
Microglia are considered to be specialized cells of the 
mononuclear phagocyte lineage and constitute the major 
resident immune cells in the central nervous system (CNS). 
Several reports indicate that microglia may be derived from 
two sources, the first being myeloid precursors that colonize 
the CNS, referred to as resident microglia [1-3]. In contrast, 
exogenous microglia precursors are derived from bone 
marrow cells (BMC) [4-11] or from circulating monocytes in 
the periphery [12,13]. Resident microglia have been shown to 
play dual roles in the progression of neurodegenerative disor-
ders. These cells can release pro-inflammatory molecules 
that are neurotoxic and induce neurodegeneration [14,15]. 
However, microglia can also promote neuroprotection and 
neuroregeneration by entering CNS lesions and removing 
toxic byproducts and engulfing pathogens and cell debris 
to promote repair. In addition, microglia can release neuro-
trophic factors and anti-inflammatory molecules that induce 
the re-establishment of a functional neuronal environment 
[15,16]. However, the actions of the resident microglia alone 
are not sufficient to reverse neurodegenerative progres-
sion, and recent research has focused on the application of 

exogenous microglia precursors or monocytes to promote 
neuroprotection in the diseased brain and retina [10-13].

On the other hand, the number of exogenous microglia 
precursors that can be recruited from the periphery to the site 
of CNS lesions is too low to play a sufficient protective role. 
Large numbers (~107cells) of exogenous microglia precur-
sors have been artificially administered to the periphery in 
mice, and only a small fraction of these transplanted cells 
are found to migrate to the CNS lesion site. Our objective 
was to test the hypothesis that enhancing the recruitment of 
transplanted microglia to the lesion site will significantly 
improve neuroprotection.

The recruitment of microglia recruited to lesion sites in 
the CNS, including the retina, is regulated by several mole-
cules, among which chemokines and their cognate receptors 
are key players. The CC-chemokine ligand (CCL2) is the most 
potent microglia chemoattractant that binds CC-chemokine 
receptor 2 (CCR2) on microglia cell surfaces [17-23] and 
mediates the accumulation of these cells at sites of pathology 
[11-13]. This work represents the first to overexpress CCR2 
in primary microglia via lentiviral transduction to enhance 
recruitment in response to CCL2. Our results indicate that 
retinal microglia can be efficiently transduced by lentiviral 
vectors, leading to high CCR2 expression. Importantly, our 
findings indicate that the augmentation of CCR2 expression 
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Conclusions: These findings suggest that microglia can be efficiently transduced with CCR2-GFP lentiviral vectors and 
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in primary microglia enhances their chemotactic response 
to CCL2.

METHODS

Cell culture: Newborn Sprague-Dawley rats were got from 
the SLRC Laboratory Animal Company (Shanghai, China) 
and treated in accordance with The Association for Research 
in Vision and Ophthalmology statement for the use of animals 
in Ophthalmic and Vision Research. Animals were humanely 
killed by intraperitoneal injection of ketamine (240 mg/kg) 
and xylazine (12 mg/kg). Eyes were dissected from postnatal 
day (P) 3 Sprague-Dawley rats, enucleated, hemisected, and 
the lens and vitreous were removed. The retinas were care-
fully isolated, avoiding contamination from the pigmented 
epithelium. Retinas were washed with 0.01M phosphate 
buffered saline (PBS; Hyclone, Logan, UT) then incubated 
in 0.25% trypsin EDTA (Gibco, Invitrogen, Carlsbad, CA) for 
5 min at 37 °C. Following the inactivation of the trypsin by 
the addition of Dulbecco’s Modified Eagle Medium (Nutrient 
Mixture F-12 [DMEM/F12; Hyclone] medium containing 
15% fetal bovine serum [FBS; Gibco] and 1% penicillin-
streptomycin [Gibco]), the retinal pieces were dissociated 
by trituration and centrifuged. Retinal cells were plated in 
75 cm2flasks (Nunc, Roskilde, Denmark) and cultured in 
DMEM/F12 at 37 °C in a humidified atmosphere of 95% air/ 
5% CO2with media exchanges every 3 days. Following two 
weeks of incubation, microglial cells were loosely adherent 
and suspended in the media. The microglia-enriched cultures 
were shaken gently and the cells harvested from the medium. 
Microglia cells obtained by this method were 95% pure.

