). All protocols were approved by the Institutional Animal

Care and Use Committee at the University of Minnesota and complied with the American

Physiological Society guidelines.

Fluorescent nucleotide exchange (“chase”) experiments

Freshly dissected mouse psoas muscles were dissected into 5 mm long bundles and chemically

skinned as previously described [1, 25] and stored at -20˚C for up to 3 months. On the day of

experiments, single fibers were isolated from a bundle by manual dissection under relaxing

conditions (4 mM ATP and 4 mM EGTA solution) and mounted in 35 mm glass bottom cul-

ture dishes (Bioptechs, Butler, PA) to be used with the confocal microscope. Fibers were held

in place with vacuum grease placed on the ends of the fibers. Fiber segment lengths were 2–5

mm. In the present study, nucleotide exchange experiments were performed on skinned fibers

with uniformly low RLC phosphorylation due to endogenous phosphatases activity. This

method ensures that the results reflect the chronic state of SRX myosin without confounding

effects of acute changes in RLC phosphorylation, as demonstrated in previous work [25].
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All solutions in the experiment contained 120 mM K-acetate, 5 mM K-phosphate, 5 mM

Mg-acetate, 4 mM EGTA, and 50 mM MOPS, pH 6.8 [1]. This base solution is referred to as

rigor buffer. Fibers were first incubated in rigor solution containing 250 μM 2’-/3’-O-(N’-

Methylanthraniloy)-adenosine-5’-O-triphosphate (mantATP), a fluorescent nucleotide that

has been shown to bind primarily to myosin in a muscle fiber (Fig 2A) [1, 29]. Mant-nucleo-

tide fluorescence quantum yield is enhanced 2.2–2.6 folds when bound to myosin [30–33].

After 5 minutes (min), this solution was exchanged for or “chased with” rigor buffer contain-

ing 4 mM MgATP (unless noted otherwise in additional control experiments to determine the

different components in the observed fluorescence decay). Each fiber was subjected to two

sequential MgATP chases after washing with excess rigor buffer between runs.

Experiments were performed at 21 ± 1˚C with an Olympus FV1000 IX2 confocal microscope

and 60x UPlanApo N oil immersion objective lens (1.42 NA) for differential interference contrast

and fluorescence imaging. Temperature of the solutions were measured using a microprobe ther-

mometer. Fluorescence was acquired with 405 nm excitation and 475/50-nm emission filters.

Images were scanned in a 512 x 512 pixels grid with a total exposure time of 1.1 s and an effective

pixel size of 414 nm. Fluorescence intensities of mantATP bound fiber were acquired through

time-lapse imaging for 350–450 s, starting from the moment the 4 mM nucleotide solution was

added to the fiber. During the chase, the fluorescence intensity decreased as bound mant-nucleo-

tides were released from myosin and replaced by non-fluorescent ATP (Fig 2B).

Images were imported into ImageJ and average fluorescence intensities within a rectangular

region that encompassed most of the fiber segment were recorded (Fig 2A). Fluorescence sig-

nal was analyzed as the intensity in each fiber minus the average intensity outside the fiber

(background) in the same image. Signals were normalized to the peak intensity value at the

start of each respective chase. The data were fitted to a three-exponential decay function (Eq 1)

using a nonlinear least-squares algorithm in Origin 9.0 (OriginLab Corp.).

Y ¼ Y0 þ A1e� t=t1 þ A2e� t=t2 þ A3e� t=t3 Eq 1

Fig 2. Fluorescence imaging of a muscle fiber in chase experiments. (A) Fluorescence image of a single mouse skeletal muscle fiber loaded with mantATP

prior to start of ATP chase. One large rectangular region of interest (ROI) encompassing a major portion of the fiber (red) was used to monitor the time

course of mantATP fluorescence intensity decay during the ATP chase. Rectangular ROI’s outside the fiber (green) were used for background subtraction, a

method adapted from studies of mouse skeletal muscle fibers [25]. (B) Average fluorescence intensity of fiber (red) and background (green) ROI throughout

the experiment. MantATP binds to the muscle thick filament (A bands) upon addition to the culture dish. The fiber was incubated in 250 μM mantATP for 5

min. Chase was started after removal of mantATP and 4mM of non-fluorescent nucleotides were exchanged in. Chase ends when fiber fluorescence intensity

returns to baseline.

