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ABSTRACT

Differentiation of skeletal muscle cells is accom-
panied by drastic changes in gene expression
programs that depend on activation and repression
of genes at defined time points. Here we identify the
serine/threonine kinase homeodomain-interacting
protein kinase 2 (HIPK2) as a corepressor that
inhibits myocyte enhancer factor 2 (MEF2)-depend-
ent gene expression in undifferentiated myoblasts.
Downregulation of HIPK2 expression by shRNAs
results in elevated expression of muscle-specific
genes, whereas overexpression of the kinase
dampens transcription of these genes. HIPK2 is con-
stitutively associated with a multi-protein complex
containing histone deacetylase (HDAC)3 and
HDAC4 that serves to silence MEF2C-dependent
transcription in undifferentiated myoblasts. HIPK2
interferes with gene expression on phosphorylation
and HDAC3-dependent deacetylation of MEF2C.
Ongoing muscle differentiation is accompanied
by elevated caspase activity, which results in
caspase-mediated cleavage of HIPK2 following
aspartic acids 916 and 977 and the generation of a
C-terminally truncated HIPK2 protein. The short
form of the kinase loses its affinity to the repressive
multi-protein complex and its ability to bind HDAC3
and HDAC4, thus alleviating its repressive function
for expression of muscle genes. This study identifies
HIPK2 as a further protein that determines the
threshold and kinetics of gene expression in
proliferating myoblasts and during the initial steps
of myogenesis.

INTRODUCTION

Homeodomain-interacting protein kinase 2 (HIPK2) is
a proline-directed kinase that shares strong sequence
homology with the kinases HIPK1 and HIPK3.
Members of the HIPK family display a certain degree of
functional redundancy, as mice deficient for the Hipk1
or Hipk2 genes are viable, whereas double-deficient mice
die early in embryogenesis (1,2). HIPK2 bears its kinase
domain in the N-terminus, which is followed by an inter-
action domain for homeodomain transcription factors
and a C-terminal end that is rich in short repeats of
serine, glutamine and alanine. Recent evidence shows
that HIPK2 is generated at the ribosome in a constitu-
tively active form by cis-autophosphorylation of its acti-
vation loop (3). Accordingly the amount of HIPK2
proteins needs to be tightly controlled by the activity of
at least four different ubiquitin E3 ligases (4–7). HIPK2
in apoptotic cells can be further controlled by caspase-
mediated removal of the C-terminal region (8). HIPK2
localizes mainly to subnuclear speckles and functions
either as a proapoptotic mediator of the DNA-damage
response or alternatively as a regulator of differentiation
processes. Drosophila HIPK2 (dHIPK2) regulates eye
development by phosphorylation of the corepressor
Groucho, thus altering gene expression (9). Inactivation
of the Dhipk2 gene results in small rough eyes and pupal
lethality with rare escaper adults (10). This role is evolu-
tionary conserved in mammals, as HIPK2�/� and
HIPK1+/� mice often show small eyes with lens deficiency
and abnormally thickened and laminated retinas (11).
A number of further studies have used loss-of-function
approaches to reveal a role of HIPK2 in a variety of
developmental processes. These include the postnatal
development of enteric dopaminergic neurons (12),
primitive–definitive hematopoiesis, vasculogenesis,
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angiogenesis, neural tube closure (2), erythroid differenti-
ation (13) and aorta-gonad-mesonephros hematopoiesis
(14). HIPK2 plays a dual role in transcriptional regula-
tion, as it can either activate or repress mRNA produc-
tion. The activating function of HIPK2 largely relies on its
ability to phosphorylate transcription factors such as
p53 (15,16), members of the T cell factor (TCF) family
and activating transcription factor 1 (17,18). On the
other hand, HIPK2 can repress gene transcription on
binding to general regulators of gene expression including
methyl-DNA–binding proteins (19,20), the acetyl transfer-
ases p300 and cAMP response element-binding protein
(CREB)-binding protein (CBP) as well as the polycomb
group protein Pc2 (2,21). In line with the concept of
HIPK2 as a negative regulator of gene expression,
shRNA-mediated downregulation of the kinase is suffi-
cient to allow inducible expression of specific target
genes (4). HIPK2 is also found in a complex with the
NK-3 homeodomain protein and histone deacetylase
(HDAC) activity (22). We recently identified HDAC3 as
a further HIPK2-interacting protein (23). HDAC3
belongs to the class I family of HDACs with homology
to the budding yeast counterparts Rpd3 (24) and is a cata-
lytic subunit contained in Silencing mediator of retinoic
acid and thyroid hormone receptor (SMRT)–Nuclear
receptor Corepressor (NCoR) nuclear complexes (25,26).
The class IIa family of HDACs (HDAC4, HDAC5,
HDAC7 and HDAC9) show nucleocytoplasmic shuttling
that is regulated by signal-induced phosphorylation (27–
29). Class IIa HDACs also bind to the family of myocyte
enhancer factor (MEF) transcription factors and repress
their activity (30,31).
MEFs cooperate with the transcription factor MyoD