Recombinant CC-chemokine receptor 2 lentiviral vector 
design and production: Lentivirus was produced from 
co-transfection with four plasmids (pPsv-REV, pMDlg-pRRE, 
pMD2G, and the transfer plasmid vector encoding GFP and 
CCR2, kindly provided by Dr. Trono of Geneva University). 
CCR2 was amplified using the following primers; CCR2 
forward primer 5′-TGC TCT AGA GAA GAC AAT AAT 
ATG TTA CC-3′, CCR2 reverse primer 5′-ATA GCG GCC 
GCT TAC AAC CCA ACC GAG ACC T-3′. Recombinant 
lentiviral vectors was harvested 72 h following cotransfection 
of the pPsv-REV (10 μg), pMDlg-pRRE (15 μg), the transfer 
plasmid (20 μg), and pMD2G (7.5 μg) into 293T cells cultured 
in DMEM (10% FBS). Transfections were performed using 
Lipofectamine (Invitrogen, Carlsbad, CA) with the manufac-
turer’s recommendations.

In vitro lentiviral vector transduction efficiency: Microg-
lial cells were seeded in 96-well plates (Corning, Corning, 
NY) at a density of 2×103/well, and 0.5 ml DMEM/F12 with 
1% penicillin–streptomycin and 15% FBS was added to 

each well. Primary microglia were cultured for 24 h. Viral 
particles at a multiplicity of infection (MOI) of 2.5, 5, 10, 20, 
50, and 100 were added to the wells. Following incubation at 
37 °C in 5% CO2for 24 h, the virus-containing medium was 
removed and replaced with 0.5 ml fresh culture medium per 
well. The transduction efficiency was determined daily with 
an inverted epifluorescent microscope (DMI3000B; Leica, 
Wetzlar Germany) and was quantified by measuring the GFP-
expressing cells as a percentage of the total number of cells 
visible. As CCR2-GFP is a fusion protein, GFP-expressing 
microglia also express the CCR2 protein. Primary microglia 
transduced with 5 MOI of the CCR2-GFP lentivirus were 
used in the following studies as the morphology of these cells, 
which exhibited a typical rounded cell morphology with a 
large cytoplasm and a cell body with one or two extensions, 
was most similar to the nontransduced primary microglia.

Western blot analysis: Five days following lentiviral vector 
transduction, CCR2-GFP-expressing microglia were washed 
with PBS, resuspended in 100 μl ice-cold cell lysis buffer 
(20 mM Tris), and lysed by ultrasound at 4 °C for 20 s. The 
lysates were centrifuged at 15,777 ×gfor 10 min at 4 °C and 
the protein concentrations were determined by spectropho-
tometry (NanoDrop ND-1000, Thermo Scientific, Wilm-
ington, DE). Proteins were separated by sodium dodecyl 
sulfate-PAGE using 5% stacking and 12% separating gels and 
were subsequently transferred to polyvinylidene difluoride 
membranes (PVDF; Millipore, Billerica, MA). Membranes 
were blocked in Tris buffer (TBS, 50 mM Tris, PH 7.5) 
containing 5% skim milk and then incubated overnight at 
4 °C with primary antibodies (rabbit anti-CCR2, 1:1000 dilu-
tion, Abcam, Cambridge, MA). Following washes in TBS 
containing Tween-20 (TBST), goat anti-rabbit immunoglob-
ulin (IgG)-horseradish peroxidase (HRP) secondary antibody 
(1:2000 dilution, Cell Signaling Technology, Danvers, MA) 
was applied and incubated for 1 h at 37 °C. Equal amounts of 
protein loading were confirmed by re-probing the membranes 
with the mouse anti-β actin-HRP (1:10,000 dilution, Abcam). 
Immunoblots were visualized by chemiluminescence (Pierce 
Biotechnology, Rockford, IL) with exposure to autoradio-
graph film (X-OMAT AR; Eastman Kodak, Rochester, NY).

