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Abstract
An estimated 1.5 million Kenyans are HIV-seropositive, with 1.1 million on antiretroviral therapy (ART), with the majority of them
unaware of their drug resistance status. In this study, we assessed the prevalence of drug resistance to nucleoside reverse
transcriptase inhibitors (NRTIs), nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors, and the variables
associated with drug resistance in patients failing treatment in Nairobi, Kenya.
This cross-sectional study utilized 128 HIV-positive plasma samples obtained from patients enrolled for routine viral monitoring in

Nairobi clinics between 2015 and 2017. The primary outcome was human immunodeficiency virus type 1 (HIV-1) drug resistance
mutation counts determined by Sanger sequencing of the polymerase (pol) gene followed by interpretation using Stanford’s HIV Drug
Resistance Database. Poisson regression was used to determine the effects of sex, viral load, age, HIV-subtype, treatment duration,
and ART-regimen on the primary outcome.
HIV-1 drug resistance mutations were found in 82.3% of the subjects, with 15.3% of subjects having triple-class ART resistance

and 45.2% having dual-class resistance. NRTI primary mutationsM184V/I and K65R/E/Nwere found in 28.8% and 8.9% of subjects
respectively, while NNRTI primary mutations K103N/S, G190A, and Y181Cwere found in 21.0%, 14.6%, and 10.9% of subjects. We
found statistically significant evidence (P=.013) that the association between treatment duration and drug resistance mutations
differed by sex. An increase of one natural-log transformed viral load unit was associated with 11% increase in drug resistance
mutation counts (incidence rate ratio [IRR] 1.11; 95% CI 1.06–1.16; P< .001) after adjusting for age, HIV-1 subtype, and the sex-
treatment duration interaction. Subjects who had been on treatment for 31 to 60months had 63% higher resistance mutation counts
(IRR 1.63; 95% CI 1.12–2.43; P=.013) compared to the reference group (<30months). Similarly, patients on ART for 61 to 90
months were associated with 133% higher mutation counts than the reference group (IRR 2.33; 95% CI 1.59–3.49; P< .001). HIV-1
subtype, age, or ART-regimen were not associated with resistance mutation counts.
Drug resistance mutations were found in alarmingly high numbers, and they were associated with viral load and treatment time.

This finding emphasizes the importance of targeted resistance monitoring as a tool for addressing the problem.

Abbreviations: 3TC = lamivudine, ABC = abacavir, ART = antiretroviral therapy, ATV/r = atazanavir/ritonavir, AZT = zidovudine,
DTG = dolutegravir, EFV = efavirenz, HIV-1 = human immunodeficiency virus type 1, HIVDRM = human immunodeficiency virus drug
resistance mutations, IQR = interquartile range, IRR = incidence rate ratio, NNRTIs = non-nucleoside reverse transcriptase inhibitors,
NRTIs = nucleoside reverse transcriptase inhibitors, NVP = nevirapine, pol = polymerase gene, TAM = thymidine analog mutations,
TDF = tenofovir disoproxil fumarate.

Keywords: antiretroviral therapy, drug resistance mutations, human immunodeficiency virus type 1 genotyping, Kenya, plasma
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1. Introduction

In 2019, 38 million people worldwide were living with HIV, with
25.4 million receiving antiretroviral therapy (ART).[1] In Kenya,
an estimated 1.5 million people are infected with HIV, with 1.1
million receiving ART, up from 54,093 in 2005.[1] The use of
ART has been shown to significantly reduce HIV-related
mortality, especially if viral suppression is achieved.[2] Converse-
ly, the increase in human immunodeficiency virus type 1 (HIV-1)
drug resistance (HIVDR) contributes to the accumulation of HIV
variants unresponsive to existing treatment regimens.[3,4] If not
addressed, it could result in millions of deaths, a rise in new,
difficult-to-treat variants, and higher healthcare costs. Conse-
quently, close monitoring of HIVDR emergence and timely
response at the population level is critical.
Since 2014, Kenya’s Ministry of Health has advised that all

people with HIV infection, regardless of CD4 count, WHO
clinical stage, age, pregnancy or breastfeeding status, or risk
category, are eligible for ART if they are willing to take the
drug as recommended.[5] The current first-line ART for adults
is tenofovir disoproxil fumarate (TDF) + lamivudine (3TC) +
dolutegravir (DTG) or TDF+3TC+ efavirenz (EFV), while
patients who are unable to use TDF due to impaired renal
function are put on abacavir (ABC). Those who cannot
tolerate DTG are put on atazanavir/ritonavir (ATV/r).
Patients with virological failure on zidovudine (AZT),
lopinavir/ritonavir, nevirapine (NVP), and EFV are to be
switched to DTG. ATV/r is an alternative to DTG when the
patient cannot tolerate it.[5] Patients are switched to second-
line ART (AZT+3TC+ATV/r, TDF+3TC+ATV/r, or DTG-
based 2nd line ART) based on viral load results. However, as a
baseline investigation, HIV drug resistance testing is not
currently recommended. A drug resistance test is only
recommended if a PI-based first-line regimen has failed or if
a second-line regimen has failed and switching to a third-line
regimen is the only option.
In Kenya, viral load monitoring is performed before starting