for the expression of gene products mediating myogenic
differentiation. Differentiation in adult skeletal muscle
is triggered by specific stimuli such as repair or exercise,
which leads to cell cycle arrest of precursor cells
(myoblasts), followed by increased expression of muscle
function genes. Differentiation is terminated after fusion
of myoblasts into multinucleated myofibers (32,33). The
differentiation process proceeds through highly coordi-
nated unleashes of distinct serial transcriptional
programs. The apical regulator of myogenesis is MyoD,
a basic helix-loop-helix transcription factor that binds
short DNA elements called E boxes. MyoD increases
expression of further transcription factors such as
myogenin and members of the MEF2 family (MEF2A-
D), which in turn cooperate with MyoD in the expression
of muscle-specifying genes such as myosin light chain
(MyLC), myosin heavy chain and myogenin (33,34). The
activity of MEF2 transcription factors is highly controlled
by posttranslational modifications. These include stimula-
tory acetylation, inhibitory SUMO (small ubiquitin-like
modifier) modification and regulatory phosphorylation
by a variety of enzymes. This also ensures that MEF2
proteins, which are already detectable in myoblasts,
are kept in a transcriptionally inactive state (34). MEF2
proteins bind to class IIa HDACs by 18 conserved amino
acids in the amino-terminal extensions of HDAC4, �5
and �7. These HDACs suppress the myogenic transcrip-
tional program and thus block the differentiation program

of skeletal muscle cells (35). The association of MEFs
with HDACs catalyzes local histone deacetylation
but also attracts further chromatin-modifying enzymes
such as methyltransferases that trigger histone H3 lys9
methylation (36). Silencing of MEF activity is also due
to HDAC-mediated deacetylation of MEF2 proteins
(37). Removal of the activating acetyl groups proceeds
either by direct deacetylation or in the case of HDAC4,
by two indirect mechanisms: one mechanism is based
on the recruitment of HDAC3 (38), while the second
mechanism uses a direct competition between acetylation
and HDAC4-mediated SUMOylation of a specific lysine
(39). But HDAC4 is also associated with further enzymes
such as an incompletely characterized kinase activity
that leads to an inhibitory MEF2D phosphorylation
(40). The negative role of HDAC4-mediated phosphoryl-
ation is corroborated by the positive effect of Calcineurin
on muscle differentiation, as this phosphatase dephos-
phorylates MEF2 proteins (41) and thus antagonizes its
inhibitory SUMOylation (42). The complex network of
accessory proteins and posttranslational modifications
that shift MEF2 proteins from the repressed to the
activated state is incompletely understood and new regu-
latory proteins that control the threshold and kinetics of
myoblast differentiation need to be identified.

Here we identify HIPK2 as a new component of the
MEF2C–HDAC-associated multi-protein complex that
serves to repress MEF2C activity in undifferentiated
myoblasts. HIPK2 antagonizes gene expression in a
kinase-dependent way by phosphorylation of MEF2C
and indirectly by mediating HDAC3-dependent
deacetylation of MEF2C. But HIPK2 only controls the
transcription threshold in undifferentiated myoblasts and
during the first days of muscle differentiation, as its
caspase-mediated cleavage results in the generation of a
truncated form that lacks a gene-repressive function.

MATERIALS AND METHODS

Antibodies, plasmids and reagents

All the information is given in the Supplementary Table S1.

Cell culture and transfections

Human osteosarcoma U2OS, HEK293T cells and murine
C2C12 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) containing 10% FCS and 1% (w/v)
penicillin/streptomycin at 37�C and 5% CO2. HEK293T
cells were plated out 1 day before transfection, which was
done using polyethylenimine as described (43) or with
Rotifect (Roth) or Lipofectamine 2000 (Invitrogen) ac-
cording to the manufacturer’s instructions. Knockdown
of HIPK2 in C2C12 cells was done by lentiviral delivery
of a specific pLKO.1-puro vector expressing a HIPK2-
specific shRNA (MISSION� shRNA vectors, Sigma-
Aldrich). The production of lentiviruses was done as
described (23). Overexpression of HIPK2 in C2C12 was
done either with an adenoviral vector (a kind gift of Dr.
Silvia Soddu, Regina Elena Cancer Institute, Rome, Italy)
or a lentiviral vector encoding a Flag-tagged version of
HIPK2 (23). Virally transduced cells were further
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selected with puromycin for 3 days and then shifted to
differentiation medium (DMEM containing 2% horse
serum). The differentiation medium was complemented
after 2 days with 10 mM AraC to eliminate the non-
differentiated myoblasts.

Monoclonal anti-HIPK2 antibodies

To develop monoclonal antibodies recognizing the N- or
C-terminal parts of HIPK2, the regions encompassing
sequences between 2–191 (HIP-N) and 781–1191
(HIP-C) were expressed as His-tagged proteins in
Escherichia coli. The HIPK2 fragments were purified
under denaturing conditions and dialyzed against phos-
phate buffered saline (PBS). The purified N-His-fusion
proteins (HIP-N or HIP-C) (50mg) were injected
intraperitoneally (i.p.) and subcutaneously (s.c.) into
LOU/C rats using incomplete Freund’s adjuvant supple-
mented with 5 nmol CpG 2006 (TIB MOLBIOL, Berlin,
Germany). After a 6-week interval, a final boost with
50 mg HIP-C or HIP-N and CpG 2006 was given i.p.
and s.c. 3 days before fusion. Fusions of the myeloma
cell line P3X63-Ag8.653 with the rat immune spleen cells
were performed according to standard procedures.
Hybridoma supernatants were tested in a solid-phase im-
munoassay with HIP-C or HIP-N coated to ELISA plates.
Antibodies from tissue culture supernatant bound to HIP-
C or HIP-N were detected with horseradish peroxidase
(HRP)-conjugated mAbs against the rat IgG isotypes
(TIB173 IgG2a, TIB174 IgG2b, TIB170 IgG1 all from
ATCC, R-2c IgG2c homemade), thus avoiding mAbs of
IgM class. HRP was visualized with ready-to-use TMB (1-
StepTM Ultra TMB-ELISA, Thermo). MAbs that reacted
specifically with HIP-C or HIP-C were further analyzed in
western blotting. N6A10 (rat IgG1) and C1B3 (rat IgG2b)
were used in this study.