Immunofluorescence: Primary microglia were subcultured 
on sterile glass coverslips for 12–16 h, washed in PBS, fixed 
in 4% formaldehyde for 10 min at 37 °C, permeabilized in 
0.2% Triton-X 100 for 10 min at room temperature, washed in 
PBS, and then blocked in 1% BSA in PBS for 20 min at room 
temperature. The cells were then incubated with primary 
antibodies (rabbit polyclonal anti-CCR2 1:100, Abcam; 
mouse monoclonal anti-Iba11:100, Abcam; and mouse mono-
clonal ant-ED1 1:100, Abcam) overnight at 4 °C. Cells were 
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then washed in PBS and incubated with secondary antibodies 
(Texas-Red-conjugated anti-rabbit IgG 1:1000, Invitrogen; 
Texa-Red-conjugated anti-mouse IgG 1:1000, Invitrogen; 
and Fluorescein isothicyanate-conjugated anti-mouse IgG 
1:1000, Invitrogen) in PBS for 40 min at 37 °C. Images were 
captured using confocal laser microscope (TCS SP2; Leica) 
and analyzed using Leica software.

Flow cytometry: CCR2-GFP-tagged microglia and primary 
microglia were collected, washed with PBS, and pelleted by 
centrifugation at 301 ×gfor 5 min. Single-cell suspensions 
were obtained by homogenization through 40-μm nylon cell 
strainers (BD Falcon, Franklin, NJ). The two groups of single 
cells were collected and analyzed for GFP fluorescence, 
using fluorescence-assisted cell sorting on a flow cytometer 
(Beckman, Brea, CA).

Chemotaxis assay: Chemotaxis assays were performed using 
the BD Falcon chemotaxis chamber (BD Falcon), using a 
polyethylene terephthalate membrane with an 8-μm pore 
size. Microglial cells suspended in DMEM/F12 were added 
to the upper chamber and cell-free DMEM/F12 to the lower 
chamber and incubated overnight. Lentivirus expressing 
CCR2-GFP or GFP alone was added to the upper chamber 
to transduce the microglia. Following one media change, 
various dilutions of CCL-2 (1, 10, 20, 100 ng/ml, which induce 
increasing degrees of inflammation in the lesion area of the 
retina; data not shown) were added to the lower chamber on 
the fourth day and incubated for 6, 10, or 24 h. Nonmigra-
tory cells were then removed from the membrane surface in 
the upper chamber, using a cotton swab, and cells that had 
migrated to the lower surface of the membrane were fixed 
with 4% formaldehyde for 10 m and labeled with 4,6-diamino-
2-phenyl indole (DAPI; Sigma, St. Louis, MO) to visualize 
cell nuclei. The number of migrating cells was counted at 50X 
magnification, using a double-blinded approach, and images 
were acquired at 200X, using an epifluorescent microscope 
(LEICA DM 4000B; Leica)

Statistical analysis: The number of transmigrated cells, 
those that migrated from the upper to the lower surface of 
the membrane, represents the chemotactic response of the 
cells. Data are presented as mean±standard error (SEM). Data 
from the different conditions were analyzed using one-way 
ANOVA for significant differences. Results were considered 
as significant at p<0.05.

RESULTS

Primary culture of retinal microglia and immunocyto-
chemical characterization: Retinal microglia were obtained 
from 14-day-old primary mixed glial cell cultures (Figure 
1A) prepared from P3 Sprague-Dawley rats, using a “shaking 

off” method that the microglia were harvested by shaking the 
flasks at 301 ×gfor 1 h on an orbital shaker [24]. Immunofluo-
rescence showed that the harvested cells were immunoreac-
tive for the microglial-specific proteins ED1, Iba1, and CD11b 
(Figure 1B,C,D).

Transduction efficiency: To investigate the transduction effi-
ciency of the lentiviral vectors, primary cells were seeded 
in 96-well plates at 2×103cells per well and transduced at 
different MOIs. After 3 days nearly 99% of the transduced 
primary microglia were GFP positive at the MOIs of 50 and 
100, whereas 55% of the cells were GFP positive at the MOIs 
of 5, 10, and 20. At MOI 2.5, 25% cells were GFP positive. 
On the fourth day following transduction, the GFP-positive 
microglia that had received lentivirus at MOI 100 and 50 
began to aggregate and die by apoptosis. At the same time 
microglia transduced with MOI 5, 10, or 20 of lentivirus 
continued to expand. At MOI 5, the morphology of GFP-
positive microglia was homogeneous, similar to that observed 
for nontransduced primary microglia. Consequently, a 
MOI of 5 was selected for the rest of the study. The green 
fluorescence of GFP and CCR2-GFP-expressing microglia 
was measured using flow cytometry to assess transduction 
efficiency. Figure 2A, B shows transduction efficiencies as 
high as 97.6% in the cultured microglia. These CCR2-GFP-
expressing microglia also expressed markers of microglia, 
Iba1 and ED1 (Figure 3C-H).