ART, 6 months after starting a new treatment regimen, and
annually thereafter in an attempt to increase ART effectiveness
and minimize the spread of drug resistance mutations.[5] In a
nationwide study, 13.3% of adults, 43.1% of children, and
36.6% of adolescents were found to have virological failure (VL
>1000copies/mL).[6] Several studies have found an increase in
the incidence of HIV drug resistance mutations (HIVDRM) in
tandem with expanded ART coverage. In the country, the
prevalence of acquired drug resistance was estimated at
52.7%,[4] while the prevalence of transmitted drug resistance
was 9.2%.[7]

The prevalence of ART drug resistance among ART-exposed
patients in Kenya is unknown. Furthermore, the current strategy
of carrying out a genotypic test only after a patient has failed a
second-line ART regimen predisposes certain patients to needless
toxicity and pill burden that could be avoided if resistance testing
was performed prior to starting therapy. Thus, in the current
study, we examined treatment-experienced patients sourced from
the general population who had virological failure and were
enrolled in routine viral load testing to assess the frequency of
drug resistance to nucleoside reverse transcriptase inhibitors
(NRTIs), nucleoside reverse transcriptase inhibitors (NNRTIs),
and protease inhibitors. In addition, using a Poisson regression
model, we identified the variables associated with HIVDRM
acquisition.
2

2. Methods

2.1. Research ethics

The use of HIV-positive plasma was approved by the Kenya
Medical Research Institute-Scientific and Ethical Research Unit
(Kenya Medical Research Institute/SERU/3935). This study’s
participants were all part of a larger ongoing project involving
clinical and virological aspects of HIV, and they had all given
their informed consent for their samples to be used in future HIV
research. Given that the current study focussed on additional
virological aspects of HIV infection on the same biological
samples, a waiver of consent was sought as it was not deemed to
adversely affect the rights and welfare of the subjects.

2.2. Study design and setting

This was a cross-sectional study that utilized 128 plasma samples
from HIV-1 infected and treatment-experienced people with
virological failure who lived in Nairobi - Kenya, between August
2015 and August 2017. The prevalence of HIV-1 infection
among adults (15–49years) in Nairobi is 8.4%, with an
estimated 145,668 HIV seropositive patients by 2016.[8] The
choice of 81 females versus 47 males reflects on the epidemic
where young women carry a higher burden of the epidemic.
Kenya, like many other resource-constrained countries, has taken
a public health approach to providing ART. The laboratory
experiments were carried out at Kenya Medical Research
Institute’s Laboratory for Molecular Biology.

2.3. Study participants

The study population consisted of HIV-infected individuals
visiting Nairobi HIV clinics for routine care. Individuals whomet
the following criteria were included into the study: 15years old;
confirmed HIV-1 seropositive; receiving ART for at least 6
months; being diagnosed with virologic failure (Viral load
>1000copies/mL) despite being on ART; and residing in Nairobi
county during the enrolment period (August 2015–August 2017).
Exclusion criteria included viral load of <1000copies/mL,
treatment naivety, non-residence in Nairobi County, and being
under the age of 15 during the enrolment period.
2.4. Human immunodeficiency virus type 1 genotypic drug
resistance testing
2.4.1. Viral RNA extraction.HIV-1 RNA extraction was carried
out using the Abbott M2000SP automated platform (Abbott
Molecular Inc, Des Plaines, USA) in accordance with the
manufacturer’s instructions. Briefly 350mL of plasma was lysed
using 4.7M guanidium isothiocyanate and 10% tween. The
lysate was transferred to sterile spin column, washed twice with
500mL of wash buffer and finally eluted in 50mL of elution
buffer. RNA was stored at �80°C.

2.4.2. The polymerase gene amplification and sequencing.
Thermo Fisher ScientificTM HIV Genotyping workflow: Amplifi-
cation Module-catalogue number A32317 (Thermo Fisher
Scientific, San Francisco, USA) that amplifies a 1.1-kb fragment
including protease (6–99) and reverse transcriptase (1–251)
regions was performed as per manufacturer’s instructions.[9] In
brief, 10mL of extracted RNA was incubated at 65°C for 10
minutes and mixed with 40mL Reverse Transcription-Polymer-
ase Chain Reaction Master Mix containing SuperscriptTM III



Table 1

Demographic, clinical and virological characteristics of study
subjects.