Cell lysis protocols

Harvested cells were washed in PBS and directly lysed in
NP-40 buffer (20mM Tris–HCl, pH 7.5, 150mM NaCl,
1mM phenylmethylsulfonylfluoride, 10mM NaF, 0.5mM
sodium orthovanadate, leupeptine (10mg/ml), aprotinin
(10 mg/ml), 1% (v/v) NP-40 and 10% (v/v) glycerol). The
lysate was incubated for further 20min on ice and
centrifuged for 10min at 4�C. Sodium dodecyl sulphate
(SDS) sample buffer was added to the supernatant,
followed by heating for 5min at 95�C and separation of
proteins by sodium dodecyl sulphate-polyacrylamide gel
electrophoresis (SDS-PAGE). Extracts that were tested
for protein phosphorylation using � phosphatase treat-
ment were lysed in NP-40 buffer lacking all phosphatase
inhibitors.

Immunoprecipitation experiments and western blotting

Cell lysates in NP-40 buffer were precleared for 1 h at 4�C
by incubation with protein A/G sepharose. The
immunoprecipitation (IP) was done on addition of 2 mg
of precipitating antibodies or isotype-matched control
antibodies together with 25 ml of protein A/G sepharose.
The tubes were rotated in the cold room for 2 h on a
spinning wheel. The immunoprecipitates were washed

five times with NP-40 buffer and eluted by addition of
1� SDS sample buffer and boiling. Equal amounts of
protein were separated by SDS-PAGE, followed by
semidry blotting to a polyvinylidene difluoride
membrane (Millipore) as previously described (44).

Indirect immunofluorescence

U2OS cells were grown on coverslips in 12-well dishes and
transfected with various expression vectors. Fixation of
cells was done with a cold methanol:acetone solution
(1:1), followed by rehydration in PBS and blocking in
PBS containing 10% (v/v) goat serum. The primary
antibody (diluted in 1� PBS containing 1% (v/v) goat
serum) was incubated overnight at 4�C. The next day,
cells were washed several times in PBS and then incubated
with the Cy3-coupled secondary antibody diluted in PBS
containing 1% (v/v) goat serum. After washing the cells
with PBS, nuclei were stained with Hoechst 33342 (1mg/
ml) and cells were mounted with Kaiser’s glycerol gelatine.
Cells were analyzed with a Nikon eclipse TE2000-E micro-
scope. Dying or mitotic cells and cells expressing aber-
rantly high levels of the proteins were not analyzed.

Quantitative real-time polymerase chain reaction

Total RNA was extracted from lysed cells using the
RNeasy mini kit (Qiagen). RNA quality was tested on
ethidium bromide–stained agarose gels. cDNA was
synthesized using Oligo (dT) 20 primers and the
Superscript II first strand synthesis system (Invitrogen).
Real-time polymerase chain reaction (PCR) was per-
formed using specific primers (Supplementary Table S1)
and Absolute SYBR Green ROXMix (Thermo Scientific).
Gene expression was determined using an Applied
Biosystems 7300 real-time PCR system, all experiments
were performed in triplicates and quantitation was done
using the comparative ��CT method. For that, data were
normalized to the housekeeping gene b-actin, and the re-
sulting �CT values were compared with a sample that was
chosen as a calibrator. The relative expression level was
then calculated according to the following formula:
R=2���CT.

DNA/protein pull-down experiments

A luciferase reporter gene controlled by the myogenin
promoter was used as a template for a PCR reaction to
amplify specific regions using one of the primers in the
biotinylated form. One PCR product encompasses the
MEF2 binding sites, and the control PCR product
encompasses a part from the luciferase-coding region.
After purification of the biotinylated PCR products, the
binding assay was performed as follows: 8 mg of nuclear
extract from C2C12 cells lysed at different differentiation
points was incubated with 1 mg of the biotinylated DNA
and 1 mg of poly-(dI-dC) in a final volume of 20 ml in
binding buffer (20mM HEPES, pH 7.9, 0.1mM EDTA,
60mM KCl, 8% (v/v) glycerol, 1mM DTT, 500 mg/ml
bovine serum albumin and 0.05% (v/v) NP-40). After
30-min incubation at room temperature, streptavidin-
coupled magnetic beads pre-equilibrated in binding
buffer were added to the reaction and incubated for
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another 30min at room temperature. The DNA–protein
complexes were washed four times with binding buffer
using a magnetic stand. After boiling the mixture for
5min in 1� SDS sample buffer, DNA-bound proteins
were identified by western blotting using specific
antibodies as indicated.

Chromatin immunoprecipitation experiments

Five flasks with C2C12 were cross-linked with 1% (v/v)
formaldehyde for 10min at room temperature. Cells were
then incubated for 5min in 0.1 M glycine to stop the cross-
linking, followed by lysis in RIPA buffer as described (45).
A Branson sonifier 250 was used to shear the genomic
DNA by sonification. After removal of cellular debris by
centrifugation and digestion of RNAs with RNAse A,
equal amounts of DNA were incubated with 2 mg of
N6A10 anti-HIPK2 antibodies or control IgG antibodies
previously bound to protein G-coupled Dynabeads�.
After extensive washing, the precipitated DNA fragments
were eluted. Sequences of the primers used for chromatin
immunoprecipitation (ChIP) experiments are given in the
supplementary section; the PCR product was quantified
using the Applied Biosystems 7300 real-time PCR system.

