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ABSTRACT

The ChIP-exo assay precisely delineates protein–
DNA crosslinking patterns by combining chromatin
immunoprecipitation with 5′ to 3′ exonuclease di-
gestion. Within a regulatory complex, the physi-
cal distance of a regulatory protein to DNA affects
crosslinking efficiencies. Therefore, the spatial or-
ganization of a protein–DNA complex could poten-
tially be inferred by analyzing how crosslinking sig-
natures vary between its subunits. Here, we present
a computational framework that aligns ChIP-exo
crosslinking patterns from multiple proteins across
a set of coordinately bound regulatory regions, and
which detects and quantifies protein–DNA crosslink-
ing events within the aligned profiles. By producing
consistent measurements of protein–DNA crosslink-
ing strengths across multiple proteins, our approach
enables characterization of relative spatial organiza-
tion within a regulatory complex. Applying our ap-
proach to collections of ChIP-exo data, we demon-
strate that it can recover aspects of regulatory com-
plex spatial organization at yeast ribosomal pro-
tein genes and yeast tRNA genes. We also demon-
strate the ability to quantify changes in protein–DNA
complex organization across conditions by applying
our approach to analyze Drosophila Pol II transcrip-
tional components. Our results suggest that princi-
pled analyses of ChIP-exo crosslinking patterns en-
able inference of spatial organization within protein–
DNA complexes.

INTRODUCTION

Each cell type is defined by a unique gene expression pro-
gram, which is in turn determined by the activities of regu-
latory proteins binding to promoters, enhancers, and other
genomic regions. Genomic regulatory regions are bound by
particular combinations of sequence-specific transcription
factors (TFs), co-regulators, and chromatin modifiers in a
spatiotemporal dependent manner. While large-scale efforts
are underway to map and functionally characterize poten-
tial regulatory regions (1,2), we still know relatively little
about the structure and organization of individual protein–
DNA complexes along the genome. To fully understand
how gene regulatory programs are coordinated, it will be
crucial to characterize precisely how regulatory complexes
are assembled and organized.

Chromatin immunoprecipitation followed by sequencing
(ChIP-seq) enables genome-wide localization of regulatory
proteins. However, the spatial resolution of ChIP-seq is lim-
ited, as chromatin fragmentation strategies can result in se-
quencing reads that map several hundred base pairs away
from the site bound by the protein of interest. Therefore,
while integrative analyses of ChIP-seq data collections can
find groups of co-bound regulatory proteins (3–5), such
analyses provide only limited insight into the spatial orga-
nization of proteins within regulatory complexes.

In contrast to ChIP-seq, ChIP-exo and related assays (e.g.
ChIP-nexus (6)), precisely define protein–DNA binding lo-
cations via the use of lambda exonuclease (7). The exonucle-
ase digests protein-bound DNA in a 5′ to 3′ direction and,
on average, stops at 6 bp before a protein–DNA crosslink-
ing point. The ChIP-exo tag distribution at a given regu-
latory region is thus the product of crosslinking events that
formaldehyde or other crosslinking agents have induced be-
tween the targeted protein and DNA.

ChIP-exo’s ability to map crosslinking signatures sug-
gests a strategy for characterizing the spatial organization
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of regulatory complexes. At sites where a sequence-specific
TF is bound directly to its cognate motif, the dominant
crosslinking signature should result from direct interactions
between the TF’s residues and proximal DNA bases. How-
ever, regulatory proteins that alternatively (or additionally)
interact with DNA via protein-protein interactions should
display crosslinking signatures related to the TFs that re-
cruit them. Since the physical distance of a regulatory pro-
tein to the recruiting TF will affect crosslinking efficiencies,
different members of a regulatory complex should display
distinct crosslinking patterns across a regulatory region. In
principle, then, analysis of ChIP-exo crosslinking patterns
should enable some degree of inference regarding the spatial
organization of regulatory proteins within a protein–DNA
complex.

Previous work suggests the feasibility of inferring the
spatial organization of protein–DNA complexes via ChIP-
exo crosslinking analysis. ChIP-exo analysis of yeast gen-
eral transcription factors found that crosslinking patterns at
Pol II promoters were consistent with those expected from
crystallographic models of the transcriptional machinery
(8). ChIP-exo characterization of ribosomal protein gene
(RPG)-specific factors introduced the idea that the order-
ing of indirect protein–DNA interactions can be inferred
from analysis of crosslinking efficiencies (9). Specifically,
high-resolution analysis of ChIP-exo crosslinking patterns
at sites bound by the sequence-specific TF Rap1 show the
same crosslinking pattern echoed in ChIP-exo experiments
targeting Sfp1, Ifh1, and Fhl1, suggesting that these factors
may be indirectly recruited to DNA by Rap1. We and oth-
ers have made use of this concept to characterize indirect
protein–DNA interactions in other systems. For example,
in some mammalian cell types, both Glucocorticoid Recep-
tor and Estrogen Receptor alpha may be indirectly recruited
to certain binding sites via protein-protein interaction with
FoxA TFs, as evidenced by near identical crosslinking pat-
terns at those sites (10–12). One limitation of previous ap-
proaches is that they have relied on TF binding motifs
or known genomic anchor points to align bound sites be-
fore characterizing crosslinking patterns (7,9,13). Naturally,
such strategies limit the usefulness of ChIP-exo crosslinking
analysis to protein–DNA complexes where the focal point
of spatial organization is already known.

