
ORIGINAL RESEARCH
published: 20 December 2021

doi: 10.3389/fmed.2021.771608

Frontiers in Medicine | www.frontiersin.org 1 December 2021 | Volume 8 | Article 771608

Edited by:

Vadim Byvaltsev,

Irkutsk State Medical

University, Russia

Reviewed by:

Sergey Mlyavykh,

Privolzhsky Research Medical

University (PIMU), Russia

Talgat Kerimbayev,

National Center for

Neurosurgery, Kazakhstan

Andrey Bokov,

Privolzhsky Research Medical

University (PIMU), Russia

*Correspondence:

Wenle Li

drllee@163.com

Mingyu Yang

616353108@qq.com

†These authors have contributed

equally to this work and share first

authorship

Specialty section:

This article was submitted to

Translational Medicine,

a section of the journal

Frontiers in Medicine

Received: 06 September 2021

Accepted: 30 November 2021

Published: 20 December 2021

Citation:

Wang H, Fan T, Yang B, Lin Q, Li W

and Yang M (2021) Development and

Internal Validation of Supervised

Machine Learning Algorithms for

Predicting the Risk of Surgical Site

Infection Following Minimally Invasive

Transforaminal Lumbar Interbody

Fusion. Front. Med. 8:771608.

doi: 10.3389/fmed.2021.771608

Development and Internal Validation
of Supervised Machine Learning
Algorithms for Predicting the Risk of
Surgical Site Infection Following
Minimally Invasive Transforaminal
Lumbar Interbody Fusion
Haosheng Wang 1,2†, Tingting Fan 3†, Bo Yang 2, Qiang Lin 2, Wenle Li 4,5* and Mingyu Yang 1*

1Department of Orthopedics, Taizhou Central Hospital (Affiliated Hospital to Taizhou College), Taizhou, China, 2Department of

Orthopedics, Baoji City Hospital of Traditional Chinese Medicine, Baoji, China, 3Department of Endocrinology, Baoji City

Hospital of Traditional Chinese Medicine, Baoji, China, 4Department of Orthopedics, Xianyang Central Hospital, Xianyang,

China, 5Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China

Purpose: Machine Learning (ML) is rapidly growing in capability and is increasingly

applied to model outcomes and complications in medicine. Surgical site infections (SSI)

are a common post-operative complication in spinal surgery. This study aimed to develop

and validate supervised ML algorithms for predicting the risk of SSI following minimally

invasive transforaminal lumbar interbody fusion (MIS-TLIF).

Methods: This single-central retrospective study included a total of 705 cases

between May 2012 and October 2019. Data of patients who underwent MIS-TLIF was

extracted by the electronic medical record system. The patient’s clinical characteristics,

surgery-related parameters, and routine laboratory tests were collected. Stepwise logistic

regression analyses were used to screen and identify potential predictors for SSI. Then,

these factors were imported into six ML algorithms, including k-Nearest Neighbor (KNN),

Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), Multi-Layer

Perceptron (MLP), and Naïve Bayes (NB), to develop a prediction model for predicting

the risk of SSI following MIS-TLIF under Quadrant channel. During the training process,

10-fold cross-validation was used for validation. Indices like the area under the receiver

operating characteristic (AUC), sensitivity, specificity, and accuracy (ACC) were reported

to test the performance of ML models.

Results: Among the 705 patients, SSI occurred in 33 patients (4.68%). The stepwise

logistic regression analyses showed that pre-operative glycated hemoglobin A1c

(HbA1c), estimated blood loss (EBL), pre-operative albumin, body mass index (BMI),

and age were potential predictors of SSI. In predicting SSI, six ML models posted an

average AUC of 0.60–0.80 and an ACC of 0.80–0.95, with the NB model standing out,

registering an average AUC and an ACC of 0.78 and 0.90. Then, the feature importance

of the NB model was reported.
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Conclusions: ML algorithms are impressive tools in clinical decision-making, which

can achieve satisfactory prediction of SSI with the NB model performing the best. The

NB model may help access the risk of SSI following MIS-TLIF and facilitate clinical

decision-making. However, future external validation is needed.