RESULTS

HIPK2 represses transcription of muscle-specific genes

Given the importance of HIPK2 in a variety of differen-
tiation processes and its expression in skeletal muscle (46),
it was interesting to investigate its potential contribution
to myogenesis. To address this question, we took advan-
tage of the availability of the well-established C2C12 cell
model that allows efficient conversion of myoblasts to
myotubes and thus faithfully recapitulates muscle differ-
entiation in vitro (47). To address the role of HIPK2 for
basal expression of muscle-specific genes such as
myogenin or MyLC in C2C12 cells, endogenous HIPK2
was knocked down on expression of a specific shRNA,
followed by quantitative analysis of gene expression
using qPCR. Knockdown of HIPK2 was paralleled
by increased transcription of myogenin and MyLC
(Figure 1A upper), suggesting that HIPK2 serves to
repress basal expression of these genes in non-
differentiated cells. To monitor HIPK2 protein levels in
the murine C2C12 cells with high sensitivity and specifi-
city, we developed monoclonal antibodies recognizing the
N- or C-terminal parts of the kinase, which allowed us to
confirm that the shRNA also resulted in reduced protein
expression (Figure 1A lower). To reveal the contribution
of HIPK2 for gene expression in differentiating myoblasts,
the kinase was knocked down on expression of a specific
shRNA, followed by induction of the differentiation
process by the addition of differentiation medium. The
differentiation process resulted in increased expression of
myogenin and MyLC, and knockdown of HIPK2 further
augmented transcription (Figure 1B). Off-target effects
were excluded by rescue experiments where exaggerated
gene expression after HIPK2 depletion was reverted on
coexpression of an shRNA-resistant form of HIPK2
(Figure 1B), thus suggesting that HIPK2 serves to

repress basal and also inducible transcription of these
genes. The knockdown of HIPK2 also allowed an
accelerated and enhanced expression of muscle function
proteins such as myogenin and MyHC (Figure 1C),
showing that the repressive effect of HIPK2 is also
mirrored at the protein level. In these experiments, we
also noted that differentiation was accompanied by a
steady decrease of full-length HIPK2, which is in line
with published data (48). To reveal the contribution of
HIPK2 for gene expression by an independent experimen-
tal approach, C2C12 cells were virally transduced to
overexpress the kinase, followed by the initiation of dif-
ferentiation and the analysis of gene expression by qPCR
(Figure 1D). The induced transcription of myogenin and
MyLC genes was dampened on expression of HIPK2,
corroborating the finding that HIPK2 restricts transcrip-
tion of muscle-specific genes.

HIPK2 associates with the MEF2C–HDAC4 complex and
phosphorylates MEF2C

The gene-repressing effect of HIPK2 raises the question
whether the kinase can bind to MEF2 and further com-
ponents of the multi-protein complex controlling the ex-
pression of muscle-specific genes. To explore this issue,
cells were transfected to express epitope-tagged versions
of HIPK2 and MEF2C, followed by coimmunopre-
cipitation experiments. IP of Flag-tagged MEF2C
allowed to detect binding of HIPK2 (Figure 2A). A
similar approach was used to test the interaction
between HIPK2 and HDAC4, which were also found to
be associated (Figure 2B). Further coimmunoprecipitation
experiments were performed with lysates from C2C12 cells
to display the proteins that are constitutively associated
with HIPK2 in undifferentiated myoblasts. Immunopreci-
pipitation of the endogenous kinase followed by immuno-
blotting revealed association with MEF2, HDAC3 and
HDAC4 (Figure 2C). Indirect immunofluorescence
showed colocalization between all proteins in the nucleus
(Figure 2D). While HIPK2 and the nuclear fraction of
HDAC4 show almost complete colocalization in nuclear
speckles, only a fraction of HDAC3 binds to and
colocalizes with HIPK2. This differential colocalization
between HIPK2 and both HDACs is also reflected by
the coimmunoprecipitation experiments that revealed
preferential binding to HDAC4 (see Figure 2C), thus sug-
gesting that the HIPK2-containing protein complex
contains only substoichiometric amounts of HDAC3. In
the course of these experiments, we noted that the
coexpression of HIPK2 and MEF2C resulted in the oc-
currence of an upshifted MEF2C band in the presence of
phosphatase inhibitors in the lysis buffer. To test the
possible HIPK2-mediated phosphorylation of MEF2C,
the transcription factor was coexpressed with the wild-
type kinase or a kinase-inactive point mutant (HIPK2
K221A). Western blotting showed that the upshifted
form of MEF2C occurred only in the presence of the
wild-type kinase (Figure 3A). To investigate whether the
slower electrophoretic migration of MEF2C is caused by
phosphorylation, extracts from cells coexpressing HIPK2
and MEF2C were incubated with � phosphatase. This
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Figure 1. HIPK2 represses transcription of muscle-specific genes. (A) Mouse C2C12 myoblasts were lentivirally transduced to express a HIPK2-
specific shRNA or a scrambled control. Transduced cells were further selected for 3 days in puromycin-containing medium. A fraction of the cells
was lysed and tested by immunoblotting for efficient HIPK2 knockdown using the N6A10 antibody (lower), while the remaining cells were analyzed
for expression of muscle-specific genes by quantitative real-time PCR (upper). To facilitate comparison, gene expression in the presence of a control
shRNA was arbitrarily set as 1. Two independent experiments were performed in triplicates, error bars display standard errors of the mean (SEMs).
(B) C2C12 cells were lentivirally transduced to express a scrambled control, a HIPK2-specific shRNA or a shRNA-resistant form of HIPK2.
Transduced cells were selected for 3 days in the presence of puromycin. Cells remained untreated or differentiation was triggered by addition of
differentiation medium for the indicated periods. Expression of the indicated genes was determined by qPCR, and transcription of undifferentiated
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Figure 2. HIPK2 interacts with MEF2C and HDAC4. (A) Epitope-tagged versions of MEF2C and HIPK2 were coexpressed in 293T cells.
A fraction of the cell lysates was tested for the correct expression of the transfected proteins by immunoblotting (lower), while the remaining
extracts were used for IP with anti-Flag antibodies or isotype-matched controls. After elution of bound proteins in 1� SDS sample buffer,
coprecipitated HIPK2 was visualized by western blotting as shown. An asterisk indicates a non-specific band. (B) The experiment was done as in
(A) with the exception that Flag-HDAC4 was expressed instead of Flag-MEF2C. (C) Lysates from C2C12 cells were used for IP with anti-HIPK2
antibodies or adequate controls. The coprecipitating endogenous MEF2 proteins, as well as HDAC3 and HDAC4, were revealed by immunoblotting
as shown. (D) U2OS cells were transfected to express the indicated proteins and further analyzed by indirect immunofluorescence for the intracellular
distribution of HIPK2 and its interaction partners. The merged pictures display colocalizing proteins in the white areas; representative pictures are
displayed.