https://doi.org/10.1371/journal.pone.0199062.g002
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Here, A1, A2, and A3 are the amplitudes of each exponential term reflecting the different

biochemical processes that myosin underwent during the imaging time course. These pro-

cesses included fast washout of non-specifically bound nucleotides, turnover of ATP by DRX

myosin, and the slow turnover of ATP by SRX myosin, respectively. τ1, τ2, and τ3 are the

respective lifetimes of each exponential term.

Due to the close connection between muscles’ mechanical and chemical properties, even

the slightest damage to the fibers’ physical structure will lead to inaccurate kinetics measure-

ments. Therefore, each experimental fiber was subjected to careful examination for structural

integrity before commencing an experiment. Also, if the macroscopic structure of the fiber

changed during the course of experiment, data from that fiber were excluded from the final

data set. Specifically, fibers that showed structural damage such as localized swelling, twisted

or constricted areas along their length, or irregular striations were excluded. In addition,

approximately 20% of the chases only fit to one exponential decay function. The data from

those instances are also excluded from the final data set. The total number of fibers included in

data analysis are: n = 11 and 16 for young and aged female, respectively, and n = 8 and 7 for

young and aged male, respectively. The estimated discard rate of total unacceptable experi-

mental runs was 29% (31/107).

Statistical analyses

Statistical analyses were carried out using IBM SPSS for Windows 23 statistical software (SPSS

Inc., Chicago, IL, USA). The Shapiro-Wilk test was used to investigate within group normality

for a given parameter of interest. Levene’s test was conducted to assess the homogeneity of the

variance assumption. T-tests were used to analyze data and P-values less than 0.05 were con-

sidered statistically significant.

Results

Refinement of multi-exponential fit of fluorescent nucleotide signal decay

Data for the nucleotide exchange experiment were modeled with a three-exponential decay

function (Fig 3A) as described above. Previous published work on mouse and rabbit skeletal

muscles used two-exponential decay fits [1, 25]. While our current data were also reasonably

fitted using a two-exponential decay function, it was not the best model based on the residuals

(Fig 3B). As seen in Fig 3B, a two-exponential decay function (pink) fits relative poorly in the

first 120 seconds compared to a three-exponential decay function (cyan). The three-exponen-

tial function also yielded lower χ2 values by a factor of 20 on average (Fig 3A inset). Adding a

fourth exponential component did not improve the fit further (Fig 3A, inset & 3B, purple).

Thus, three-exponential fit was most appropriate for our data.

The analysis method used in the current study differs from previous studies because we

used a higher sampling frequency (every second) compared to earlier works that recorded data

every 20 s [1, 2, 25]. This affords us a better window into the nucleotide washout process that

dominates the initial fast decay in the first 20 s (Fig 3C). The kinetic lifetime of the first phase

corresponds to the rapid rate of release and diffusion of nonspecifically bound nucleotides out

of the fiber, which occurs in ~10 s [4, 14]. We postulate that the first exponential component

reflects the washout of nonspecifically bound nucleotides and rapid release of MgADP-Pi from

myosin heads. As an internal control, we performed sequential chase experiments in which the

fibers were first chased with MgATP, rewashed in rigor buffer, and re-incubated in mantATP.

The fiber was then chased with MgADP. After this second chase, the fiber was subjected to

another round of wash and mantATP incubation for a third chase with MgATP again. Fig 4A

shows representative fluorescence traces of this sequential chase experiment. The black trace is

Effects of age and sex on myosin relaxation states
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the normalized fluorescence of the first MgATP chase condition. The pink trace reflects the

MgADP chase, and the blue trace is the second MgATP chase on the same fiber. The multi-

exponential decay characteristic seen in MgATP chases is terminated in the MgADP chase

condition, similar to previous work [1]. This results because MgADP cooperatively activates

myosin and depletes the relax states [34, 35]. In MgADP chases, the myosin heads undergo

rapid nucleotides release, resulting in a single-exponential decay with a lifetime of 11±2 s (Fig

4A). Since it is possible that a small fraction of MgATP solutions contain ADP contaminants,

any fast exchange of MgADP complexes will be reflected in the first phase of decay for MgATP

chases. In Fig 4A, it is notable that the loss of slow myosin ATP turnover (from black to pink)

can be subsequently recovered when the fiber is re-chased with MgATP (from pink to blue).