In this work, we formalize concepts suggested by pre-
vious studies by presenting ChExAlign, a systematic ap-
proach for characterizing ChIP-exo crosslinking patterns
across multiple members of a protein–DNA regulatory
complex (Figure 1). Specifically, we first develop a multiple
alignment procedure for characterizing consistent ChIP-
exo crosslinking signatures across multiple ChIP-exo exper-
iments and across multiple regulatory regions. To make the
alignment approach broadly applicable to different types of
protein–DNA complexes, our procedure does not rely on
sequence features or other genomic annotations, but rather
directly aligns multi-protein ChIP-exo tag profiles. While
there has been limited work on aligning broad tag distri-
butions such as those from histone modification ChIP-seq
and ChIP-chip data (14–17), our approach is optimized for
high-resolution, strand-separated ChIP-exo data. Given a
multiple alignment of ChIP-exo tag profiles, our approach
next applies a probabilistic mixture model to deconvolve in-
dividual protein–DNA crosslinking events. This approach

allows consistent quantification of crosslinking strengths
across multiple proteins in a regulatory complex. Finally,
we apply principal component analysis (PCA) to visualize
similarities between the crosslinking preferences of the reg-
ulatory proteins.

We demonstrate the utility of our approach by applying
it to characterize the spatial organization of three distinct
regulatory complexes. We first apply our method to yeast
RPG ChIP-exo datasets in order to show that multiple pro-
file alignment can be used to automatically align collections
of ChIP-exo data across a collection of coordinately regu-
lated regions. While previous analyses of the RPG ChIP-
exo data relied on a manual alignment around a sequence
motif feature (Rap1 binding sites), our ChIP-exo alignment
approach yields similar alignments, and the same biological
conclusions, without knowledge of DNA sequence features.
Secondly, we extend our analyses to 12 novel ChIP-exo
datasets that characterize the occupancy of regulatory com-
plexes at yeast tRNA genes. Due to the variable length of
tRNA intragenic promoters, we extend our multiple profile
alignment procedure to account for affine gaps. We further
demonstrate that crosslinking event detection and quantifi-
cation yields insight into the spatial organization of indi-
vidual proteins within the Pol III transcriptional machin-
ery. Finally, we demonstrate that crosslinking analysis pro-
vides a quantitative framework for characterizing changes
in regulatory complex organization across conditions. By
applying our methods to a collection of ChIP-nexus data
that profile Drosophila Pol II transcriptional components
under two experimental conditions, we demonstrate that we
can quantify the degree to which individual proteins are re-
localized when transcriptional initiation is inhibited.

In summary, our approaches provide a novel platform for
examining the spatial organization of protein–DNA com-
plexes from collections of high-resolution ChIP data.

MATERIALS AND METHODS

Pairwise alignment of ChIP-exo profiles with affine gap
penalties

To align multi-experiment ChIP-exo tag profiles across mul-
tiple genomic regions, we extend an affine gapped, over-
lap alignment version of the Needleman–Wunsch algorithm
(18,19). The Needleman–Wunsch algorithm is popularly
used to perform global alignment of protein or nucleotide
sequences. Here, rather than aligning discrete residue se-
quences, our approach aligns real-valued matrices of ChIP-
exo tag counts. For a given length L genomic region, the
corresponding input matrix contains rows for each of the
two DNA strands in each of K ChIP-exo experiments. The
elements in each row contain the number of ChIP-exo tag
5′ positions (stranded) mapped to each base in the region.
Thus, the dimensionality of each input matrix is 2K × L,
and each ChIP-exo tag is counted in only a single bin of the
matrix. The goal of the pairwise alignment procedure is to
form a global alignment between ChIP-exo profile matrices
corresponding to genomic regions X = (x1, . . . , xi, . . . , xL)
and Y = (y1, . . . , yj, . . . , yL).

As in the original dynamic programming alignment with
affine gap penalties, we construct matrices M, Ix, and Iy, in-
dexed by i and j, where the value M(i, j) is the best score up to
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Figure 1. Overview of ChExAlign. (A) ChExAlign takes a set of genomic locations as input and calculates pairwise similarity scores between multi-
dimensional ChIP-exo profiles using a Needleman-Wunsch alignment algorithm. ChExAlign then uses the pairwise alignments to progressively build a
multiple alignment across all input regions. This step results in a composite multi-dimensional profile representing the aligned ChIP-exo signals across
all input regions. (B) After obtaining aligned ChIP-exo profiles, ChExAlign uses a mixture model to deconvolve crosslinking event positions within the
aligned profiles. Crosslinking strengths for each protein are quantified at each crosslinking position. Principal Component Analysis (PCA) is applied to
the crosslinking matrix to infer relationships between the crosslinking signatures of each protein within the complex.

(i, j) given that xi is aligned to yj, Ix(i, j) is the best score given
that xi is aligned to a gap, and Iy(i, j) is the best score given
that yj is an insertion with respect to x. We use an affine gap
cost structure to impose different penalties for opening and
extending a gap of length g as γ (g) = −d − (g − 1)e, where
d is the gap-open penalty and e is the gap-extension penalty.
In this study, we use e = 0.1d. The recursion relationships
are unchanged from the original algorithm:

M(i, j ) = max

⎧⎨
⎩

M(i − 1, j − 1) + s
(
xi , yj

)
,

Ix (i − 1, j − 1) + s
(
xi , yj

)
,

Iy (i − 1, j − 1) + s
(
xi , yj

)
;

Ix (i, j ) = max
{

M(i − 1, j ) − d,
Ix (i − 1, j ) − e;

Iy (i, j ) = max
{

M(i, j − 1) − d,
Iy (i, j − 1) − e;

The similarity score of xi and yj coordinates, s(xi, yj), is
computed using the Pearson correlation coefficient as fol-
lows:

s
(
xi , yj

) =
∑K

k=1 (qkw − q̄) (qkc − q̄) (pkw − p̄) (pkc − p̄)√∑K
k=1 (qkw − q̄)2(qkc − q̄)2

√∑K
k=1 (pkw − p̄)2(pkc − p̄)2

where q̄ = 1
2K

K∑
k = 1

(qkw + qkc) and p̄ = 1
2K

K∑
k = 1

(pkw + pkc).

qkw and qkc are the numbers of ChIP-exo tag 5′ positions
mapped from experiment k to the Watson and Crick strands
(respectively) at the xi coordinate. pkw and pkc are the num-
bers of ChIP-exo tag 5′ positions mapped from experiment k
to the Watson and Crick strands (respectively) at the yj coor-

dinate. The above Pearson correlation metric scores are nor-
mally distributed between –1 and 1 for pairs of randomly
generated profile columns, and we confirmed that the above
score yields the expected values for perfectly correlated and
anti-correlated vectors (Supplementary Figures S4 and S5).