Figure 1. Continued
cells expressing the control shRNA was set as 1. Error bars display SEMs derived from two independent experiments that were performed in
triplicates. (C) The experiment was done as in (B) with the difference that cells were analyzed for protein expression of HIPK2 (using the C1B3
monoclonal antibody) and the muscle-specific proteins Myogenin and MyHC as shown. (D) C2C12 cells were transduced with an adenovirus to
express HIPK2 as shown, followed by the induction of differentiation for 1 or 5 days and quantification of gene expression by qPCR. Gene
expression in undifferentiated cells expressing the control shRNA was set as 1, error bars show SEMs derived from three independent experiments
that were performed in triplicates.
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treatment converted the slower migrating form of MEF2C
into a band that migrated even slightly faster than the
band that occurs on expression of MEF2C alone (Figure
3B), demonstrating that the upshifted band represents
phosphorylated MEF2C. As published data report the as-
sociation of HDAC4 with a kinase activity leading to
MEF2 phosphorylation (42), it was interesting to investi-
gate a possible contribution of HIPK2 to this enzymatic
activity. Cells were transfected to express MEF2C along
with HDAC4 and kinase-inactive HIPK2 that can associ-
ate with the endogenous kinase (3) and thus exert a trans-
dominant negative function. Consistent with published
data, the expression of HDAC4 was sufficient to trigger
MEF2 phosphorylation (42). Expression of HIPK2
K221A dose-dependently diminished MEF2C phosphor-
ylation (Figure 3C). Similarly, MEF2C phosphorylation
by the HDAC4-associated kinase activity was significantly
impaired on shRNA-mediated knockdown of HIPK2
(Figure 3D), thus revealing HIPK2 as another HDAC4-
associated kinase.

HIPK2 governs the acetylation status of MEF2C
via HDAC3

The known association of HIPK2 with acetyl transferases
(2,16) and HDAC3 (23) raises the possibility that HIPK2
may also indirectly affect MEF2C acetylation. To address
this question, cells were transfected to express MEF2C
along with CBP, HIPK2 K221A or increasing amounts
of HIPK2. Following IP of MEF2C, its acetylation
status was analyzed by immunoblotting with an
antibody recognizing acetylated lysines (Figure 4A).