This shows that myosin can undergo transitions among the different kinetic states and more

importantly, that there is a population of auto inhibited, energy conserving myosin heads in

relaxing conditions.

Because Mg2+ is crucial for the coordination of specific nucleotide binding to the myosin

ATPase domain [36–40], we utilized this property to examine the nonspecific washout rate of

nucleotides from the fibers in the chase experiments. To confirm that the first decay phase also

encompasses the release and diffusion of nonspecifically bound nucleotides out of the fiber, we

performed the chase experiments with and without Mg2+. In the absence of the divalent ion, we

expected nonspecific nucleotide binding in the skinned fibers and that the chase would exhibit a

single-exponential decay with a short lifetime of less than 10 seconds. To remove Mg2+ from the

reactions, we added 4 mM EDTA to the rigor and chase buffers, and prepared fresh ATP and

Fig 3. Fitting nucleotide exchange data with exponential decay functions. (A) Representative normalized fluorescence trace (black) and best fit to a

3-exponenetial decay (Eq 1) from a young female. Inset: χ2 errors, showing that a 3-exponential fit is optimal. (B) Residual plots (fit minus data) from fits to

n-exponential functions. (C) Representative trace of mantATP fluorescence decay during the time-course of nucleotide exchange with MgATP. Data from

young female. All decay processes start at t = 0. The color shading corresponds to the total time it takes for each kinetic process to go 63% of completion.

That time is also reflected as the lifetime (τ) of each respective decay component.

https://doi.org/10.1371/journal.pone.0199062.g003
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ADP solutions without Mg2+ salt. The chase experiments were carried out as described in details

in the Methods section above. Fig 4B shows the nucleotide exchange process on single fibers in

the presence and absence of Mg2+. Each tested fiber underwent sequential chases starting with 4

mM ATP, then 4 mM ADP, and finally 4 mM MgATP. The fibers were washed in rigor buffer

and re-incubated in mantATP with the respective Mg2+condition between each chase. Under

Mg2+ free conditions, the lifetime of the fastest decay was 8±2 s when chased with 4 mM ATP or 7

±4 s when chased with 4 mM ADP (Fig 4B). These data show that the lifetime of the fast compo-

nent is independent of basal nucleotide turnover in myosin. The washout of nucleotides is a fast

process that completes within the first 15 seconds of the chase experiment; thus, it is likely that the

first phase would not be detected if a sampling frequency lower than 1 Hz was used.

With due diligence, we contend that the myosin nucleotide exchange in non-contracting

(relaxed) mouse skeletal muscle fibers is a three-exponential process (Fig 3C). The first compo-

nent reflects the rapid release of nonspecifically bound nucleotides and their diffusion out of

the fiber, with lifetime of ~10 s. The lifetime of the second component is 20–30 s, which is in

agreement with the basal rate of myosin nucleotide turnover lifetime in solution; and therefore

reflects the myosin DRX state [1]. The third and slowest component is thus the myosin SRX

state, in which turnover lifetime is generally ~100 s. Since the first decay component is wash-

out of nonspecifically bound nucleotides, it is appropriate to exclude the first component from

the calculation of relative myosin fractions in the DRX and SRX states. Thus, fractions of DRX

and SRX are derived from the amplitude values returned from the exponential decay function

(Eq 1) as detailed below. Eqs 2 and 3 are fractions of DRX and SRX myosin, respectively.