Overexpression of CCR2 in transduced primary microglia: 
Lentivirus-transduced primary microglia were subjected to 
western blot analysis to quantify CCR2 protein expression. 
We confirmed that CCR2 protein was indeed overexpressed 
in the CCR2-GFP-transduced primary microglia compared 
to microglia transduced with GFP alone. The level of CCR2 
expression in the CCR2-GFP microglia was approximately 
7.4 times higher than control (Figure 2C). Immunofluores-
cence confirmed that the CCR2-GFP microglia expressed 
CCR2 and that these microglia exhibit a typical rounded cell 
morphology with a large cytoplasm (Figure 2D-F).

The chemotactic response of CCL2-stimulated microglia is 
concentration and time dependent: Microglial cells were 
placed in the upper wells of specialized culture chambers, 
and their transmigration toward the bottom of the chamber, 
which contained CCL2 (1 ng/ml to 100 ng/ml), was assessed. 
Following incubation, the number of migrating microglia was 
quantified by counting the cells that had passed through the 
filter. This number represents the chemotactic response of 
the microglia. The number of transmigrated microglia per 
field was significantly increased following incubation with 
CCL2 at concentrations of 20 ng/ml and 100 ng/ml compared 
with CCL2 at 1 ng/ml after 24 h exposure (p<0.01; Figure 
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4), representing an increasing chemotactic response of the 
microglia with increasing concentration of CCL2. The highest 
CCL2 concentration elicited submaximal effects, while CCL2 
at 20 ng/ml elicited maximal effects (Figure 4J). To evaluate 
the time course of chemotaxis, microglia were treated with 
CCL2 (20 ng/ml) for 6, 10, and 24 h. These data suggest 
that the chemotactic response of microglia is significantly 
increased at 10 and 24 h following CCL2 exposure compared 
to 6 h (p<0.01; Figure 5).

CCR2 overexpression promotes the efficient recruitment of 
retinal microglia: To determine whether overexpression of 
CCR2 could enhance the recruitment of retinal microglia, 
primary microglia transduced with the CCR2-GFP lentivirus 
(CCR2-MG) were subjected to the chemotaxis assay. Similar 
to the previous findings using primary microglia, the chemo-
tactic response of the CCR2-GFP-transduced microglia was 
enhanced in a concentration- and time-dependent manner 
compared to GFP-transfected (GFP-MG) and untreated 

Figure 1. Identification of primary 
microglial cells.A: Primary microg-
lial cells were harvested from 
14-day-old microglia-enriched 
cultures from retina of P3 Sprague-
Dawley rats (200X).B-D: Immuno-
fluorescence showed the isolated 
cells can express microglial specific 
marker ED1, Iba1, and CD11b.

Figure 2.  Ident i f icat ion of 
microglia transduced with green 
fluorescent protein (GFP)-tagged 
CCR2 (CCR2-GFP) lentivirus.A: 
Flow cytometric analysis showed 
untreated primary microglia were 
used as controls.B: Transduction 
efficiency was analyzed by f low 
cytometry for GFP f luorescence 
and reached 97.6%.C: Western 
blotting shows that microglia trans-
duced with CCR2-GFP (MGC-
ccr2) expressed more CCR2 than 

microglia transduced with GFP (MGC-gfp). TTF was tail tip fibroblast of mouse and was a negative control.D-F: Microglia transduced 
with CCR2-GFP express CCR2 and GFP.
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microglia (primary MG; Figure 4 and Figure 5). The chemo-
tactic response of CCR2-GFP overexpressing microglia was 
consistently approximately twofold greater than that of either 
GFP-transduced or untreated microglia at the same concen-
tration and time duration (Figure 6).