CBP caused robust acetylation of MEF2C, while
coexpression of minute amounts of HIPK2 completely
prevented this modification. The antagonizing function
of HIPK2 for MEF2C acetylation was dependent on its
intact kinase function, as acetylation of MEF2C was not
affected by HIPK2 K221A. To investigate whether the
effect of HIPK2 on MEF2C acetylation is phosphoryl-
ation dependent, we tested whether HIPK2-mediated
deacetylation of MEF2C also occurs in cells expressing a
constitutively active form of the calcineurin (Calcineurin
�Cam), an enzyme that removes inhibitory MEF2 phos-
phorylations (42). HIPK2-dependent deacetylation of
MEF2C was completely restored in the presence of
Calcineurin �Cam (Figure 4B), suggesting that phosphor-
ylation is required for the inhibitory effect of HIPK2 on
MEF2C acetylation. HIPK2-mediated interference with
the acetylation status could be due to decreased acetyl-
ation or alternatively to increased deacetylation. To
reveal a possible role of HDACs for this process, the
impact of HIPK2 for the acetylation status of MEF2C
was also determined in cells where the activity of class I
and II HDACs was inhibited by Trichostatin A (TSA).
HIPK2-dependent deacetylation of MEF2C was com-
pletely lost in TSA-treated cells (Figure 4C), thus revealing
the relevance of HDACs for this process. To identify the
HDAC(s) responsible for the removal of CBP-triggered
MEF2C acetylation, we performed a mini-screen on
coexpression of MEF2C and CBP together with various
different HDACs, followed by the determination of
MEF2C acetylation by immunoblotting. These experi-
ments showed largely deacetylated MEF2C in the
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Figure 3. HIPK2 phosphorylates MEF2C. (A) Epitope-tagged versions of HIPK2 or HIPK2 K221A were coexpressed with MEF2C in 293T cells.
Cell lysates were tested by western blotting for the electrophoretic behavior of MEF2C, and the position of the phosphorylated form is indicated.
(B) Cells were transfected to express HIPK2 and MEF2C as shown, and lysates were either left untreated or incubated with � phosphatase as shown.
Equal amounts of protein were separated by SDS-PAGE and analyzed by immunoblotting with the specified antibodies. (C) MEF2C was
coexpressed with HDAC4, HIPK2 or increasing amounts of HIPK2 K221A. Extracts were further analyzed for MEF2C phosphorylation by
western blotting, as revealed by the occurrence of the slower migrating phosphorylated form. (D) Cells transfected to express a HIPK2-specific
shRNA were selected for 3 days in the presence of puromycin, followed by plating and retransfection to express MEF2C and HDAC4.
Immunoblotting of cell extracts with specific antibodies ensured efficient HIPK2 knockdown, MEF2C phosphorylation was scored by the occurrence
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Figure 4. HIPK2 leads to HDAC3-dependent deacetylation of MEF2C. (A) 293T cells were transfected to express MEF2C along with the acetyl
transferase CBP, HIPK2 K221A and increasing amounts of HIPK2. A fraction of the cell lysates was tested for the correct expression of the
transfected proteins by western blotting (lower). Equal amounts of protein in the remaining extracts were used for IP with anti-HA antibodies,
followed by determination of acetylation using an antibody recognizing acetylated lysines (upper). (B) The experiment was performed similar to the
one in (A), but with the exception that cells were transfected with the indicated constructs along with a constitutively active form of the phosphatase
Calcineurin (Calcineurin �CAM) (C) The experiment was done as in (A), but cells coexpressing MEF2C, CBP and HIPK2 were also incubated for
6 h in the presence of 1mM TSA as shown. (D) The indicated combinations of MEF2C, CBP and the different HDAC proteins were coexpressed in
293T cells, followed by IP of MEF2C with anti-HA antibodies and the analysis of MEF2C acetylation by immunoblotting (upper). The lower part
shows correct expression of the transfected proteins. (E) 293T cells were transfected with vectors for a HDAC3-specific shRNA or the empty vector
as a control, followed by selection of transfected cells with puromycin for 3 days. Cells were replated and then transfected to express the indicated
combinations of MEF2C, CBP and HIPK2 together with the shRNA-producing plasmids as shown. Cell lysates were analyzed for acetylation of
immunoprecipitated MEF2C (upper) and for correct protein expression (lower) as shown.
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presence of ectopically expressed HDAC3 and a minor
deacetylation in the presence of HDAC5 and HDAC6
(Figure 4D). To substantiate a possible role of HDAC3
for HIPK2-regulated MEF2C acetylation by an independ-
ent experimental approach, HIPK2-dependent
deacetylation of MEF2C was also determined in cells
where HDAC3 expression was downregulated by a
specific shRNA. Immunoblotting showed that HIPK2-
mediated loss of MEF2C acetylation did not occur in
HDAC3-depleted cells (Figure 4E), thus identifying
HDAC3 as a relevant mediator of this process.

Caspases activated by myoblast differentiation cleave
HIPK2 at aspartic acids 977 and 916

The loss-of-function approaches displayed in Figure 1 had
shown a repressive role of HIPK2 for the expression of
muscle-specific proteins. It was then interesting to deter-
mine muscle differentiation in the presence of the
overexpressed kinase. C2C12 cells were virally transduced
with a vector encoding Flag-HIPK2 or an adequate
control, followed by the induction of muscle differenti-
ation. Cell extracts were prepared at different time
points, and differentiation was scored by the determin-
ation of myogenin levels. These experiments showed a
delayed onset of myogenin expression in cells
overexpressing HIPK2 (Figure 5A), consistent with the
ability to downregulate MEF2-dependent transcription.
In these experiments, immunoblotting with anti-Flag

antibodies allowed to observe that differentiation was
accompanied by a steady decrease of full-length HIPK2
and a concomitant appearance of a shorter form. A
follow-up experiment performed in differentiating
C2C12 cells showed that also the endogenous HIPK2
protein showed a time-dependent disappearance and the
parallel induction of a shorter isoform (Figure 5B). Of
note, this pattern could be only observed with the mono-
clonal antibody N6A10 recognizing the N-terminal part,
while the C1B3 monoclonal antibody that only recognizes
the C-terminus failed to detect the shorter form (see also
Figure1C). Cleavage of the endogenous kinase occurs later
than cleavage of overexpressed HIPK2. This discrepancy
is attributable to the fact that overexpression of HIPK2 as
such is sufficient to induce caspase activity (49), a phe-
nomenon also displayed in Supplementary Figure S1.
The possibility that muscle differentiation generates a
HIPK2 form lacking the C-terminal part was further
investigated on expression of a C-terminally tagged
HIPK2 variant in C2C12 cells. The induction of differen-
tiation resulted in the disappearance of the full-length
form without a concomitant generation of the short
form (Figure 5C), suggesting that muscle differentiation
activates a proteolytic activity removing the C-terminal
part of HIPK2. As muscle differentiation is accompanied
by a strong increase in caspase activity (50) and HIPK2
can be cleaved by caspases following aspartic acids 916
and 977 (8), it was then self-evident to investigate a
possible cleavage of HIPK2 by caspases. To address this
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question, we tested the effects of the irreversible broad-
spectrum caspase inhibitor zVAD-fmk on HIPK2
cleavage in differentiating myoblasts. While controls
showed the efficient conversion of HIPK2 to the smaller
fragment, the induction of differentiation followed by
addition of zVAD-fmk largely blocked HIPK2 processing
and only allowed the generation of a HIPK2 form that
was slightly larger than the small fragment (Figure 5D).
Further experiments showed that this slightly larger band
exactly comigrated with the incompletely cleaved HIPK2
form encompassing the residues 1–977 (data not shown).
As zVAD does not only impair the cleavage of HIPK2,
but also of further identified (51,52) and unidentified
caspase substrates, this experimental setting does not
allow conclusions on the specific role of HIPK2 for
myogenin expression. Next, it was investigated whether
mutation of both known caspase cleavage sites at
Asp977 and Asp916 to alanine (HIPK2 DD/AA) renders
the kinase resistant to caspase-mediated cleavage in
differentiating myoblasts. The analysis of differentiating
C2C12 cells transiently transfected to express HIPK2
with mutations in both cleavage sites showed the
complete protection of the mutant protein from process-
ing (Figure 5D). In summary, these data show that the
transcriptional repressor HIPK2 is cleaved by caspases
in differentiating myoblasts.