Characteristic Female, N=81
∗

Male, N=47
∗

P value†

ln (viral load) 9.09 (8.05–10.72) 10.54 (8.77–12.13) .047
HIV-1 subtype .013
A 58 (71.6) 23 (48.9)
A2 0 (0.0) 1 (2.1)
B 0 (0.0) 1 (2.1)
C 4 (4.9) 5 (10.6)
CRF01_AE 8 (9.9) 5 (10.6)
D 7 (8.6) 10 (21.3)

Scriven et al. Medicine (2021) 100:40 www.md-journal.com
One-Step Reverse Transcription-Polymerase Chain Reaction
with PlatinumTM Taq High Fidelity Enzyme. The cycling
conditions were as follows: Reverse transcription; 50°C for 45
minutes; enzyme inactivation at 94°C for 2minutes; PCR initial
denaturation at 94°C for 2minutes and 40 cycles (94°C for 15
second, 50°C for 20second, 72°C for 2minutes) and final 10 min-
extension at 72°C. For nested PCR, 2mL of PCR products were
amplified in a 50mL reaction with AmpliTaq Gold LD DNA
polymerase (Thermo Fisher Scientific, San Francisco, USA) as
follows: initial denaturation 94°C for 4minutes, 40 cycles (94°C
for 15second, 55°C for 20second, 72°C for 2minutes), and a final
10minutes step at 72°C. Amplified PCR product (1.08kb) was
verified by 1% agarose gel electrophoresis. The amplified PCR
fragment was purified using Clean Sweep PCR purification
reagent (Thermo Fisher Scientific, San Francisco, USA) according
to the manufacturer’s instructions.
The polymerase (pol) gene sequencing was performed using

Thermo Fisher ScientificTM HIV Genotyping kit: Cycle Sequenc-
ing module-catalogue number A32318 which utilized 6 over-
lapping primers (F1, F2, F3, R1, R2, and R3). 2mL of PCR
product was added to 18mL of sequencing mix. Cycle sequencing
conditions were as follows: 25 cycles of 96°C for 10seconds,
50°C for 5seconds, and 60°C for 4 minutes. Sanger sequencing
was performed using BigDye XTerminator kit (Thermo Fisher
Scientific, San Francisco, USA) on Applied Biosystems 3500xL
DX genetic analyzer (Applied Biosystems, Foster City, USA).
Sequencing files were automatically interpreted by Recall,[10] and
drug resistance mutations identified using Stanford human
immunodeficiency virus database genotyping algorithm. The
pol sequences were achieved in the EMBL Nucleotide Database
with the following accession numbers, [MW165068-
MW165069, MW178208-MW178236, and MW995389-
MW995470].
G 0 (0.0) 1 (2.1)
J 0 (0.0) 1 (2.1)
K 4 (4.9) 0 (0.0)

Age strata (Yr) .005
15–25 12 (16.0) 6 (15.4)
26–35 35 (46.7) 6 (15.4)
36–45 19 (25.3) 20 (51.3)
46+ 9 (12.0) 7 (17.9)
Unknown 6 8

Treatment duration (Mo) .028
0–30 14 (17.7) 14 (30.4)
31–60 27 (34.2) 9 (19.6)
61–90 30 (38.0) 12 (26.1)
91–150 8 (10.1) 11 (23.9)
Unknown 2 1

ART regimen .093
ABC+3TC+EFV 2 (2.5) 1 (2.1)
ABC+3TC+LPV/r 0 (0.0) 2 (4.3)
ABC+3TC+NVP 1 (1.2) 2 (4.3)
AZT+3TC+ATV/r 1 (1.2) 0 (0.0)
AZT+3TC+EFV 3 (3.8) 2 (4.3)
AZT+3TC+LPV/r 0 (0.0) 2 (4.3)
AZT+3TC+NVP 20 (25.0) 8 (17.0)
TDF+3TC+ATV/r 2 (2.5) 0 (0.0)
TDF+3TC+EFV 44 (55) 20 (42.6)
TDF+3TC+NVP 5 (6.2) 8 (17.0)
Unknown 3 (3.8) 2 (4.3)

ln (VL) = natural log transformed viral load, 3TC = lamivudine, ABC = abacavir, ART = antiretroviral
therapy, ATVr = atazanavir/ritonavir, AZT = zaidovudine, EFV = efavirenz, LPVr = lopinavir/ritonavir,
NVP = nevirapine, TDF = tenofovir disoproxil fumarate.
∗
Median (IQR); n (%).