Fraction of DRX ¼ X2 ¼ A2=ðA2 þ A3Þ Eq 2

Fraction of SRX ¼ X3 ¼ A3=ðA2 þ A3Þ Eq 3

Fig 4. Validation of modeling nucleotide exchange with three-exponential decay function. (A) Fiber nucleotide exchange with MgATP

(black and blue) or MgADP (pink). (B) Fiber nucleotide exchange in the presence (blue) and absence of Mg2+ using ATP (black) or ADP

(red).

https://doi.org/10.1371/journal.pone.0199062.g004
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Effect of age on SRX of skeletal muscle myosin in females

Following the previous report on the significant effect estradiol has on SRX in muscles of

ovariectomized mice [25], we sought to determine whether natural aging would also have neg-

ative effects on skeletal muscle myosin kinetics during relaxation. Instead of surgically remov-

ing ovaries, here mice were aged to ovarian senescence (�26 months old) inducing a natural

loss of estradiol [41]. Using young (~4 months old) and aged (26–28 months old) female

C57BL/6 mice, we tested the hypothesis that similar to ovariectomized mice, skeletal muscle

myosin from aged mice would have disrupted SRX kinetics compared to young mice. In other

words, we hypothesized that myosin ATPase during relaxation would be faster in fibers from

aged female mice.

Applying our refined analytical approach of 3-exponential decays, we measured no effect of

age on the populations of myosin in each relaxation state (DRX and SRX). Here, the fraction

of myosin in DRX for young and aged females is 0.74±0.01 and 0.78±0.02, respectively

(p = 0.100; Fig 5A), while the fraction of myosin in SRX is 0.26±0.01 and 0.22±0.02, respec-

tively (p = 0.100; Fig 5B).

The single ATP turnover kinetics in single muscle fibers of female mice was affected by age.

The lifetime of nucleotide turnover in DRX (τ2) was 25±2 s for young females compared to 18

Fig 5. Effects of age on relaxation states of skeletal muscle myosin in fibers from female mice. The fraction of myosin (A) in DRX (X2 in Eq 2) and (B) in

SRX (X3 in Eq 3). Lifetime of nucleotide turnover (C) in DRX (τ2) and (D) in SRX (τ3). Values are reported as average ± SEM. Individual dots are muscle

fibers depicted as the average values from each chase for that fiber.

https://doi.org/10.1371/journal.pone.0199062.g005
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±1 s for aged females (p< 0.001; Fig 5C). The lifetime of nucleotide turnover in SRX (τ3) was

117±9 s for young females compared to 94±6 s for aged females (p = 0.033; Fig 5D). We con-

clude that myosin basal ATPase kinetics in fibers from female mice is faster with age, in both

DRX and SRX.

Effect of age on SRX of skeletal muscle myosin in males

To distinguish if the disruptive effect on myosin ATPase function is due to ovarian hormone

deficiency or aging, we examined the same nucleotide turnover process in single muscle fibers

from similarly aged young and old male mice. Since male mice lack ovaries and thus do not

experience the same hormonal change as aging females, any observed effect on the myosin

relaxed states may involve additional processes that change with age. In the male mouse fibers,

we found no difference in the myosin population in each relative relaxation state between the

two age groups. Here, the fraction of DRX myosin for young and aged males was 0.69±0.01

and 0.69±0.03, respectively (p = 0.929; Fig 6A). The fraction of SRX myosin was 0.31±0.01 and

0.31±0.03 for young and aged males, respectively (p = 0.929; Fig 6B). Contrary to fibers from

female mice, we measured no significant difference in myosin ATPase kinetics in relaxed

Fig 6. Effects of age on relaxation states of skeletal muscle myosin in fibers from male mice. The fraction of (A) DRX myosin (X2 in Eq 2) and (B) SRX

myosin (X3 in Eq 3). Lifetime (τ) of nucleotide turnover of (C) DRX myosin (τ2) and (D) SRX myosin (τ3). Values are reported as average ± SEM. Individual

dots are the average values from each tested muscle fiber.

https://doi.org/10.1371/journal.pone.0199062.g006
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conditions. The lifetime of nucleotide turnover in DRX was 22±1 s for young males compared

to 24±1 s for aged males (p = 0.202; Fig 6C). The lifetime of nucleotide turnover in SRX was

114±7 s for young males compared to 116±7 s for aged males (p = 0.804; Fig 6D). In summary,

there was no effect of age on myosin relaxed states in muscle fibers from male mice. This fur-

ther corroborates that the disruptive effect on myosin ATPase function is related to estradiol

deficiency and not specific to general aging.