Our approach generates overlap alignments, which do
not penalize overhanging ends. Therefore, the scoring ma-
trices are initialized with M(i, 0) = 0, Ix(i, 0) = 0, and Iy(i,
0) = 0 for i = 1,. . . ,n and M(0, j) = 0, Ix(0, j) = 0, and Iy(0,
j) = 0 for j = 1,. . . ,m. Traceback starts from the cell with the
maximum value on the lower right quadrant border, (i.e. (n,
j), j = 2/m,. . . ,m, or (i, m), i = 2/n,. . . ,n), among the M, Ix,
and Iy matrices. Traceback continues until the top or left
edge is reached.

Alignment scores between random regions are normally
distributed, and low compared with the scores observed be-
tween pairs of RPG regions (Supplementary Figure S6). We
use gap opening scores of d = 50 in analyzing Pol III tran-
scriptional complex at tRNA genes, d = 100 for Drosophila
Pol II components, and d = 200 for analyzing RPG-specific
factors. These values were chosen to encourage fewer gaps
for the latter two settings. However, we observed that sim-
ilarity scores between RPG regions (which are expected to
contain gaps) are stable across a wide range of settings for
gap opening (d) and gap extension (e) values (Supplemen-
tary Figure S7).

Progressive alignment of multiple regions

To build multiple alignments, we progressively align nodes
by a succession of pairwise profile alignments. Nodes ini-
tially contain single region profiles. Progressive alignment
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proceeds by aligning the most similar pair of profiles, and
merging the aligned pair into a composite profile generated
according to the gapped alignment. Gaps are represented as
an additional one-dimensional array alongside the ChIP-
exo profiles. Similarities are then recalculated between the
aligned profile and all remaining regions. We repeat these
steps until all the nodes are merged. After the final multi-
ple alignment of all regions has been constructed, we sub-
tract background signals from the composite ChIP-exo pro-
files. We first use NCIS (20) to scale a control experiment to
each analyzed signal ChIP-exo experiment. We then sub-
tract scaled per-base control tag counts from each signal
ChIP-exo experiment.

Deconvolution and quantification of crosslinking profiles us-
ing a mixture model

After constructing composite ChIP-exo profiles represent-
ing the multiple alignment of analyzed regions, we aim to
locate and quantify protein–DNA crosslinking positions
within the profiles. Our approach models ChIP-exo com-
posite data as being generated by a mixture of crosslinking
events, and an Expectation Maximization (EM) learning
scheme is used to probabilistically assign sequencing tags to
crosslinking positions. By estimating crosslinking positions
in the composite profiles, we implicitly assume that protein–
DNA crosslinking patterns are consistent at all aligned re-
gions, albeit with spacing differences between crosslinking
sites as modeled by the alignment gaps.

Pr(rn|x) gives the probability of observing ChIP-exo tag
rn from a crosslinking event located at genomic coordinate
x, and is defined by a pair of Gaussian distributions (one
on the positive strand, one on the negative strand) with �
= 6 bp and offset from each other by 12 bp (positive strand
to the left). We define a vector of component locations μ
where μ j is the genomic location of the crosslinking event j.
We initialize potential crosslinking events, M, such that they
are spaced in 5 bp intervals along the window. The overall
likelihood of the observed set of tags, r, given the crosslink-
ing event positions, μ, the binding event mixture probabili-
ties (i.e. crosslinking event strengths), π , is given by:

Pr (r|π ,μ) =
N∏

n=1

M∑
j=1

π j Pr(rn|μ j )

where N is the number of ChIP-exo tags that have been
mapped to genomic locations.

To limit the number of modeled crosslinking positions,
we place a sparseness promoting negative Dirichlet prior, α,
on the crosslinking strength π (21). The latent assignments
of tags to crosslinking events are represented by the vector
z. The complete-data log posterior is as follows:

log Pr (μ, π |r, α) =
N∑

n=1

⎡
⎣ M∑

j=1

1 (zn = j ) (log π j + log
(
Pr

(
rn |μ j

))⎤⎦

−α

M∑
j=1

log π j + C

The E-step that calculates the relative contribution of
each crosslinking event in generating each tag is:

γ (zn = j ) = π j Pr(rn|μ j )∑M
j ′=1(π j ′Pr(rn|μ j ′))

The maximum a posteriori probability (MAP) estimation
(21) of π is:

π̂ j = max
(
0, Nj − α

)
∑M

j ′=1 max
(
0, Nj ′ − α

) ,

Nj =
N∑

n=1

γ (zn = j )

The α parameter can thus be interpreted as the minimum
number of ChIP-exo tags required to support a crosslinking
event active in the model. MAP values of μ j are determined
by enumerating over several possible values of μ j . Specifi-
cally, the MAP estimation of μ j is:

μ̂ j = argmax
x

{
N∑

n=1

[γ (zn = j) log Pr (rn|x)]

}

where x starts at the previous values of the position and ex-
pands outwards to 50 bp each side. If the maximization step
results in two components sharing the same positions, they
are combined in the next iteration of the algorithm.

Crosslinking positions are simultaneously modeled
across all analyzed ChIP-exo experiments in a given
aligned profile, and information about crosslinking po-
sition estimates are shared between experiments at each
EM step using a positional prior strategy described in the
MultiGPS algorithm (22). This positional prior encourages
consistency in estimated crosslinking positions across
ChIP-exo experiments. Our rationale is that a given protein
complex will be crosslinked to DNA at relatively few posi-
tions, but the signatures of these crosslinks will be present
across experiments characterizing multiple members of the
complex.