†Wilcoxon rank sum test; Welch two sample t-test; Fisher’s exact test; Pearson’s Chi-Squared test.
2.5. Statistical analyzes

HIVDRM counts were the primary outcome of concern. The
predictor variables included age, sex, viral load, treatment
period, ART regimen, and HIV-1 subtype. The HIV-1 subtype
was determined from the sequenced pol gene using the REGA
subtyping tool. Clinical data (viral load, treatment-duration, and
ART-regimen) were obtained from medical records, while
demographic information (age and sex) was collected at
enrolment. Only patients who were taking an ART from a drug
class as part of their prescription medication were included in the
denominators when determining the percentage of patients with
resistance to that drug class. Fisher exact test and Wilcoxon rank
sum test were used to compare categorical variables, and Welch
two sample t-test was used to compare continuous variables, with
2-sided P values reported in all cases. Before fitting our model to
predict HIVDRM, Spearman’s correlation was used to examine
the relationship between predictor and outcome variables.
Poisson regression model was used to calculate incidence rate
ratios (IRR) and associated 95% confidence intervals (CIs). Prior
to fitting our model, we hypothesized that treatment duration
influences HIVDRM acquisition, and that this is dependent on
the individual’s sex and therefore treated it as effect modifier. The
deviance x2 test and likelihood ratio tests of fitting alternate
distributions were used to assess model fit. Age, sex, and HIV-1
subtype were included in the fitted models as possible
confounders, regardless of statistical significance. For all other
variables, only those with a P< .25 at univariate analysis were
3

considered to be influencing the outcome andwere included in the
full model. There was missing data for age (14 subjects), viral
load (3 subjects) and duration of treatment (3 subjects) which
were excluded from statistical analyses. All statistical analyses
were conducted with the R statistical package (R version 4.0.3).
3. Results

3.1. Patient demographics, viral load, human
immunodeficiency virus type 1 subtype, and antiretroviral
therapy- regimens

Table 1 summarizes the study participants’ demographic and
clinical characteristics. The median age was 35years (interquar-
tile range [IQR], 29–42), with 81 (63.3%) females and 47
(36.7%) males. When the age was stratified into 10-year strata,
significant differences between the strata were found (P= .005).
The median HIVDRM per subject was 5 (IQR, 1.75–7), with no
statistically significant difference between females 5 (IQR, 1–7)
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andmales 5 (IQR, 3–7), P> .99. There was a significant difference
in natural-log-transformed viral load between females 9.09 (IQR,
8.05–10.72) and males 10.54 (IQR, 8.77–12.13), P=.047. The
median timebetweenART-regimenprescription andgenotypic test
was 59.8months (IQR,34.5–76.8). Stratifying treatment-duration
into 30-month intervals revealed sex-specific differences (P=.028).
TDF+3TC+EFV (50.4%), AZT+3TC+NVP (22.0%), and TDF
+3TC+NVP (10.2%)were the 3 most commonly prescribed ART-
regimens. There was no significant difference in the prescription of
ART-regimens between males and females, P=.093. HIV-1
subtypes were found to have a wide range of distribution. HIV-
Subtype A accounted for 63.3% of all subtypes while subtype D
accounted for 13.3% and CRF01_AE 10.2%. A2, B, G, J, and K
accounted for 6.2% of the total. HIV-1 subtypes did not differ
significantly between males and females (P=.081).
3.2. Distribution of antiretroviral drug resistance mutations