Keywords: surgical infection sites, machine learning, risk factors, minimally invasive transforaminal lumbar

interbody fusion, prediction model

INTRODUCTION

Minimally invasive transforaminal lumbar interbody fusion
(MIS-TLIF) is a classic minimally invasive operation for the
treatment of lumbar degenerative diseases such as lumbar disc
herniation, lumbar spinal stenosis, and lumbar spondylolisthesis.
The operation uses channels to complete decompression and
bone graft fusion and fixation. Compared with the traditional
open TLIF, it better retains the paravertebral muscle structure,
less intraoperative bleeding and faster post-operative recovery
(1–3). It has become the mainstream operation scheme for
minimally invasive fusion surgery at present.

Although surgical site infections (SSI) following MIS-TLIF
are lower than those following open TLIF, previous literature
has reported that the incidence of SSI after MIS-TLIF is not
uncommon as this procedure is widely used in the clinic
(4, 5). Surprisingly, over 20% of the patients who were re-
admitted within 30 days after operation were caused by SSI
(6, 7). Meanwhile, the rise in the number of spinal surgeries
results in an expanding number of SSI, which poses a critical
challenge to patients and clinicians. At present, there are studies
on the analysis of pre-operative and intraoperative risk factors
for SSI after total spinal open surgery, but there is little
literature investigating the risk factors for SSI following MIS-
TLIF. Previously, most studies only described these risk factors
as relative risks (RR) or odds ratios (OR) (7, 8), which are
not sufficient to evaluate the risk of SSI following MIS-TLIF.
Therefore, a comprehensive prediction model combining risk
factors is needed to assess SSI risk for patients. Identification
of high-risk surgical populations might help target interventions
to patients at high risk, reduce the risk of hospitalization, and
improve the clinical outcome.

Machine learning (ML) is a form of artificial intelligence
(AI) in which algorithms automatically learn and improve by
identifying patterns and complex relationships, with the ultimate

Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmoriary

disease; CHF, chronic heart failure; ASA, American Society of Anesthesiologists;

EBL, estimated blood loss; HbA1c, glycated hemoglobin A1c; Alb, albumin;

RBC, red blood cells; WBC, white blood cells; PT, prothrombin time; APTT,

activated partial thromboplastin time; Fib, fibrinogen; MIS-TLIF, minimally

invasive transforaminal lumbar interbody fusion; CV, cross-validation; KNN, k-

Nearest Neighbor; DT, Decision tree; SVM, Support vector machine; RF, Random

Forest; MLP, Multi-Layer Perceptron; NB, Naïve Bayes; ACC, accuracy; AUC, area

under the receiver operating characteristic curve; CV, cross-validation; TP, true

positive; TN, true negative; FP, false positive; FN, false negative; OR, odds ratio;

CI, confidence interval; ML, machine learning; AI, artificial intelligence; EMR,

electronic medical record; MRSA, methicillin-resistant Staphylococcus aureus.

goal of making decisions using minimal human intervention (9–
13). Through the good performance exhibited by ML algorithms
inmedical big data, we have the potential to obtainmore superior
prediction tools than traditional statistical modeling modalities
under certain conditions for better prediction of the risk of
SSI. It is frustrating that there are currently very few studies
training ML algorithms to predict SSI risk. As such, this study
aimed to develop and validate ML-based models using pre-
operative and intraoperative variables to predict the risk of SSI
following MIS-TLIF.

METHODS

Patients
The study was approved by the institutional review board
(IRB) of Taizhou Central Hospital and was performed following
national and international guidelines. The ethics committee
waived the requirement for informed consent due to the
retrospective nature of the study. A total of 705 patients,
referred from May 2012 to October 2019 to the Department
of Orthopedics, Taizhou Central Hospital (Taizhou, China) for
MIS-TLIF owing to lumbar spine diseases, were enrolled in this
research. The selection criteria were as follows: (1) age≥ 18 years;
(2) diagnosis of lumbar degenerative disease, including lumbar
disc herniation, lumbar spinal stenosis, lumbar spondylolisthesis,
and lumbar instability; (3) undergoing primary single-or multi-
segment MIS-TLIF. The exclusion criteria were as follows: (1)
Patients were pre-operatively complicated by active infection in
the spine or other parts of the body, cauda equina syndrome,
spinal deformity, and tumors. (2) Emergency surgery.