DISCUSSION

Chemokine molecules regulate the movement of microglia 
[25]. Of these, CCL2, also known as monocyte chemotactic 
protein (MCP-1), is a crucial member of the CC chemokine 
subfamily that controls the recruitment of monocytes to 

Figure 3. Microglia transduced with CC-chemokine receptor 2 (CCR2)-green fluorescent protein (GFP) lentivirus express microglia marker. 
Some cells are spindle shaped and a few are ramified; both shapes represent the “silent” state of microglia, while approximately 50% of 
primary microglia showed amoeboid or round shapes, indicating a state of activation. This culture composition is very similar to that of 
the untreated primary microglia.A: Microglia transduced with CCR2-GFP are shown under light microscopy.B: Microglia transduced 
with CCR2-GFP express green fluorescence.C- H: Microglia transduced with CCR2-GFP express microglia marker ED1 and Iba1 in vitro.
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sites of inflammation by binding its receptor, CCR2. CCR2-
knockout mice were shown to have significant defects in 
monocyte recruitment, suggesting that CCL2-mediated 
CCR2 activation is critically involved in the accumulation 
of monocytes at lesions [26]. Therefore, the CCL2/CCR2 
pathway potentially represents an excellent target to enhance 
the recruitment of microglia precursors from the periphery 
to lesions in the CNS. Microglia represent the primary 
immune cells in the CNS where they continuously inspect 
their environment and react to changes that could threaten 
homeostasis [27,28]. As surveillance agents, microglia need 
to travel to the locations where they are needed. Our previous 
study suggested that microglia migrate to the photoreceptor 

layer in response to photoreceptor dysfunction or to debris in 
the subretinal space of the retina [29]. Several studies have 
focused on the effects of exogenous microglia precursor 
transplantation in various pathological models, including 
those for Alzheimer disease, Parkinson disease, and multiple 
sclerosis. However, potential means by which the recruitment 
of microglia to the CNS may be enhanced have not been 
reported. Therefore, the current study focuses on promoting 
the ability of microglial chemotaxis to migrate to sites of CNS 
damage by overexpressing CCR2.

Recent studies have used adenovirus, adeno-associ-
ated virus, as well as lentivirus as vectors for microglial 

Figure 4. Concentration-dependent chemotactic response of CC-chemokine receptor 2 (CCR2) -transduced microglia and control in response 
to CC-chemokine ligand 2 (CCL2). Immunofluorescent images (A-H) showing the distribution of DAPI-labeled primary microglia (MG) and 
CCR2-GFP expressing microglia (CCR2-MG) that have passed through the membrane toward the chamber containing CCL2 at concentra-
tions ranging from 1 to 100 ng/ml after 24 h in culture (200X).A-D: Primary microglia migrated to the lower surface of the chemotaxis 
chamber.E-H: CCR2-GFP-expressing microglia migrated to the lower surface of the chemotaxis chamber.I: Quantification of the chemotactic 
response of the various conditions of microglial cells (CCR2-MG, GFP-MG, and primary MG) to increasing concentrations of CCL2. The 
number of transmigrated cells for each condition represents the chemotactic capacity. Data represent the mean number of cells ±SEM from 
nine random fields. One-way ANOVA (*p<0.01) showed significant differences in chemotactic response at CCL2 concentrations of 10, 20, 
and 100 ng/ml of CCL2, while CCL2 at 1 ng/ml was indistinguishable from control (MG).J: Comparison of the chemotactic response of 
CCR2-MG, GFP-MG, and primary MG in the same conditions. The highest CCL2 concentration elicited submaximal effects, while the 
CCL2 at 20 ng/ml elicited maximal effects after 24 h treatment. Each experiment is representative of three independent experiments.
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Figure 5. Time-course of microglial chemotaxis in response to CCL2. Immunofluorescent images (A-I) showing the distribution of DAPI-
labeled microglia that have passed through the membrane after 6, 10, and 24 h of CCL2 exposure (200X).A, D, G: Primary microglia 
migrated to the lower surface of the chemotaxis chamber.B,E,H: GFP- expressing microglia migrated to the lower surface of the chemotaxis 
chamber.C,F,I: CCR2-GFP-expressing microglia migrated to the lower surface of the chemotaxis chamber.J. Quantification of the chemo-
tactic response of various groups of microglia (CCR2- MG, GFP-MG and primary MG) at various time points (6, 10, or 24 h) following CCL2 
exposure (20 ng/ml). Each value corresponds to the mean ± SEM from nine random fields. One-way ANOVA (*p<0.01) shows significant 
differences between CCR2-MG compared with GFP-MG and/or primary MG at the same time points. Each experiment is representative 
of three independent experiments.
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transduction [30-34]. Lentiviral vectors have been reported 
to be efficient mediators of transgene expression in microglial 
cells that do not result in microglial activation [30,32,35].