The HIVDRM counts followed a poisson distribution, with a
range of 0 to 15 counts and a median of 5 (IQR, 1.75–7) (Fig. 1).
M184V/I 87 (28.8%), K65R/E/N 27 (8.9%), L74V 3 (1.0%),
andY115F 12 (4.0%)were themutations conferring resistance to
NRTIs, along with thymidine analog mutations (TAMs) M41L
14 (4.6%), D67N 17 (5.6%), K70R 20 (6.6%), L210W 10
(3.3%), T215Y/F 23 (7.6%), K219Q/E 32 (10.6%), andK65R/E/
N 27 (8.9%).M184V/I confers resistance to 3TC and ABC in the
presence of 2 or 3 TAMs. K65R/E/N and K70E mutations
conferred resistance to TDF and M41L, D67N, K70R, L210W,
T215Y/F, and K219Q/E conferred resistance to AZT. K103N/S
56 (21.0%), G190S/A 39 (14.6%), Y181C/I 29 (10.9%), V108I
M
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Figure 1. Distribution of HIV-1 Drug Resistance Mutations in the study subjects str
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13 (4.9%), P225H 12 (4.5%), Y188L 7 (2.6%), M230L 7
(2.6%), L100I 5 (1.9%), V106M 5 (1.9%), and K101P 2 (0.7%)
were the mutations conferring resistance to NNRTIs. Low
genetic resistance is a feature of NNRTIs. That is, a single
NNRTI-related mutation confers high-level resistance to all 3
NNRTIs (NVP, EFV, and ETV). PI-resistant virus strains were
found in a minority of subjects. M46I, which was found in 3
patients, confers Darunavir resistance. There were no other
mutations at L76V, I47V, I50V, I54M/L, or I84V. Lopinavir
was the only PI class that demonstrated significant HIVDRM
with mutations at V32I (2 patients), I47V/A (2 patients), and
V82A/F/T/S (3 patients). This study found no atazanavir
resistance mutations (I50L, I84V, or N88S).
Overall, NVP 132 (81.0%), EFV 116 (71.2%), 3TC 108

(66.3%), and FTC 108 (66.3%) were found to have dispropor-
tionately high levels of resistance. As shown in (Table 2), 19/124
(15.32%) of the subjects had a high level of resistance to all of the
drugs in their regimen. Notably, none of those participants were
on a boosted PI regimen.High levels of resistance to 2 of the drugs
in the prescribed ART-regimen was observed in 56 subjects, of
these; 32 subjects were on TDF+3TC+EFV, 16 were on AZT
+3TC+NVP, and 5 were on TDF+3TC+NVP (Table 2). One
subject had high levels of resistance to 2 drugs in the ABC+3TC
+EFV, ABC+3TC+NVP, and AZT+3TC+EFV regimens. In 25
subjects, high levels of resistance to 1 drug in the regimen were
observed. Thirteen of these subjects were on TDF+3TC+EFV, 3
on TDF+3TC+NVP, and 2 each on ABC+3TC+EFV, AZT+3TC
+NVP, and TDF+3TC+ATVr. Twenty two (22/124) of the
subjects were susceptible to all of the drugs in their treatment plan
(Fig. 2).
utations

0 5 10 15

Male

atified by Sex. The blue circles depict the location of the mutations in relation to
er range in females (0–15) thanmales (0–10). The overall median andmeanwere
f drug resistance mutations) did not differ significantly between sexes (P=.78).



Table 2

Resistance patterns associated with ARV regimen in 124 patients.

ART Regimen

High-level of
resistance to

3 drugs

High-level
of resistance to

2 drugs

High-level
of resistance to

1 drug

Intermediate
resistance to

1 drug

Susceptible
to all
drugs

ABC+3TC+EFV 2 1 0 0 0
ABC+3TC+LPVr 0 0 1 0 1
ABC+3TC+NVP 2 1 0 0 0
AZT+3TC+ATVr 0 0 1 0 0
AZT+3TC+EFV 2 1 2 0 0
AZT+3TC+LPVr 0 0 1 1 0
AZT+3TC+NVP 4 16 2 0 6
TDF+3TC+ATVr 0 0 2 0 0
TDF+3TC+EFV 6 32 13 1 13
TDF+3TC+NVP 3 5 3 0 2
total 19 56 25 2 22
proportion (95%CI) 0.153 (0.095–0.229) 0.452 (0.362–0.543) 0.202 (0.135–0.283) 0.016 (0.002–0.057) 0.177 (0.115–0.256)
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3.3. Poisson regression analysis
An analysis of the interaction between sex and treatment-
duration revealed that sex had an effect on treatment duration
and outcome, with longer treatment duration being more
strongly associated with lower HIVDRM counts in males
(interaction P= .002), (see Table 3). As a result, the IRR cannot
be interpreted without taking into account the sex and treatment-
duration interaction. The significance of the interaction’s
contribution to this model was confirmed by a drop-in-deviance
Figure 2. Resistance mutations to prescribed ART regimen in treatment experience
and the mutations (red line) discovered in the 124 subjects. TDF+3TC+EFV triple
accounted for 49.05% (285/581) profiled in the study. 3TC = lamivudine, ABC = a
lopinavir/ritonavir, NVP = nevirapine, TDF = tenofovir disoproxil fumarate.