All operations were done by 4 experienced spinal surgeons
at our institution. The operation was performed using general
anesthesia. C-armX-ray fluoroscopy accurately located the lesion
in the intervertebral space and the root of the upper and lower
arches of the vertebrae. A longitudinal incision of ∼2.0–3.0 cm
of skin and deep fascia was made on the more symptomatic side
of the patient along the previously marked pedicle line. The soft
tissue between the longest muscle and the multifidus interval
was bluntly separated until the vertebral plate was exposed.
The Quadrant channel (Medtronic Inc. USA) was placed in the
appropriate position after gradual expansion of the cannula,
the free arm and cold light source were attached and secured
to fully expose the articular eminence, the vertebral plate, and
other important anatomic structures. The Quadrant channel
was opened, the soft tissue was removed from the field of
view under direct vision, and bipolar electrocoagulation was
used to adequately stop the hemorrhage. The base diameter
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is enlarged depending on the reality and was generally dilated
to 8–9 cm. The superior lamina and some articular processes
were removed by nucleus pulposus forceps, the ligamentum
flavum was cleaned, the dura was revealed, and the nerve roots
were protected and freed. Further revealing the disc space,
cutting through the annulus fibrosus, enucleating the nucleus
pulposus, and using reamers and curettes to further clean the
intervertebral space. A polyetheretherketone (PEEK) interbody
graft (Capstone, Medtronic Sofamor Danek) was then inserted.
Finally, with the help of the Sextant system (Medtronic Sofamor
Danek), percutaneous lumbar pedicle screws were inserted
bilaterally. A drainage tube was placed after washing, and then the
layer was sutured and the incision was closed. The protocol for
prevention of SSI in this central was described in more detail in
Supplementary Material. Patients were followed for a minimum
of 1 year after the index operation to monitor all complications
and incidences of revision surgery. All complications were
recorded by the available electronic medical system. The primary
outcome of interest was the occurrence of SSI. The diagnosis of
SSI was based on the CDC criteria (Center for Disease Control
and Prevention) (14). The primary diagnostic criteria for SSI were
as follows: (1) the surgical wound showed redness, swelling, heat,
pain, wave sense or combined with abscess, and drooling, (2)
Bacterial culture of wound exudate was positive, (3) Patients with
re debridement surgery, positive intraoperative lavage fluid or
tissue bacterial culture, and (4) Laboratory tests for blood routine,
C-reactive protein, procalcitonin, as well as MRI examination or
histopathological examination were performed to confirm SSI.

Data Collection
The personal and medical information of patients, including
age, body mass index (BMI), smoking, alcohol, chronic heart
failure (CHF), diabetes, COPD, stroke, rheumatic disease, and
diagnosis. The pre-operative laboratory examinations, including
blood routine examination, glycated hemoglobin A1c (HbA1c),
liver function test, serum potassium, and serum calcium,
were collected from the electronic medical record (EMR)
system. Meanwhile, we recorded the surgery-related parameters,
including operation time, intraoperative blood loss, surgical level,
and the number of fusion segments in this investigation.

Statistical Analysis
The statistical analyses were performed using SPSS for Windows
software (ver. 26.0; SPSS Inc., Chicago, IL, USA). For continuous,
normally distributed variables, means were calculated and
compared using the independent student t-test; otherwise, the
Mann–WhitneyU-test was used for group comparisons. The chi-
square test was used to analyze qualitative variables. Values of P
< 0.05 were considered significant.

Training and Evaluation of ML Models
In this study, univariate and multivariate logistic regression tests
were performed to identify the factors related to SSI following
MIS-TLIF. Then, factors that were significant in both univariate
and multivariate logistic regression were included and analyzed
by stepwise regression. Next, the factors selected by stepwise

regression are used as input variables to construct the machine
learning (ML) models.