Finally, the relative crosslinking strengths of all estimated
crosslinking points are quantified across all ChIP-exo pro-
files using Maximum Likelihood assignment of tag counts,
yielding a matrix of crosslinking strengths.

Visualization of crosslinking relationships

The matrix of crosslinking strengths is used to assess the
relationships between the crosslinking preferences of each
protein in a protein–DNA complex. We normalize the
crosslinking strength matrix such that the sum of crosslink-
ing strengths for each protein is 1. We then apply a standard
PCA to visualize the relationships between protein–DNA
crosslinking preferences.

ChIP-exo experiments and processing

Tandem affinity purification (TAP)-tagged Brf1, Bdp1,
Rpo31, Rpc17, Rpc40, Tfc1, Tfc3, Tfc4, Tfc6, Tfc7, and
Tfc8 Saccharomyces cerevisiae strains in a BY4741 back-
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ground were obtained from Open Biosystems. TAP-tagged
S. cerevisiae cultures were grown in yeast peptone dextrose
(YPD) media at 25◦C to an OD600 = 0.8–1.0. ChIP-exo
assays were performed as previously described (13,23). In
brief, TAP-tagged S. cerevisiae cultures were treated with
1% formaldehyde for 15 min. Reactions were quenched.
Cells were disrupted by bead beating, and chromatin pel-
lets were washed. Chromatin was solubilized by sonica-
tion. Extracts were incubated with rabbit IgG antibodies
(Sigma, i5006) coupled to protein A sepharose. The first
adaptor was ligated to the ChIP DNA while immobilized
on beads. Washed immobilized DNA was digested in the
5′-3′ direction with lambda exonuclese. Next, the material
was eluted, and the second adaptor ligated to the exonucle-
ase treated end. The resulting libraries were sequenced using
Illumina machine. Mock IP control ChIP-exo experiments
in yeast were performed using rabbit IgG (Sigma, i5006) in
the BY4741 background strain (which does not contain a
TAP tag sequence).

Libraries were paired-end sequenced and read pairs were
mapped to the sacCer3 genome using BWA version 0.7.12
with options “mem -T 30 -h 5”. Read pairs that share iden-
tical mapping coordinates on both ends are likely to rep-
resent PCR duplicates, and so Picard (http://broadinstitute.
github.io/picard) was used to de-duplicate such pairs. Reads
with MAPQ score <5 are filtered out using samtools
(24).

Public datasets

ChIP-exo for RPG-specific factors, Tbp1 ChIP-exo, and
ChIP-nexus data targeting Pol II and basal TFs are ob-
tained from NCBI Sequence Read Archive under accession
number SRP041518 (9), GSM2601059 (25) and GSE85741
(26), respectively. RPG and Tbp1 ChIP-exo data are aligned
against sacCer3 using BWA (27) version 0.5.9. ChIP-nexus
data are aligned against dm3 using BWA version 0.7.12 with
options “mem -T 30 -h5”.

Drosophila TSSs

We use TSS annotations from dm3 refGene protein-coding
genes. To annotate a consensus TSS position within the
aligned profiles, we use the position that contains the high-
est TSS frequency in the underlying aligned regions (i.e. the
mode TSS position).

Motif analysis

We ran MEME-ChIP version 4.10.0 (28) on tRNA gene
sequences to characterize the Box A and Box B motifs.
Then, we scan 400 bp of regions used for alignment with
the discovered motifs using a log-likelihood scoring thresh-
old of 0.1% per base FDR defined using a second-order
Markov model based on yeast genome nucleotide frequen-
cies. We obtained the Rap1 cognate DNA-binding motif po-
sitions by scanning the corresponding cis-bp database motif
(M4379 1.02) (29) in 1400 bp regions centered around TSSs
using a log-likelihood scoring threshold of 0.1% per base
FDR defined using a second-order Markov model based on
yeast genome nucleotide frequencies.

ChExMix peak calling

We run ChExMix version 0.42 (11) with default parameters
on Pol II ChIP-exo data in Kc167 cells and obtained the top
500 most enriched Pol II peaks using q-value.

RESULTS

ChExAlign overview

ChExAlign is a computational framework that aligns and
quantifies ChIP-exo crosslinking patterns from multiple
proteins across a set of coordinately bound regulatory re-
gions. ChExAlign does not use sequence motif features
and operates directly on the multi-protein, strand-separated
ChIP-exo tag patterns. ChExAlign’s multiple alignment
procedure starts by obtaining strand-separated, per-base
tag count profiles composed of data from each of the ana-
lyzed ChIP-exo experiments within a fixed-sized window at
the defined input regions (Figure 1A). Each region’s multi-
dimensional profiles are normalized by dividing all values
by the maximum tag count of each protein in a region.
ChExAlign uses an overlap Needleman–Wunsch alignment
algorithm (18,19) with affine gap penalties to find the opti-
mal pairwise alignments between all input regions. Within
the pairwise alignment procedure, the similarities between
each pair of positions is defined using Pearson correlation.
Next, a progressive profile multiple alignment procedure is
applied to produce a multiple profile alignment. Pairs of
multi-dimensional profiles are progressively combined in
order of their pairwise alignment similarity scores. After
aligning a pair of profiles, the resulting composite profile
is aligned against all remaining profiles. After the final mul-
tiple alignment of all regions has been constructed, we sub-
tract background signals from the composite ChIP-exo pro-
files. We first scale a control experiment to each analyzed
signal ChIP-exo experiment and then subtract scaled per-
base control tag counts from each signal ChIP-exo exper-
iment. The output of the multiple alignment procedure is
a composite multi-dimensional profile that represents the
aligned protein–DNA crosslinking signatures across all an-
alyzed regulatory regions.