HIPK2 cleavage impedes its repressive function for MEF2

To address the functional consequences of HIPK2 cleavage
on its ability to modify MEF2C, cells were transfected
to coexpress MEF2C along with the wild-type form of
HIPK2 or a HIPK2 variant representing the C-terminally
truncated form (HIPK2 1-916). Subsequent immunoblot-
ting showed impaired MEF2C phosphorylation by HIPK2
1-916 (Figure 6A). In the next step, both HIPK2 forms
were compared for their ability to influence the acetylation
state of MEF2C. CBP-triggered acetylation of MEF2C
was completely reversed on coexpression of HIPK2,
while the C-terminally truncated form reduced MEF2C
acetylation only mildly (Figure 6B). It was then interest-
ing to test the impact of C-terminal HIPK2 truncation
on its ability to bind MEF2C and both HDACs.
Coimmunoprecipitation experiments revealed that the
truncated form of HIPK2 (1-916) has a strongly impaired
ability to bind MEF2C and HDAC3/4 (Figure 6C), thus
revealing that removal of the C-terminal part largely
precludes these protein–protein interactions.
As the intracellular localization of HDAC4 can be

regulated by protein kinases (53,54), it was interesting to
compare the intracellular localization of HDAC4 with
that of HIPK2 and HIPK2 1-916. Immunofluorescence
experiments showed a complete colocalization between
HIPK2 and HDAC4 in nuclear bodies (Figure 6D).
In contrast, the C-terminally truncated form of HIPK2
was located in the nucleoplasm, while HDAC4 was
mainly found in the cytosol in most of the cells, suggesting
that only the full-length kinase can recruit HDAC4 to
subnuclear structures. To explore whether HIPK2
is associated with the DNA-bound MEF2 complex,
extracts from control and differentiated C2C12 cells

were incubated with a biotinylated DNA oligonucleotide
encompassing the MEF2-binding sites contained on the
Myogenin promoter. The DNA–protein coprecipitation
assay showed association of HIPK2 in extracts from un-
differentiated myoblasts, while no binding was seen in cell
extracts from cells that have been differentiated for 5 days
(Figure 7A). To substantiate these findings in a comple-
mentary experimental approach, ChIP experiments were
performed in undifferentiated and differentiated C2C12
cells. Primers spanning the MEF2 binding site in the
murine myogenin promoter allowed the detection of en-
dogenous HIPK2, while association of HIPK2 to this site
was lost on induction of differentiation (Figure 7B). In
summary, these data show that the transcriptional repres-
sor HIPK2 is found in association with the MEF2
complex only in undifferentiated myoblasts, while it is
removed during the process of ongoing differentiation.

DISCUSSION

HIPK2 as a regulator of signaling thresholds and
amplitudes during myogenic differentiation

Differentiation of muscle cells involves several steps that
require an exact control of cell cycle checkpoints, as
proliferating myoblasts encountering an environment
lacking mitogens react with the induction of differentiation
and exit the cell cycle (32,33). A controlled attenuation of
the cell cycle at specific stages is also characteristic for cells
that have experienced mild DNA damage to allow subse-
quent induction of the DNA repair program. Accordingly,
exposure to genotoxic agents causes a reversible inhibition
of myogenic differentiation (55) and both related processes
also use a set of overlapping mediators such as p53 (56) and
HIPK2, as identified in this study. Consistent with the
concept of HIPK2 as a signal integrator that receives
input from developmental processes and the DNA
damage response, we noted that more than one half of
the known HIPK2 interactors (57) have a documented
role for muscle cell differentiation and function, as dis-
played in Supplementary Table S2. But HIPK2 does not
function as an ‘on–off switch’ of myogenesis, a function
exemplified by MyoD (58). The kinase rather works as an
accessory regulator that serves to control the signaling
threshold and amplitude of gene expression. The functional
role of HIPK2 is restricted to proliferating myoblasts and
to the initial steps of myogenesis, as the increased caspase
activity that is characteristic for the ongoing differentiation
process (51) leads to the C-terminal truncation of this
kinase. In line with these findings, a previous study
showed that differentiation of C2C12 cells resulted in
decreased HIPK2 levels (48), but the rabbit polyclonal
antibody used in this study did not allow to detect the
truncated version of the kinase. The functional role of
HIPK2may not be only restricted for its ability to influence
posttranslational modifications of MEF2C. As HIPK2
participates in bone morphogenic protein and transform-
ing growth factor beta signaling (59) and both pathways
regulate muscle differentiation (60,61), it will be interesting
to study whether the impact of HIPK2 on muscle differen-
tiation also relies on these processes. It may well be possible
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Figure 6. Functional characterization of the C-terminally truncated HIPK2 form. (A) 293T cells were transiently transfected to express MEF2C
along with increasing amounts of HIPK2 or HIPK2 1-916. Cell extracts were analyzed by western blotting for MEF2C phosphorylation as revealed
by the occurrence of the upshifted band as shown. (B) MEF2C and CBP were coexpressed with HIPK2 or HIPK2 1-916, followed by IP of MEF2C
and the analysis of its acetylation status by immunoblotting (upper). The input material is displayed in the lower part. (C) The Flag-tagged full-
length forms of HIPK2 or its cleavage product (HIPK2 1-916) were expressed alone or together with MEF2C, HDAC3 and HDAC4 as shown.
Following IP with anti-Flag antibodies the coprecipitating proteins were revealed by immunoblotting. (D) U2OS cells were transfected to express
Flag-HDAC4 together with GFP-HIPK2 or GFP-HIPK2 1-916, followed by indirect immunofluorescence to reveal the localization HIPK2 and
HDAC4. Nuclear DNA was stained by Hoechst and the merge shows areas of colocalization in yellow (upper). The lower part shows a statistical
analysis of the immunofluorescence data that were derived from the analysis of 100 interphase cells, error bars show SEMs.
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5742 Nucleic Acids Research, 2013, Vol. 41, No. 11