5

test. We have statistically significant evidence (x2=10.72, degrees
of freedom [df]=3, P= .013) that the difference in treatment
duration and HIVDRM differs by sex. The residual deviance
(278.70 with 96 df) indicates a lack of fit in the interaction model,
implying that the difference is due to a sex-specific variable not
included in our model. To visualize evidence of interaction, we
created scatter plots. As seen in Figure 3, the interaction of the sex
and duration of treatment is evident. The lines would be parallel if
there was no interaction.
d patients. The black bars indicate the subjects prescribed a particular regimen
combination was prescribed to 64% of the study subjects and subsequently,
bacavir, ATVr = atazanavir/ritonavir, AZT = zidovudine, EFV = efavirenz, LPVr =

http://www.md-journal.com


Table 3

Univariate and multivariate Poisson regression analysis of HIV-1 drug resistance mutations.

Univariate Multivariate

Characteristic IRR1 95% CI1
∗
P value IRR2 95% CI2

∗
P value

ln (VL) 1.09 0.05, 1.13 <.001 1.11 1.06, 1.16 <.001
Sex
Female — — — —

Male 1.00 0.84, 1.18 .99 1.64 1.06, 2.53 .025
Age strata (Yr)
15–25 — — — —

26–35 1.10 0.85, 1.43 .48 1.00 0.76, 1.33 .98
36–45 0.89 0.69, 1.17 .41 0.84 0.63, 1.12 .23
46+ 0.81 0.58, 1.13 .22 0.74 0.51, 1.07 .11

Duration strata (Mo)
0–30 — — — —

31–60 1.03 0.81, 1.32 .80 1.63 1.12, 2.43 .013
61–90 1.41 1.13, 1.77 .003 2.33 1.59, 3.49 <.001
91–150 0.94 0.70, 1.26 .68 1.56 0.93, 2.59 .088

HIV subtype
A — — — —

C 0.86 0.60, 1.18 .37 0.85 0.59, 1.20 .38
CRF01_AE 0.78 0.58, 1.05 .11 0.89 0.60, 1.29 .56
D 0.91 0.70, 1.15 .44 1.03 0.77, 1.36 .82
Minority (A2,B,G,J,K) 0.96 0.68, 1.133 .83 1.14 0.77, 1.63 .51

ART Regimen
ABC+3TC+EFV — —

ABC+3TC+LPVr 0.32 0.09, 0.84 .036
ABC+3TC+NVP 0.79 0.39, 1.55 .50
AZT+3TC+ATVr 0.47 0.11, 1.39 .20
AZT+3TC+EFV 0.82 0.46, 1.50 .50
AZT+3TC+LPVr 0.39 0.13, 0.98 .064
AZT+3TC+NVP 0.67 0.42, 1.12 .11
TDF+3TC+ATVr 0.63 0.26, 1.39 .30
TDF+3TC+EFV 0.71 0.46, 1.16 .14
TDF+3TC+NVP 0.96 0.59, 1.63 .90

Sex
∗
Duration strata

Male
∗
31-60 0.47 0.26, 0.81 .008 0.34 0.16, 0.67 .002

Male
∗
61-90 0.78 0.49, 1.24 .30 0.55 0.32, 0.94 .03

Male
∗
91-150 0.77 0.42, 1.41 0.40 0.67 0.34, 1.29 .23

CI = adjusted confidence interval, CI = confidence interval, IRR1 = incidence rate ratio, IRR2 = adjusted incidence rate ratio.
∗
P values from x2 test for categorical variables or Wilcoxon test for continuous variables.

ln (VL)) = natural log transformed viral load, 3TC = lamivudine, ABC = abacavir, ART = antiretroviral therapy, ATVr = atazanavir/ritonavir, AZT = zidovudine, EFV = efavirenz, LPVr = lopinavir/ritonavir, NVP =
nevirapine, TDF = tenofovir disoproxil fumarate.
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The level of viremia expressed as natural log-transformed viral
load units was the strongest predictor of HIVDRM, (see Table 3).
After adjusting for age, HIV-1 subtype, and sex-treatment
duration interaction, 1 natural log increase in viremia natural log
transformed viral load was associated with an 11% increase in
HIVDRM counts (IRR 1.11; 95% CI 1.06–1.16; P< .001).
Treatment-duration was the second most significant predictor of
HIVDRM. Subjects on ART-regimen for 31 to 60months had a
63% higher HIVDRM counts compared to those on treatment
for<30months (reference group), IRR, 1.63; 95%CI 1.12–2.43,
P= .013. Similarly, compared to the control group, there was a
133% increase in HIVDRM counts in subjects on treatment for
61 to 90months (IRR, 2.33 95% CI 1.59–3.49, P< .001). There
was no statistically significant association between HIVDRM
counts and subjects who had been on treatment for more than 90
months (P= .088).Males had a 64% increase inHIVDRMcounts
in our multivariate model compared to females (IRR 1.64, 95%
CI 1.06–2.53, P= .025). This was not observed in the univariate
model (P= .99), highlighting the importance of the sex-duration
6

of treatment interaction and significantly higher level of viremia
in males compared to females (P= .047). Age, HIV-1 subtype and
ART-regimen were not significantly associated with HIVDRM
counts.
4. Discussion