After producing the composite aligned ChIP-exo profile,
ChExAlign quantifies protein–DNA crosslinking events
within the complex (Figure 1B). A probabilistic mixture
model is applied to the composite profile to detect the
positions of individual crosslinking events. Crosslinking
strengths are estimated by assigning fractions of each
protein’s ChIP-exo signal to each detected crosslinking
point. Lastly, dimensionality reduction is applied to vi-
sualize the relationships between crosslinking signatures
for each protein within the regulatory complex. ChEx-
Align takes mapped ChIP-exo experiments (e.g. BAM
files) and starting coordinates (e.g. loci of interest) as in-
puts. Outputs are aligned ChIP-exo profiles and quantifica-
tions of protein–DNA crosslinking events across multiple
proteins.

ChIP-exo profile alignment recovers the spatial organization
of a regulatory complex at ribosomal protein genes

To demonstrate that ChExAlign provides an informative
alignment of protein–DNA crosslinking patterns across sets

http://broadinstitute.github.io/picard
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of related regulatory regions, we first applied it to analyze
the organization of a protein–DNA complex at yeast ri-
bosomal protein genes (RPGs). Most yeast RPGs are co-
ordinately regulated by a common set of regulatory pro-
teins. The transcription factor Rap1 binds to cognate se-
quence motifs located 77–501 bp upstream of the tran-
scription start site (TSS), and recruits Fhl1, Ifh1, and
Sfp1. Hmo1 is also recruited at roughly half of the RPGs
(9,30). Previous analyses of Rap1, Fhl1, Ifh1, Sfp1, and
Hmo1 ChIP-exo data determined that the RPG regula-
tory complex has a well-defined spatial organization (9).
Rap1 binding sites serve as an upstream boundary to the
complex. Fhl1, Ifh1, and Sfp1 are almost identically posi-
tioned ∼100 bp downstream of Rap1, with some evidence
of additional crosslinking through the Rap1 site (indicative
of protein-protein interactions between Rap1 and the re-
cruited factors). When present, Hmo1 occupies the region
between Rap1 and the TSS, essentially overlapping where
Fhl1/Ifh1/Sfp1 bind. Thus, a consistently organized regu-
latory complex is present in the upstream regions of most
yeast RPGs, and this organization should in principle be re-
coverable by aligning ChIP-exo profiles that span the RPG
regulatory regions.

A standard approach to analyzing collections of regula-
tory genomics data at a set of related gene loci might be-
gin by producing composite profiles centered on the genes’
TSSs. Applying this approach to the five ChIP-exo datasets
at 134 RPGs produces a set of smooth composite profiles
without any discernible organization between the members
of the regulatory complex (Figure 2A). Indeed, previous
analysis has demonstrated that it is only when the five ChIP-
exo datasets are aligned by Rap1-bound motif locations
(consistently oriented with respect to the RPG TSSs) that
a more structured organization emerges from the data (9).
Thus, the smooth profiles produced by a TSS-centric align-
ment are artefacts of the variable spacing between TSSs and
the true organizing points of the regulatory complex (i.e. the
Rap1 sites). We therefore asked whether ChExAlign’s align-
ment procedure can recapitulate insights into the organiza-
tion of the RPG regulatory complex without using sequence
motif information or prior knowledge of Rap1 sites as the
organizing loci.

We applied ChExAlign to produce an ungapped over-
lap multiple profile alignment across data from 5 ChIP-
exo experiments (Rap1, Flh1, Ifh1, Sfp1, and Hmo1) taken
from 1,400bp windows centered on the TSSs of 134 yeast
RPGs (Figure 2B). Our alignment recovers sharply dis-
tributed composite profiles across the five factors (Fig-
ure 2B, E). The aligned composite plots enable some de-
gree of inference regarding the organization of the regula-
tory complex. For example, high-resolution analysis of the
crosslinking patterns displayed at the Rap1 binding sites
suggest that Fhl1/Ifh1/Sfp1 are indirectly bound through
protein–protein interactions with Rap1 (Figure 2F). In ad-
dition, the multiple profile alignment appropriately clus-
ters the subset of RPGs that displays Hmo1 enrichment,
consistent with previous observations (9,30). Importantly,
even though ChExAlign does not use sequence information
during the alignment procedure, the multiple profile align-
ment induces an alignment of the underlying Rap1 motif
sequences (Figure 2C, D). Therefore, ChExAlign can ac-

curately align multi-dimensional ChIP-exo profiles across
a set of coordinately regulated regions, enabling insights
into the organization of regulatory proteins within the
regions.

Gapped ChIP-exo profile alignment enables consistent anal-
ysis of protein–DNA crosslinking patterns across 12 regula-
tory proteins at tRNA genes

Having demonstrated that multiple profile alignment can
recover informative protein–DNA crosslinking patterns in
a set of regions that share a tightly organized regulatory
complex, we next aimed to demonstrate that the alignment
procedure is robust to cases where the protein–DNA reg-
ulatory complex contains a more variably spaced organi-
zation. We chose to focus on protein–DNA interactions in
the yeast Pol III transcriptional machinery at tRNA genes,
as tRNA genes with varying lengths contain regulatory ele-
ments of consistent composition but variable internal spac-
ing. Analyses of protein–DNA crosslinking patterns over
tRNA genes might therefore be expected to require gapped
ChIP-exo profile alignment strategies.

Eukaryotic tRNA genes are transcribed by Pol III, which
is recruited by the multi-subunit transcription factor com-
plexes TFIIIB and TFIIIC (31,32) (Figure 3A). TFIIIB is
composed of TBP, Brf1, and Bdp1, while TFIIIC contains
two subcomplexes, �A (composed of Tfc1, Tfc4, and Tfc7)
and �B (composed of Tfc3, Tfc6, and Tfc8). The TFIIIC
subcomplexes bind to conserved intragenic promoter mo-
tifs, named Box A (bound by �A) and Box B (bound by
�B), and enable assembly of the TFIIIB complex at a re-
gion ∼30 bp upstream of the tRNA transcription start site
(33–35). Pol III is then recruited by TFIIIB, enabling tran-
scription. Yeast tRNA genes vary in length between 74 and
134 bp, and this variation is reflected by variable spacing be-
tween the intragenic Box A and Box B promoter elements
(Figure 3B).