The current study used a lentiviral-based system to over-
express GFP-tagged CCR2 to enhance microglial response 
to the CCR2 ligand, CCL2. Our results show a transduction 
efficiency as high as 97.6%, which is greater than previously 
reported [35]. This different transduction efficiency is most 
likely due to the different species and tissues used. Balcaitis 
et al. showed that enhanced GFP-tagged lentiviral trans-
duced cells did not show any release of pro-inflammatory 
mediators (e.g., nitric oxide, tumor necrosis factor-alpha, 
interleukin-6) and also observed no difference in transduced 
versus control cells upon stimulation with lipopolysaccha-
ride/interferon-γ [35]. Consistent with these previous find-
ings, we observed that the morphology of CCR2-transduced 
microglia was indistinguishable from that of nontransduced 
primary microglia. Further studies will be needed to verify 
the usefulness of transduced microglia in in vivo injuries in 
the CNS. For example, our future studies will aim to study 

the phagocytic functions of CCR2-transduced microglia in 
the light-injured retina of Sprague-Dawley rats.

CCL2 regulates the migration of endogenous microglia 
and blood-derived macrophages to inflammatory sites in 
the CNS [36-38]. Via binding with CCR2, CCL2 has been 
reported to induce changes in actin polymerization and the 
subsequent reorganization of the actin cytoskeleton, the 
formation of focal adhesions, and pseudopod extension, 
which all contribute to the migration of activated microglia 
[39-41]. The present study demonstrates a concentration- and 
time-dependent microglial recruitment in response to CCL2. 
At higher concentrations of CCL2 in the lower chamber, 
more microglia migrated through the membrane. However, 
at the highest CCL2 concentration (100 ng/ml), microglial 
migration toward the lower chamber was not improved. We 
speculate the receptor in microglia is saturated by co-binding 
with CCL2; this is consistent with previous studies [40]. In 
addition, we observed a significant difference between 
CCR2-MG and GFP-MG and/or primary MG at 6 h, 10 h, 
and 24 h of migration.

Figure 6. Chemotactic response in 
response to CC-chemokine ligand 
2 (CCL2) increases twofold in 
CCR2-overexpressing microglia. 
The number of transmigrated 
cells in each condition represents 
the chemotactic response of the 
microglia. The number of migrating 
microglia overexpressing CCR2 
(CCR2-MG) is approximately 
twofold compared to untreated 
microglia (MG;A) and GFP-trans-
duced microglia (GFP-MG;B) at 
the same CCL2 concentration and 
posttreatment time points.
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In the current study, increases in CCR2 protein expres-
sion in microglia led to stronger migratory activity in 
response to CCL2, indicating that the CCL2–CCR2 inter-
action plays an important role in microglia recruitment. El 
Khoury et al. found that transgenic Tg2576 amyloid precursor 
protein transgenic mice (Tg2576), a model of Alzheimer 
disease-like pathology, is also deficient in CCR2 and these 
Tg2576 mice display reduced microglial accumulation around 
brain plaques [26]. Thus, a combination of CCR2 overexpres-
sion and microglial recruitment may represent a promising 
strategy for neuroprotection in the CNS.

In summary, we have shown the effective expression of 
GFP-tagged CCR2 in primary microglia with the use of lenti-
viral vectors and that the CCR2-overexpressing microglia 
show an enhanced CCL2-mediated recruitment. In addition 
to CCR2 expression, the presence of GFP in transduced 
microglia cells will allow their clear discrimination for 
further study in vivo. It remains to be confirmed whether the 
CCR2-GFP microglia have the same enhanced recruitment 
in vivo. Future studies will use these methods of CCR2 gene 
delivery to microglia in vivo for research in animal models 
of neurologic disease.
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