Antiretroviral drugs suppress but do not eliminate HIV
infection.[11] In some cases, mutations occur, reducing suppres-
sion of HIV-1 replication with currently available antiretroviral
drugs.[12–14] The efficacy of an ART-regimen depends on the
activity of the regimen’s individual ARV drugs in the regimen. If
two ARV drugs in a triple drug combination have mutations
conferring resistance to the individual ARVs, the ART regimen
may be ineffective in suppressing HIV-1 replication, resulting in
poor clinical outcomes, including death.[15]

The prevalence of HIVDRM conferring resistance to various
ART regimens was found to be high (82.3%). Notably, a high
proportion of dual and triple-class antiretroviral drug resistance
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Figure 3. The interaction effect of sex on duration of treatment (months) and drug resistance mutations. There is evidence of a sex interaction (female vs male) on
the primary outcome (drug resistance mutation counts, with female having a larger effect on accumulating mutations over a longer period of time. If no evidence of
interactions existed, the lines would have been parallel.
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(60.5%) necessitates an immediate switch to an alternate
regimen. The high levels of resistance are due to the K103N,
G190A, and Y181C mutations, which confer resistance to NVP
(81.0%) and EFV (71.2%). Since these NNRTIs have a low
genetic barrier to resistance, a single mutation confers resistance
to all of them.[16] This is consistent with results from other studies
conducted in similar settings, such as South Africa’s 86%,[17]

Uganda’s 84.6%,[18] Malawi’s 95%,[19] and Nigeria’s 90%.[20]

According to WHO guidelines, in countries where resistance to
these drugs exceeds 10%, an alternative first-line regimen that
does not contain EFV or NVP should be used.[21] To comply with
the WHO guidelines, Kenya has changed its treatment of adults
and children with virologic failure from NVP to DTG-based
regimens. EFV, unlike NVP, has distinct clinical features and is
still recommended in Kenya as an alternative to DTG to women
of childbearing age due to its high potency and high viral
suppression rates in treatment-naive patients.[22] Furthermore,
since EFV has a longer plasma half-life (40–55 hour) than NVP
(25–30 hour), a delayed or missed EFV dose is less likely to result
in drug levels dipping below the inhibitory concentration.[23]

M184V/I was the most common major NRTI resistance
mutation. It was found in 28.8% of the sequences and confers
high-level resistance to 3TC and ABC while also increasing
susceptibility to AZT and TDF.[24,25] The fact that 3TC is a
backbone for most Kenyan ART-regimens explains this predom-
inance of M184V/I.[5] Similar M184V/I predominance trends
(81.2%) have been reported in Uganda.[26] The K65R mutation
was found in 32 sequences on 3TC, ABC, and TDF regimens,
increasing viral resistance to TDF and ABC by 2-fold and 3TC
and FTC by 5 to 10-fold, respectively.[27] M184V and K65R
together are sufficient to inhibit the activity of a TDF and ABC-
containing regimenwhile also increasing sensitivity to AZT.[28,29]

Twenty eight samples with high AZT resistance all had ≥3
TAMs, meaning that the presence of TAMs reduces viral AZT
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susceptibility. In contrast to type II TAMs, type I TAMs reduce
the virus’s resistance to ABC and TDF-containing regimens.[30]

The PI-resistant virus was found in a small percentage of subjects
with virological failure. This finding is consistent with previous
research from LMICs.[31] The high genetic barrier to resistance of
boosted PI-based ART could explain the low prevalence of PI-
resistance.[32] This is reassuring, given that the country’s third-
line regimen includes PI.
We found a strong association between viral load and