We applied ChIP-exo to generate novel high-resolution
protein–DNA interaction profiles for three protein compo-
nents of Pol III, the three components of TFIIIB, and the
six components of TFIIIC (Figure 3C, D). In order to ac-
count for the expected variable spacing between crosslink-
ing signatures centered on the Box A and Box B sites in
tRNA genes of different lengths, we extended our ChIP-exo
multiple profile alignment strategy to incorporate affine gap
penalties. We then applied our framework to align ChIP-
exo profiles from the 12 ChIP-exo targets across 279 yeast
tRNA gene loci. Our goal is to demonstrate that ChEx-
Align’s ChIP-exo profile alignment procedure can recover
informative protein–DNA crosslinking signatures for a reg-
ulatory complex without any prior knowledge of sequence
features. However, the tRNA genes contain highly con-
served sequence features, so initializing the alignments cen-
tered on tRNA TSSs would run the risk of being indi-
rectly biased by the underlying conserved sequences (Fig-
ure 3B; Supplementary Figure S1A, B). We therefore chose
to remove this potential confounding effect by initializing
the alignments as centered on randomly shifted locations
within a 60 bp range surrounding tRNA TSSs (Figure 3C).
This also has the effect of scrambling the relative locations
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Figure 2. ChIP-exo tag alignment and an inferred organization of RPG specific factors. (A, B) Rap1, Sfp1, Ifh1, Fhl1, and Hmo1 ChIP-exo enrichment
at 134 RP genes, centered on TSS coordinates (A) and after ChExAlign alignment (B). Forward strand tags are shown in blue and reverse strand tags are
shown in red. The heatmaps in (B) are ordered by the multiple alignment procedure. (C) Positions of Rap1 motif in the same windows displayed in A). (D)
Positions of Rap1 motif given the aligned coordinates displayed in B). (E) ChIP-exo tag patterns of RPG-specific factors before and after alignment, and
centered around Rap1 motif. (F) ChIP-exo tag patterns for Sfp1, Ifh1, Fhl1, Hmo1 (grey, green, purple and blue traces, respectively) compared with Rap1
(filled plots) at Rap1 sites after progressive alignment.

of the Box A and Box B motifs in the initial alignment (Fig-
ure 3E).

The aligned ChIP-exo profiles produced by ChExAlign
multiple profile alignment display pronounced peaks com-
pared to the initial alignment (Figure 3C, D: representa-
tive profiles for protein components of Pol III, TFIIIB, and
TFIIIC �A & �B are shown for illustration; Supplementary
Figure S2A–D: when single TBP ChIP-exo was used for
alignment). Despite the fact that no sequence information
is included in the alignment procedure, the multiple profile
alignment induces a tight alignment of both Box A and Box
B motif locations (Figure 3F). The aligned ChIP-exo pro-
files incorporate a gap between the Box A and Box B mo-
tifs; as expected, the newly aligned short tRNA genes con-
tain a larger gap compared with longer tRNA genes, having
the effect that a consistent crosslinking profile alignment is
constructed across all tRNA gene loci (Figure 3D, F). Vi-
sual inspection shows that the multiple profile alignment
contains sharp protein–DNA crosslinking peaks near the
major regulatory elements (i.e. surrounding the Box A mo-
tif, Box B motif, and upstream TFIIIB binding location),
consistent with where formaldehyde-induced protein–DNA
crosslinking events would be expected to occur for the pro-
filed regulatory proteins. Our results therefore demonstrate
that ChExAlign can produce a high-quality multiple profile
alignment of ChIP-exo crosslinking signatures, even in cases
where the underlying regulatory elements occur at variable
spacing in the constituent genomic loci.

ChIP-exo crosslinking quantification enables inference of
protein–DNA complex organization

Visual inspection of aligned ChIP-exo crosslinking profiles
enables some degree of insight into the spatial organiza-
tion of protein–DNA complexes. For example, the aligned
crosslinking profiles of tRNA transcriptional components
show that TBP and other TFIIIB components are primarily
crosslinked through a site upstream of the TSS, as expected
from the direct protein–DNA crosslinks resulting from TBP
binding to the TATA motif (Figure 4A). Meanwhile, the
TFIIIC components primarily display crosslinking through
sites around the Box A and Box B motifs, again reflective of
the expected protein–DNA binding events. However, TFI-
IIC components also display additional, weaker crosslink-
ing signatures through the same site that is crosslinked
by TFIIIB components, indicative of the indirect protein–
DNA crosslinking that results from protein-protein inter-
actions between TFIIIC and TFIIIB. Within a regulatory
complex, we should expect a protein’s crosslinking efficiency
at a given DNA site to decay as a function of the number of
protein–protein crosslinks required to link it to the protein
that directly contacts the DNA site. Therefore, careful anal-
ysis of the relative strengths of all crosslinking peaks may
enable inference of protein spatial positioning within a reg-
ulatory complex. To facilitate such inference, we aimed to
incorporate a principled approach to quantifying and visu-
alizing crosslinking peaks into the ChExAlign framework.
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Figure 3. Gapped alignment of ChIP-exo profiles enables characterization of consistent protein–DNA crosslinking patterns across 279 yeast tRNA genes.
(A) Cartoon representation of protein organization within the yeast tRNA transcriptional machinery. (B) Sequence plot of tRNA genes, sorted by increasing
tRNA gene length. The TSS and Box A are separated by 11 bp, while Box B and the transcription end site are separated by 16–20 bp. (C, D) The alignment
method simultaneously aligns 12 ChIP-exo experiments with gaps. ChIP-exo heatmaps before (C) and after (D) alignment are shown for TBP (TFIIIB),
Rpo31 (Pol III), Tfc1 (TFIIIC �A), and Tfc6 (TFIIIC �B). Gaps are represented in grey. The heatmaps are sorted by increasing tRNA gene length. (E, F)
Relative positions of Box A and Box B motifs before (E) and after (F) the alignment.