In its most basic sense, machine learning uses programmed
algorithms that learn and optimize their operations by analyzing
input data to make predictions within an acceptable range (15–
18). In this study, 10-fold cross-validation was adopted, which
means patients were randomly divided into a training set and a
validation set at a ratio of 9:1 in each round. After 10 rounds,
where all the patients are used for the test, the evaluation
process ends. We developed five types of ML algorithms to
model our data: k-Nearest Neighbor (KNN), Decision tree (DT),
Support vector machine (SVM), Random Forest (RF), Multi-
Layer Perceptron (MLP), Naïve Bayes (NB). When training
the prediction model, we used 10-fold cross-validation (CV)
on the training data to avoid overfitting and find the optimal
hyperparameters. Then, Python software was used to further
train the ML algorithms. To assess the performance of the ML
algorithms, the area under the receiver operating characteristic
(AUC) value, and sensitivity, specificity, and the whole dataset
accuracy (ACC) of ML algorithms were reported. Of these,
the ACC, sensitivity, and specificity were determined by the
following formula:

ACC =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

FP + TN

In these formulas, TP: true positive; TN: true negative; FP:
false positive; and FN: false negative. When we evaluated the
performance of different ML algorithms, the closer the AUC was
to 1, the better the classification performance of the model. In
general, AUC > 0.7 indicated good performance of the model.
We next determined the AUC values by comparing different
ML algorithms, with the best performing algorithm as the final
predictive model. Data analysis was performed using programs
written in Python programming. The Python packages, including
Scikit-learn 0.24.2 (19) and Python 3.8, are adopted for ML
algorithms. A two-tailed P < 0.05 was deemed statistically
significant. The flowchart of the study is presented in Figure 1.

RESULTS

Patients’ Characteristics
In this study, a total of 705 cases were included, 401 (56.9%)males
and 304 (43.1%) females, mean (58.7± 7.2) years old. Among the
705 cases, SSI occurred in 33 (4.68%) cases, i.e., the SSI group;
other cases were in the Non-SSI group. Among the SSI and Non-
SSI groups, there were statistically significant differences in age
(p < 0.001), BMI (p < 0.001), smoking (p = 0.002), diabetes (p
< 0.001), ASA (p= 0.005), operation time (p < 0.001), estimated
blood loss (EBL) (p < 0.001), number of fusion segments (p <

0.001), pre-operative HbA1c (p < 0.001), pre-operative albumin
(p< 0.001), and pre-operative fibrinogen (p< 0.001). There were
no significant differences in remaining parameters between the
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FIGURE 1 | Overall flowchart of whole process. The final prediction model was determined by the result of maximum AUC and ACC. MIS-TLIF, minimally invasive

transforaminal lumbar interbody fusion; SSI, surgical site infection; EMR, electronic medical record; AIC, Akaike information criterion; AUC, area under the curve; ACC,

accuracy; KNN, k-Nearest Neighbor; DT, Decision tree; SVM, Support vector machine; RF, Random Forest; MLP, Multi-Layer Perceptron; NB, Naïve bayes.

SSI and Non-SSI groups. The detailed results of the parameters
are shown in Table 1.

Logistic Regression Analyses of SSI
In univariable analysis, age, BMI, smoking, diabetes, ASA,
operation time, EBL, number of fusion segments, pre-operative
HbA1c, pre-operative Alb, pre-operative glycated protein, and
pre-operative fibrinogen were all significantly associated with
the occurrence of SSI in the overall population (P < 0.05;
Table 2). Inmultivariable logistic regression analysis, factors with
statistical significance included age, BMI, operation time, EBL,
pre-operative HbA1c, and pre-operative Alb (P < 0.05; Table 2).
Stepwise logistic regression analyses identified the optimal subset
of variables including age (OR 1.187, 95% CI 1.006–1.401),
BMI (OR 1.445, 95% CI 1.005–2.076), pre-operative HbA1c (OR
35.390, 95% CI 21.215–40.124), EBL (OR 1.424, 95% CI 1.021–
1.732), operation time (OR 1.041, 95% CI 1.003–1.080) (Table 3).