increased HIVDRM counts (P< .001), which is in concordance
with previous studies that found viremia to be a surrogate for
increased viral replication rate and a predictor of HIVDRM.[33–
35] Furthermore, each one log10copies/mL increase in VL has
been found to more than double the per coital-act probability of
HIV transmission.[36] Longer treatment duration was associated
with increased HIVDRM. This result was consistent with
previous findings that longer durations of unchanged treatment
due to insufficient access to VL surveillance or delayed transitions
to second-line treatment were correlated with enhanced drug
resistance,[37,38] but it differed from the findings of Napravnik
et al, who found no association.[39] Our discovery that a subject’s
sex and duration of treatment independently influenced the rate
of HIVDRM acquisition was unique to this study. For instance,
being male was associated with 66% less HIVDRM counts
compared to a female who had been on the same treatment for 30
to 60months while all other factors remained constant (P= .002).
This finding suggests a unique opportunity to learn how the
subject’s gender affected the outcome variable. In an attempt to
identify the influence of this interaction, we examined the IRR for
sex and the outcome variable. When we compared the adjusted
(P= .025) versus unadjusted (P= .99) models we found a
significant association between HIVDRM counts and sex. It is
unclear why the duration of treatment would influenceHIVDRM
between sexes. This lack of clarity on the cause is backed up by
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the residual deviance (278.70 with 96 df), which indicated that
there are some significant covariates that may be used to explain
the variations but were not used in our model. We speculate, with
caution, that pharmacokinetic differences between the sexes may
account for these findings,[40,41] and this possibility warrants
further investigation.
The influence of the HIV subtype on drug resistance has

received increased attention as a result of the global intensifica-
tion of ART. According to our findings, the most commonHIV-1
subtype was genotype A (63.3%), followed by subtype D
(13.3%), which is consistent with previous research.[42–47]

Subtype CRF01_AE has increased significantly to 10.2%, up
from <5% recorded in 2008.[46] The significant increase in
genotype CRF01_AE, which is prevalent in Asia, and the
decrease in subtype C (7.0%) from >10%,[42,46] could be due to
immigration and emigration into the East African region.We also
found subtypes A2, B, G, J, and K, which cumulatively accounted
for 6.2% of the total HIV-1 subtypes. Antiretroviral drugs have
generally proven to be effective against a wide range of HIV
subtypes, despite being primarily tested in people with subtype
B.[48,49] As a result, most studies indicate that individual ARVs
and standard ART regimens are equally effective, regardless of
HIV subtype.[50–52] In this study, the HIV-1-subtype and
acquisition of HIVDRM were not significantly associated. In
contrast, some studies showed that women and infants infected
with HIV-subtype C were more likely to develop NVP resistance
than other HIV subtypes.[53,54]

The HIV epidemic in sub-Saharan Africa is disproportionately
infecting adolescent girls and young women aged 15 to 24 who
seroconvert 5 to 7years earlier than their male peers.[55] This
vulnerability is due in part to socio-economic factors such as
intergenerational transactional sex between young women who
have well-off older men as lovers in an environment of severe
poverty and restricted resources.[56–58] Such a transaction
predisposes young women to HIV infection since the older age
of sexual partner is associated with increased risk of HIV-1
infection and the young woman is less likely to negotiate condom
use given the gender-power dynamics.[59] Contrary to expecta-
tions, age was not associated with DRMs although being male
was associated with increased DRM counts (P= .025). This
warrants further investigation to ascertain whether an increase of
DRMs is associated with reduced fitness.
Our study has some limitations. First, there was lack of

adherence data for the study subjects. It is well known that
adherence is the most critical non-virological factor influencing
the development of HIVDRM.[60] Moreover, inadequate adher-
ence to the prescribed ART regimen results in HIV replication in
the presence of the drug, which invariably results in the selection
of mutations within the virus that confer antiretroviral drug
resistance. In non-adherent patients, mutations have been shown
to evolve rapidly for older generation NNRTIs and NRTIs, but
more slowly for many newer NRTIs but rarely for boosted
protease inhibitors.[61] Intriguingly, in resource limited settings,
women are more likely than men to be non-adherent to ART due
to Intimate partner violence,[62] or lack of money for travel to
ART centre and hunger.[63] Knowledge of the factors associated
with medication adherence could help HIV clinicians to target
persons in need of intervention and design interventions that will
ensure adherence. Second, there was no data on treatment
interruption by the patients which has an effect on adherence and
is associated with viral rebound and a shift to a resistant
genotype.[64] Third, DRMs data prior to current ART-regimen
8

initiation was not available. Thus, we can not rule out the
possibility of transmitted drug resistance that existed prior to
prescription of the current ART-regimen.
5. Conclusions

To summarize, we found an alarmingly high prevalence of drug
resistance mutations. Importantly, patients with triple and dual-
class drug resistance should alter ART-regimens immediately to
avoid the possibility of transmitting multidrug-resistant HIV-1
strains, which would have fewer treatment options. The most
significant predictors of HIVDRMwere viral load and treatment
duration. The most striking finding was that a subject’s sex and
treatment-duration independently influenced HIVDRM counts,
emphasizing the importance of targeted resistance monitoring
and switching ART regimens while taking into account the risk of
exhausting future treatment options. More research is needed to
determine the variables that contributed to the finding that a
subject’s sex and treatment time independently influenced HIV-1
drug resistance mutations.
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