Our approach to quantifying ChIP-exo crosslinking sig-
natures first applies a probabilistic mixture model to es-
timate the positions and relative strengths of crosslinking
events within a multiple ChIP-exo profile alignment (see
Materials and Methods). The mixture model probabilisti-
cally assigns observed ChIP-exo tags to crosslinking events
using a predefined model of tag distributions around sin-
gle crosslinking events. We use the Expectation Maximiza-
tion (EM) algorithm to iteratively optimize the positions
and strengths of crosslinking events using information from
the assigned tags. The mixture model incorporates priors to
keep the number of detected crosslinking events low (i.e. as-
suming that protein–DNA crosslinking occurs at relatively
few bases in a regulatory region) and to keep the positions
of crosslinking events consistent across the aligned multi-
protein profiles (i.e. assuming that the same crosslinking
events will recur across ChIP-exo profiles from multiple in-
teracting proteins in a regulatory complex).

We applied our crosslinking deconvolution procedure to
the 12-experiment multiple profile alignment of the tRNA
regulatory complex (Figure 4A), first subtracting scaled
ChIP-exo control signals from the individual profiles to ac-
count for elevated ChIP-exo background signals over the
tRNA genes. The result of the deconvolution procedure is
illustrated for Tfc6 in Figure 4B; crosslinking events are
detected at eight positions within the Tfc6 signature, and
each has a relative strength quantification which is derived

from the proportion of Tfc6 ChIP-exo tags that is associated
by the mixture model. The results of the procedure across
all profiles can be summarized using a relative crosslinking
matrix (Figure 4C). The matrix illustrates that TBP has its
highest crosslinking signal at position –60 in the alignment,
a position that is located within the transcription bubble
created by the Pol III pre-initiation complex (36) (Figure
4C). Brf1 and Pol III components also show the strongest
signal at the same position, suggesting that they associate
with DNA via protein–protein interactions with TBP (Fig-
ure 4C). On the other hand, Tfc6 and Tfc8 from the TFIIIC
�B subcomplex show highest signals at positions +47 and
+77, again consistent with their role in binding the Box B
motif.

To visually summarize all crosslinking quantifications, we
applied Principal Component Analysis (PCA) to the rows
of the crosslinking matrix (Figure 4D). This dimensionality
reduction organizes the proteins in a manner that resem-
bles the expected spatial organization of the tRNA tran-
scriptional complex (Figure 3A). TFIIIB components TBP
and Brf1 are the left-most outliers of the plot, while Pol
III and TFIIIC complexes are grouped in the middle and
the right side of the plot. Notably, Tfc4, which is known
to crosslink to both TFIIIB and to the rest of the �A sub-
complex (35,37–39) is situated between Brf1 and other �A
subcomplex members on the PCA plot. Consistent with a
previous study that showed Bdp1 crosslinking to the C34



Nucleic Acids Research, 2020, Vol. 48, No. 20 11223

Figure 4. Inferring the positional organization of the tRNA transcriptional multi-subunit complex using ChIP-exo crosslinking quantification. (A) Aligned
ChIP-exo profiles of Pol III, TFIIIB, and TFIIIC components at tRNA genes show distinct crosslinking patterns. (B) ChExAlign uses a mixture model
to deconvolve the positions and relative strengths of protein–DNA crosslinking events across the aligned multi-protein ChIP-exo profiles. The effect of
crosslinking event deconvolution in the Tfc6 ChIP-exo profile is shown as an example. (C) Matrix of relative crosslinking strengths for TFIIIB, Polymerase
III, and TFIIIC components at detected crosslinking event positions. (D) Principal Component Analysis applied to the matrix of relative crosslinking
strengths approximates aspects of the known organization of the yeast tRNA transcriptional machinery (Figure 3A). PC1 and PC2 together explain 91%
of the variance.

subunit of Pol III (40), Bdp1 is situated proximal to Pol III
subunits on the PCA plot. Moreover, in accordance with
the finding that Tfc3 crosslinks with Tfc1 and Box B (39),
the PCA plot shows Tfc3 in between �A and �B subunits of
TFIIIC.

In summary, ChExAlign’s crosslinking deconvolution
and quantification procedures, and downstream dimension-
ality reduction, are promising approaches for generating hy-
potheses regarding the spatial organization of a protein–
DNA complex from a collection of ChIP-exo data.

ChExAlign enables a principled quantification of regulatory
complex reorganization across conditions

If the structure of a regulatory complex changes across dif-
ferent gene classes or between cell types, we should expect
that the relative crosslinking signatures of members of the
complex will also change. Provided that data from all con-
ditions are analyzed simultaneously, ChExAlign’s approach
to aligning and quantifying protein–DNA crosslinking sig-
natures is suitable for detecting spatial localization changes
within a regulatory complex across conditions. To demon-
strate our framework’s ability to detect regulatory com-
plex reorganization, we applied it to ChIP-nexus data pro-

filing Pol II, the basal transcription factors TBP, TFIIA,
TFIIB, TFIIF, TAF2, XPB, and negative elongation factor
E (NELFE) in Drosophila melanogaster Kc167 cells (26).
Shao and Zeitlinger collected data profiling these factors
both under control conditions and after applying Triptolide
(TRI) treatment, which blocks transcriptional initiation.
We therefore sought to apply ChExAlign to this collection
of ChIP-nexus datasets to quantify TRI-dependent changes
in protein–DNA crosslinking profiles across factors.

We applied ChExAlign to align 16 ChIP-nexus profiles
(eight factors, each in two conditions) across the top 500
most enriched Pol II peak locations (Figure 5A, C). The
multiple profile alignment procedure tightly aligns ChIP-
nexus profiles across these factors and conditions, as in-
dicated by the high consistency between our alignment
and annotated gene TSSs in the regions; 99% regions were
aligned in the same orientation as the annotated TSS, and
53% of annotated TSSs were within 10 bp of the consensus
TSS position within the multiple profile alignment (Figure
5B; Supplementary Figure S3). We next used our mixture
model approach to quantify crosslinking strengths for each
factor and across conditions (e.g. Figure 5D).