Predictive ML Algorithms Performance
Comparisons of the performance of prediction among the six
ML algorithms models in the whole set are detailed in Figure 2.
The result of the 10-fold CV of six ML algorithms in the whole
set was demonstrated in Figure 3. It turned out that the NB
model demonstrated the highest performance in predicting SSI,
whose average AUCwas 0.78, sensitivity 0.93, specificity 0.82, and

accuracy 0.90 in whole sets. Accordingly, we chose the NB model
as the final prediction model.

Relative Importance of Variables
According to the indicators, the NB model is determined as the
final prediction model. The relative importance of variables in
the NB model was shown in Figure 4. The importance of high-
ranking variables in the NB model was arranged as follows in
descending order: pre-operative HbA1c, EBL, operation time,
pre-operative Alb, BMI, and age.

DISCUSSION

In this work, we developed and validated multiple ML algorithms
to predict the risk of SSI followingMIS-TLIF under the Quadrant
channel. We found that the NB model provided improved
predictive ability compared to other models. This study produced
interesting findings concerning the added value of machine-
learning methods, contrary to some of the wider literature on
clinical prediction models. This ML-based model may potentially
assist clinical decision-making when assessing and advising
patients after MIS-TLIF under the Quadrant channel and when
deciding on ongoing management.

MIS-TLIF is well-known to have many advantages compared
to open TLIF in terms of reducing muscle injury, smaller
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TABLE 1 | Comparison of variables between the SSI group and non-SSI group.

Total Non-SSI SSI P-value

Number of patients 705 672 33

Age (years) 58.7 (7.2) 58.4 (7.1) 65.0 (6.5) <0.001***

Sex (%)

Female 304 (43.1) 289 (43.0) 15 (45.5) 0.858

Male 401 (56.9) 383 (57.0) 18 (54.5)

BMI (kg/m2 ) 25.2 (3.0) 25.0 (3.0) 28.4 (2.7) <0.001***

Smoking (%)

No 519 (73.6) 503 (74.9) 16 (48.5) 0.002**

Yes 186 (26.4) 169 (25.1) 17 (51.5)

Alcohol (%)

No 479 (67.9) 457 (68.0) 22 (66.7) 0.851

Yes 226 (32.1) 215 (32.0) 11 (33.3)

Diabetes (%)

No 584 (82.8) 566 (84.2) 18 (54.5) <0.001***

Yes 121 (17.2) 106 (15.8) 15 (45.5)

COPD (%)

No 680 (96.5) 648 (96.4) 32 (97.0) 1

Yes 25 (3.5) 24 (3.6) 1 (3.0)

Stroke (%)

No 697 (98.9) 664 (98.8) 33 (100.0) 1

Yes 8 (1.1) 8 (1.2) 0 (0.0)

Rheumatic disease (%)

No 687 (97.4) 655 (97.5) 32 (97.0) 0.583

Yes 18 (2.6) 17 (2.5) 1 (3.0)

CHF (%)

No 702 (99.6) 669 (99.6) 33 (100.0) 1

Yes 3 (0.4) 3 (0.4) 0 (0.0)

Steroid use (%)

No 646 (91.6) 615 (91.5) 31 (93.9) 1

Yes 59 (8.4) 57 (8.5) 2 (6.1)

Diagnosis (%)

Lumbar disc herniation 176 (25.0) 168 (25.0) 8 (24.2) 0.543

Lumbar spinal stenosis 144 (20.4) 134 (19.9) 10 (30.3)

Lumbar

instability/spondylolisthesis

169 (24.0) 162 (24.1) 7 (21.2)

Lumbar

instability/spondylolisthesis

combined with spinal stenosis

216 (30.6) 208 (31.0) 8 (24.2)

ASA (%) I 250 (35.5) 242 (36.0) 8 (24.2) 0.005**

II 327 (46.4) 316 (47.0) 11 (33.3)

III 114 (16.2) 101 (15.0) 13 (39.4)

IV 14 (2.0) 13 (1.9) 1 (3.0)