Discussion

This study examined the impact of the natural aging process on relaxed states of myosin in

skeletal muscle fibers from male and female mice. Age-related alterations in myosin function

during contraction and relaxation have been reported [15, 16, 42–47], but ours is the first to

report findings for the changes in myosin ATPase activity in the DRX and SRX states with age

and sex specificity. Following our previous work that showed altered SRX under relaxed condi-

tions in fibers from an ovariectomy-induced aging model [25], here we measured the single-

nucleotide turnover in resting skeletal muscle fibers isolated from naturally aged mice from

both sexes. This study was done on chemically skinned fibers in fully relaxed conditions, thus

the measured ATPase activity reflects mainly the work from myosin without actin activation

or membrane ATPase proteins.

Basal nucleotide turnover in relaxed skeletal muscle is a multi-component

process

Because the decline in intrinsic contractile function of muscle fibers with age could be

explained by age-related changes in myosin ATPase activity [16], it is pertinent to examine

myosin’s basal nucleotide turnover in that context. In a minimalistic model, myosin heads in

muscle fibers occupy either the active or relaxed states, the latter of which can be sub-fraction-

ated into DRX or SRX (Fig 1) [1–3]. Here, myosin ATPase activity in a resting muscle fiber

was measured by quantitative fluorescence microscopy of mantATP turnover under relaxed

condition. With skinned fibers, membrane protein components are disrupted and soluble pro-

teins diffuse out of the cell over time [40]. While it is possible that not all other ATP-binding

proteins are removed, given that myosin is the major contractile protein remaining and that

mantATP binds to the A bands of the fibers (Fig 2), we can assume that the vast majority of

the effect during the chase phase is contributed by myosin [1, 4]. Applying our 3-exponential

fit method, rather than the previously used 2-exponential fit [1, 25], we were able to uniquely

study myosin basal ATPase activity and its specific components during relaxation (fast non-

specific washout, DRX, and SRX). Myosin in DRX turns over ATP on the order of 20–30 s in

lifetime, whereas SRX myosin ATP turnover is substantially slower with an average lifetime of

over 100 s. We then used the improved sensitivity to measure the kinetic parameters of DRX

and SRX as they responded to the physiologic factors of age and sex.

Basal ATPase function of myosin is altered with age in skeletal muscle

fibers from females but not from males

We hypothesized that muscle fibers from aged, ovarian-senescent female mice would have dis-

rupted SRX, represented by decreased lifetimes or fractions occupying the SRX state compared

to their younger counterparts. While the fractions of SRX did not significantly differ between

young and aged female mice, we did measure a significant decrease in ATP turnover lifetime

of SRX for aged female mice (Fig 5C and 5D). This result agrees with our previous study where

we saw a significant decrease in the lifetime of the SRX turnover from ovariectomized mice.
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Since slow ATPase activity is the biochemical signature of SRX, and that estradiol replacement

restored the longer lifetime of the slow phase, we concluded that SRX was disrupted by estra-

diol deficiency [25]. In that previous study, data were analyzed using a 2-exponential decay

model, so we did not have as sensitive information on DRX. The first decay phase of that

method would have included the washout of nonspecifically bound nucleotides along with

DRX turnover, which would have masked any measureable effect on the ATPase activity in the

DRX state alone. In the present study, we used a 3-exponenital decay model and were able to

measure the ATPase activity of DRX that is not confounded with the fast washout process.

Interestingly, the ATP turnover lifetime in DRX was also lower in fibers from aged compared

to young female mice (Fig 5C). Together with the alteration seen in SRX, this new finding

shows that the basal ATPase activity of myosin is uniformly affected by age in females. In

female mice, the equilibrium between the fractions of myosin in the DRX and SRX states was

shifted toward the DRX by approximately 20% with age; but this shift is not statistically signifi-

cant due to the scatter of data (Fig 5A and 5B). Therefore, our data do not rule out a 20%

decreased in SRX population with age in female mice.