As illustrated in Figure 5C and D, Pol II’s crosslinking
profile in the control condition shows one major peak at
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Figure 5. ChExAlign enables quantification of regulatory complex reorganization across protein components and conditions. (A) ChIP-nexus multiple
profile alignments for Pol II and TFIIB in control and TRI treatment conditions. Alignments are performed across the top 500 Pol II binding event
locations. Heatmaps are sorted based on the order resulting from the multiple alignment. (B) Annotated Drosophila gene TSS positions plotted relative
to the multiple profile alignment. (C) Aligned ChIP-nexus tag patterns of eight factors with or without TRI treatment. (D) Example of ChIP-nexus tag
deconvolution at the position +2 over the TFIIB and Pol II profile (control and TRI treatment condition). (E) Fold difference in crosslinking strengths
for eight factors at detected crosslinking event positions. Red represents relative increase in crosslinking strength under the TRI treatment, while blue
represents relative increase in crosslinking strength under the control condition. In all displayed plots, coordinates are displayed with respect to the mode
position of refGene TSS annotations across the aligned regions.

alignment position +33, while the profile in the TRI treat-
ment condition shows additional crosslinking at alignment
position -19. This apparent shift of Pol II occupancy is
explained in detail in the source publication; the shift in
crosslinking to the –19 position is due to the accumulation
of Pol II at the pre-initiation complex (PIC) when it is pre-
vented from moving into the downstream transcriptional
pause site by TRI treatment (26). Similarly, an increase in
TFIIB occupancy is observed at position –19 in the TRI
treatment condition compared to the control. Our approach
allows us to quantify this effect. Comparison of crosslink-
ing quantification across conditions shows a 2-fold increase
in Pol II crosslinking strength at the –19 PIC position af-
ter TRI treatment, while the +33 pause site position shows
a 47% decrease in crosslinking strength. Other changes dis-
cussed in the original publication are also provided with a
quantitative basis by our approach. For example, XPB, the
direct target of TRI treatment, shows a 2-fold increase in
crosslinking strength at the +16 position after TRI treat-
ment, consistent with it blocking transcriptional initiation
at that site. Similarly, a 60% decrease in TBP crosslinking
at the +33 position after TRI treatment is consistent with
TBP enrichment at that location being dependent on Pol II
moving into the pause site. While these factors show distinct
differences between the conditions, factors such as NELFE
and TAF2 retained similar crosslinking patterns after the

TRI treatment (Figure 5C, E). Our results thus demon-
strate that crosslinking profile alignment followed by mix-
ture model analysis enables us to quantify changes in reg-
ulatory complex organization between different conditions
as well as across different experimental targets.

DISCUSSION

We have presented ChExAlign, a principled framework for
characterizing ChIP-exo crosslinking patterns across mul-
tiple members of a protein–DNA complex. Our approach
implements a multiple alignment procedure that is opti-
mized for aligning multi-dimensional ChIP-exo profiles,
and which does not rely on sequence motif or genomic an-
notation information. ChExAlign also encapsulates a novel
mixture modeling approach for estimating the locations
and relative strengths of crosslinking events within a set of
aligned ChIP-exo profiles. As we have demonstrated, the re-
sulting crosslinking matrix can be used to visualize the rel-
ative spatial relationships between members of a protein–
DNA complex (via dimensionality reduction), and to quan-
tify shifts in spatial positioning across experiment condi-
tions. One caveat is that ChExAlign is designed to ana-
lyze crosslinking signatures between known or hypothesized
members of a regulatory complex; it is not designed to be
an exploratory tool where one can determine if a given pro-
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tein belongs to a regulatory complex. ChExAlign’s proce-
dures will estimate relative crosslinking strengths for all con-
stituent ChIP-exo experiments at characterized crosslinking
positions, even if one of the underlying ChIP-exo profiles
represents non-specific background signal. It is further chal-
lenging to assess the statistical significance of a marginal im-
provement in alignment scores in alignments that include or
exclude a constituent experiment.

By applying ChExAlign to characterize the spatial or-
ganization of three distinct regulatory complexes, we have
demonstrated that our approach is generally applicable to
collections of ChIP-exo data profiling multiple members
of a protein–DNA complex that is consistently organized
across a set of genomic regions. Several previous studies
have proposed the idea of characterizing the organization
of protein–DNA complexes from ChIP-exo data (9,26,41).
However, these previous approaches were typically limited
to aligning data manually around known focal points of the
protein–DNA complex (e.g. TF binding motifs or genomic
annotations) and thus become impractical when analyzing
large protein–DNA complexes that may be crosslinked at
multiple unknown locations within regulatory regions.

The gold standard for characterizing the spatial organiza-
tion of regulatory complexes is the creation of 3D structural
models by applying structural biology techniques such as X-
ray crystallography or cryo-EM to purified complexes. Our
approaches by no means result in the same type of struc-
tural information. However, careful analysis of protein–
DNA crosslinking patterns might add useful orthogonal
information to structural studies. For example, ChIP-exo
crosslinking analysis might help to confirm the in vivo rele-
vance of 3D structures that have been defined in vitro. Simi-
larly, analysis of how crosslinking patterns vary across regu-
latory regions or experimental conditions may help to clar-
ify how consistent the structure of a regulatory complex is
in biological conditions.

In summary, we have demonstrated that our framework
enables new forms of insight from analysis of multiple
ChIP-exo crosslinking patterns, taking another step to-
wards the fine-grained characterization of spatial organiza-
tion within protein–DNA complexes. As larger collections
of high-resolution protein–DNA interaction data become
available, our analysis framework will contribute to investi-
gating transcriptional mechanisms in greater detail.
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