Operation time (min) 155.1 (26.7) 153.2 (24.5) 193.8 (37.4) <0.001***

EBL (ml) 209.4 (63.3) 205.1 (58.4) 296.7 (91.9) <0.001***

Number of fusion segments 1.1 (0.2) 1.1 (0.2) 1.4 (0.3) <0.001***

Pre-operative HbA1c (%) 5.4 (1.0) 5.3 (0.8) 7.5 (1.6) <0.001***

Pre-operative Alb (g/L) 42.8 (3.5) 43.0 (3.4) 39.3 (3.6) <0.001***

Pre-operative globulin (g/L) 24.1 (21.9, 26.3) 24.1 (21.8, 26.2) 24.6 (22.2, 27.5) 0.17

Pre-operative glycated protein (%) 2.2 (0.1) 2.2 (0.1) 2.1 (0.2) 0.001**

Pre-operative RBC (*109/L) 5.1 (4.8, 5.4) 5.1 (4.9, 5.4) 5.0 (4.8, 5.1) 0.079

Pre-operative WBC (*109/L) 7.0 (6.1, 7.8) 7.0 (6.0, 7.8) 7.4 (6.7, 7.9) 0.07

(Continued)
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TABLE 1 | Continued

Total Non-SSI SSI P-value

Pre-operative thrombocyte (*109/L) 238.7 (45.5) 238.7 (45.8) 238.3 (38.8) 0.965

Pre-operative PT (s) 11.6 (1.0) 11.6 (1.0) 11.8 (1.2) 0.249

Pre-operative APTT (s) 31.6 (1.3) 31.6 (1.2) 31.9 (2.0) 0.203

Pre-operative Fib (mg/dL) 3.6 (0.4) 3.6 (0.4) 3.2 (0.5) <0.001***

Pre-operative potassium (mmol/L) 4.1 (0.3) 4.1 (0.3) 4.1 (0.3) 0.503

Pre-operative calcium (mmol/L) 2.4 (0.1) 2.4 (0.1) 2.4 (0.1) 0.504

BMI, body mass index; COPD, chronic obstructive pulmoriary disease; CHF, chronic heart failure; ASA, American Society of Anesthesiologists; EBL, estimated blood loss; HbA1c,

glycated hemoglobin A1c; Alb, albumin; RBC, red blood cells; WBC, white blood cells; PT, prothrombin time; APTT, activated partial thromboplastin time; Fib, fibrinogen.

*P-value < 0.05; **P-value < 0.01; ***P-value < 0.001.

TABLE 2 | Univariate and multivariate logistic regression model analyses of SSI following MIS-TLIF in the whole data set.

Univariable logistic regression analysis Multivariable logistic regression analysis

OR (95% CI) P-value OR (95% CI) P-value

Age (years) 1.145 (1.085–1.207) <0.001*** 1.213 (1.091–1.334) 0.034*

Sex (%) 0.905 (0.449–1.827) 0.782 / /

BMI (kg/m2 ) 1.498 (1.303–1.722) <0.001*** 1.521 (1.091–1.944) 0.0121*

Smoking (%) 3.162 (1.563–6.397) 0.001*** 2.965 (2.504–3.426) 0.0654

Alcohol (%) 1.063 (0.506–2.231) 0.872 / /

Diabetes (%) 2.450 (2.175–9.104) <0.001*** 3.054 (1.498–4.160) 0.0598

COPD (%) 0.844 (0.111–6.431) 0.87 / /

Stroke (%) 0.000 (0.000- Inf) 0.987 / /

Rheumatic disease (%) 1.204 (0.155–9.332) 0.859 / /

CHF (%) 0.000 (0.000- Inf) 0.988 / /

Steroid use (%) 0.696 (0.162–2.984) 0.626 / /

Diagnosis (%) 0.892 (0.661–1.204) 0.454 / /

ASA (%) 1.849 (1.201–2.847) 0.005** 1.456 (1.062–1.849) 0.1652

Operation time (min) 1.055 (1.040–1.071) <0.001*** 1.061 (1.032–1.090) 0.0254*

EBL (ml) 1.822 (1.015–2.785) <0.001*** 1.709 (1.368–2.050) 0.0197*

Number of fusion segments 2.292 (1.080–4.863) 0.031* 2.715 (2.017–3.413) 0.5681

Pre-operative HbA1c (%) 11.394 (5.876–22.092) <0.001*** 36.125 (27.899–44.351) <0.001***