We were also interested in the effect of age on basal myosin ATP turnover kinetics in male

muscle to provide insights on the relative importance of age and sex specificity. Similar to the

results in female mice, we saw no significant differences in the fractions of DRX and SRX myo-

sin between fibers from young and aged male mice (Fig 6A and 6B). Contrary to the effects of

age seen in females, fibers from young and old male mice did not differ in the lifetime of ATP

turnover in either DRX or SRX (Fig 6C and 6D). Overall, there was no effect of age on myosin

relaxed states or basal ATPase activity in male mice. This latter result agrees with previous

studies reporting no difference in ATPase under relaxed conditions in fibers from male mice

[46, 47]. These results further support the model that the disruptive effect on myosin ATPase

function in mice is related to estradiol deficiency and is not specific to the aging process per se.

Estradiol-mediated effects on myosin structure and function have been investigated in both

rodent models and humans. Muscle force generation and actin-myosin interactions during

contraction declined in estradiol deficient mice, and estradiol replacement reversed those

observed dysfunctions [20–22]. Similar results were also reported in human studies where

myosin functions were altered in muscle biopsies from aged, post-menopausal women [15, 18,

19]. Mechanisms by which estradiol affects muscle fiber force-generating capacity and the dys-

functions that occur with hormone deficiency may involve post-translational modifications

(PTMs) to myofibrillar proteins. Since estradiol has anti-oxidant properties [19, 48], deficiency

of the hormone could accelerate oxidative stress-induced PTMs on myosin (reviewed in [49]).

It has been reported that ovarian hormone deficient women gain new PTMs as they age com-

pared to those with hormone replacement therapy usage [19].

A PTM that is closely associated with myosin function and muscle contractility is phos-

phorylation, which has also been shown to be modulated by estradiol signaling [22]. Studies in

rodents and women have shown that phosphorylated RLC (pRLC) decreases with age while

there was no effect of age on pRLC level in males [15, 16]. We see the same trend in our cur-

rent study, where muscle relaxation is affected by age in female mice, but not in males. Given

that association, it is possible that RLC phosphorylation contributes to regulation of the

relaxed states [1, 50]; but it is unlikely to be the main factor to explain how aged females have

faster ATP turnover in both DRX and SRX. In the present study, we eliminated the acute

effects of RLC phosphorylation by performing ATPase measurements on skinned fibers in

which RLC phosphorylation was uniformly low, so the present effects are attributable directly

to the chronic effects of aging in females. This was done to be consistent with our previous

study that examined the effect of estradiol on the SRX independent of RLC phosphorylation

[25].
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While this study focused on a mouse model, our data do support the trend seen in

human studies. Overall, alterations in myosin functions and structures during contraction

[15] and relaxation are correlated with increased age and female sex, mirroring the demo-

graphics of dynapenic individuals [51, 52]. How the disrupted relaxation impacts the

cross-bridge cycle is yet to be determined. The increase in ATPase rate could possibly

increase the likelihood for myosin to leave relaxed states and interact with actin to pro-

duce molecular force during contraction. There may be subsequent buildup of the weakly

bound actomyosin complexes, which precedes the strongly bound state, thus leading to

the apparent slowed cross-bridge kinetics and increased weakness with age measured by

others [15, 16, 42–45, 53, 54]. It is also possible that other transitions within the cross-

bridge cycle slows down with age in females. We cannot exclude that possibility because

the system tested here was under relaxed conditions.

Conclusions

In conclusion, we have shown that the rate of myosin nucleotide turnover during relaxa-

tion is affected by age in a sex-specific manner: Age increases basal ATP turnover in mus-

cles of female but not male mice. Together with previous results, our findings further

indicate that myosin is a likely molecular contributor to dynapenia. Further studies are

needed to better understand the molecular mechanisms by which myosin, its associated

sarcomeric proteins, and estradiol signaling contribute to the progression of muscle

weakness.
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