that muscle differentiation is not only regulated by HIPK2,
but also by the highly related kinases HIPK1 and HIPK3,
which often exert overlapping roles. As the double
knockout of the genes encoding Hipk1 and Hipk2 is
embryonically lethal (2), it will be interesting to investigate
the phenotype of a muscle cell–specific double knockout of
both kinases in the future.

HIPK2 as a novel component of the MEF2–HDAC
complex

The molecular mechanisms used by HIPK2 to corepress
MEF2C-dependent transcription are schematically dis-
played in Figure 7C and involve HIPK2–HDAC3-
mediated deacetylation of MEF2C, which will impair its
transcriptional activity (39,62). The functional conse-
quences of HIPK2-triggered MEF2C phosphorylation
are currently unknown. Published work documents
activating MEF2C phosphorylations, as exemplified by
p38, BMK1 or MyLC kinase (63). On the other hand,
there are also examples for inhibitory phosphorylations
affecting MEF2 activity: Cdk5-mediated phosphorylation
of MEF2C in its transactivation domain inhibits its tran-
scriptional activity (42), and MEF2C phosphorylation at
Ser98 and Ser110 allows docking of the prolyl-isomerase
Pin1, which in turn decreases MEF2C stability and
activity (64). The kinase mediating these phosphorylations
is not known, but as Ser98 and Ser110 are directly flanked
by proline, they could be good substrates for HIPK2, a
kinase that can also interact with Pin1 (3).

Here we show that expression of wild-type HIPK2 leads
to the complete recruitment of HDAC4 to subnuclear
speckles. The underlying mechanism is not known and
could either rely on direct protein–protein interactions
or alternatively on HIPK2-dependent phosphorylation
of HDAC4. Accordingly, a previous study showed that
ERK1/2-mediated phosphorylation of HDAC4 leads to
its nuclear translocation (54), but other examples show
that phosphorylation can also keep HDAC4 in the cyto-
plasm by creating docking sites for 14-3-3 proteins (65).
Another possibility for HIPK2-mediated control of
HDAC4 localization comes from the fact that both
proteins can be SUMOylated (66,67) and that HIPK2
contains a functional SUMO-interacting motif (SIM)
(68,69). SIMs allow non-covalent binding to SUMO
proteins and thus can act as a docking motif to allow
the assembly of nuclear bodies hosting macromolecular
multi-protein complexes (70). As also HDAC3 can be
recruited to HIPK2 via SUMO–SIM binding, this mode
of protein–protein interactions may be a more widely used
principle to attract HDACs. While the general role of
HDAC4 for muscle differentiation is well documented
(30,31), its biochemical role in this process is not well
understood. Biochemical experiments showed that
HDAC4 does not function as a deacetylating enzyme
and rather interferes with gene expression by acting as a
scaffold. HDAC4 recruits a corepressor complex consist-
ing of HDAC3, SMRT and N-CoR (71). As HDAC4 has
the ability to bind the SUMO E3 conjugating enzyme
Ubc9, it can enhance the inhibitory SUMOylation of
MEF2C and MEF2D (40). A further example for a

scaffolding function of HDAC4 comes from its associ-
ation with kinase activities, which were identified as
Cdk5 (42) and HIPK2 (this study). It is currently
unclear how HIPK2 instructs HDAC3 to deacetylate
MEF2C, possibly by phosphorylation of MEF2C or a
phosphorylation-induced increase in the enzymatic
activity of HDAC3. Alternatively, the kinase may help
to bring HDAC3 and MEF2C into close proximity,
which is consistent with the notion that HIPK2 1-916 is
enzymatically fully active (8), but fails to efficiently
mediate MEF2C deacetylation.
In conclusion, we identify HIPK2 as a new component

of the multi-protein complex that is stably assembled with
MEF2 transcription factors and restricts its activity in
non-differentiating myoblasts. The repressive function of
HIPK2 is alleviated by its caspase-mediated cleavage, a
fate that is shared with other components of this
complex such as HDAC4 (28).
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