Pre-operative Alb (g/L) 0.747 (0.673–0.830) <0.001*** 0.621 (0.456–0.786) 0.0198*

Pre-operative globulin (g/L) 1.079 (0.969–1.202) 0.167 / /

Pre-operative glycated protein (%) 0.010 (0.001–0.168) 0.001** 0.042 (0.026–0.058) 0.319

Pre-operative RBC (*109/L) 0.526 (0.220–1.258) 0.149 / /

Pre-operative WBC (*109/L) 1.250 (0.945–1.655) 0.118 / /

Pre-operative thrombocyte (*109/L) 1.000 (0.992–1.008) 0.965 / /

Pre-operative PT (s) 1.221 (0.870–1.714) 0.249 / /

Pre-operative APTT (s) 1.195 (0.909–1.573) 0.203 / /

Pre-operative Fib (mg/dL) 0.074 (0.029–0.190) <0.001*** 0.096 (0.041–0.151) 0.429

Pre-operative potassium (mmol/L) 0.685 (0.226–2.071) 0.502 / /

Pre-operative calcium (mmol/L) 0.358 (0.018–7.247) 0.503 / /

BMI, body mass index; COPD, chronic obstructive pulmoriary disease; CHF, chronic heart failure; ASA, American Society of Anesthesiologists; EBL, estimated blood loss; HbA1c,

glycated hemoglobin A1c; Alb, albumin; RBC, red blood cells; WBC, white blood cells; PT, prothrombin time; APTT, activated partial thromboplastin time; Fib, fibrinogen; OR, odds ratio;

CI, confidence interval.

*P-value < 0.05; **P-value < 0.01; ***P-value < 0.001.

incisions, and scarring, especially for elderly patients who cannot
bear the trauma of traditional open TLIF surgery (20–22). In
contrast, SSI after MIS-TLIF can cause additional prolonged
antibiotic use, prolonged length of stay, increased risk of fusion

failure, and even the need for re-invasive surgery or removal of
the implant (23, 24), which not only increases the medical burden
on patients and society but also causes increased mortality
in patients.
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TABLE 3 | Stepwise logistics regression analysis in the whole data set.

Estimate Std. error OR 95% CI lower 95% CI upper P-value

(Intercept) −8.165 0.654 19.321 11.410 27.232 0.080

Age (years) 0.116 0.064 1.187 1.006 1.401 0.043*

BMI (kg/m2 ) 0.387 0.140 1.445 1.005 2.076 0.047*

Operation time (min) 0.032 0.013 1.041 1.003 1.080 0.035*

EBL (ml) 0.026 0.007 1.424 1.021 1.732 0.017*

Pre-operative HbA1c (%) 2.242 0.466 35.390 21.215 40.124 <0.001***

Pre-operative Alb (g/L) −0.442 0.133 0.672 0.463 0.975 0.036*

BMI, body mass index; EBL, estimated blood loss; HbA1c, glycated hemoglobin A1c; Alb, albumin; OR, odds ratio; CI, confidence interval.

*P-value < 0.05; ***P-value < 0.001.

FIGURE 2 | (A) ROC curve analysis of machine learning algorithms for predicting the risk of SSI following MIS-TLIF in total set. (B) Predictive performance comparison

of the six types of machine learning algorithms in the total set. SSI, surgical site infection; MIS-TLIF, minimally invasive transforaminal lumbar interbody fusion; ROC,

Receiver Operating Characteristic curve; KNN, k-Nearest Neighbor; DT, Decision tree; SVM, Support vector machine; RF, Random Forest; MLP, Multi-Layer

Perceptron; NB, Naïve bayes.

With the continuous development of minimally invasive spine
surgery, MIS-TLIF has gradually attracted the attention of spine
surgeons. It has been reported that the incidence of SSI after
lumbar interbody fusion is 2.4–5% (25–28). In this investigation,
the incidence of SSI was 4.78, which was consistent with the
previous report. Although risk factors associated with SSI after
MIS-TLIF have been previously reported, little attention has
been paid to the incidence of SSI following MIS-TLIF under the
Quadrant channel. More importantly, we still lack a concise and
reliable tool to identify high-risk groups and assist clinicians in
their decision-making. Therefore, in this study, several ML-based
models were constructed using AI techniques to predict the risk
of SSI.

Many studies have shown that diabetes mellitus is an
important risk factor for SSI after spine surgery (23, 29–31).
Usually, glucose metabolism is closely related to the structure
and pathophysiology of blood vessels. Disorders of glucose
metabolism are inextricably linked to vascular structure and
dysfunction, as has been demonstrated in many studies. And
vascular pathological alterations cause local microcirculatory

disorders leading to tissue ischemia and hypoxia, which provide
a favorable environment for the growth of anaerobic bacteria and
pose a potential risk for delayed post-operative wound healing
and surgical site infection. Also, systemic immune deficiency
caused by diabetes is the main reason for the occurrence
of SSI. Therefore, surgeons usually strictly control patients’
perioperative blood glucose and control pre-operative fasting
glucose below 6.9 mmol/L before considering surgical treatment
(32). Interestingly, glycosylated hemoglobin has also been
identified as a risk factor for SSI. Chronic hyperglycemic state
leads to cell-mediated immune and macrophage dysfunction,
reduced overall immune function of the body, and diminished
ability to respond to bacterial viruses. And the relative
importance in our prediction model was ranked first. Therefore,
we need to be more cautious about the perioperative glycemic
management of patients.

In the present study, we found that high BMI is also a risk
factor for SSI. In a large retrospective study by Onyekwelu
et al. (33), BMI > 30 kg/m2 was found to be a high-risk factor
for SSI after lumbar spinal fusion. The problems caused by
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FIGURE 3 | ROC curve analysis of a 10-fold CV of six machine learning algorithms for predicting the risk of surgical site infection following minimally invasive

transforaminal lumbar interbody fusion in total set. CV, cross validation; KNN, k-Nearest Neighbor; DT, Decision tree; SVM, Support vector machine; RF, Random

Forest; MLP, Multi-Layer Perceptron; NB, Naïve bayes.

obesity are present in almost all orthopedic surgeries, not only
in spine surgery. Obesity can lead to endocrine disruption and
insulin resistance, causing impaired glucose tolerance and even
diabetes. On the other hand, obese patients may have a variety of
underlying diseases that cause a decrease in the patient’s immune
capacity. Equally worrisome is the increased vascularity in the
adipose tissue of obese patients and the even greater incidence
of post-operative fat liquefaction, which also increases the risk
of SSI.

Intriguingly, age was also identified as an independent risk
factor in this study. However, we are also aware that this is a
non-modifiable risk factor. Previous studies reported that the risk
of SSI after spinal surgery was three times higher in patients
aged ≥ 60 years than in the younger group (1, 27). Similar
results were observed in the present study. Although it is still
controversial whether advanced age is a risk factor for SSI,
the current mainstream of scholars believe that elderly patients
have reduced metabolism, degenerated immune function, and
may be accompanied by numerous underlying diseases, which
significantly reduce the reserve capacity of the organism and
make it more sensitive to surgical trauma strikes. The ability of
local tissues to resist infection as well as self-repair is weakened,
increasing the risk of SSI following spine surgery.

Although univariate logistics regression analysis indicated
a statistical difference in operation time and EBL between

the two groups (P < 0.05), in multivariate logistic regression
analysis, we found that EBL and operation time were identified
as risk factors for SSI. It has been reported in the literature
that prolonged operation time is a significant risk factor for
SSI that cannot be ignored. Prolonged operation time leads
to increased tissue stretching time, aggravating local ischemia
and tissue inflammatory factor release, while prolonged surgical
wound exposure leads to an increased possibility of direct blood
entry of pathogenic bacteria from the wound. Whereas, the
relationship between EBL and SSI has been debatable. According
to previous literature, intraoperative blood transfusion>1,000ml
was reported as a risk factor for post-operative SSI in spine
surgery and cardiac surgery (7, 27). Onyekwelu et al. (33)
investigated 3,175 patients undergoing spine surgery and found
that the incidence of post-operative SSI was 2.5% in patients
with intraoperative bleeding<1,000ml, and 3.5% in patients with
intraoperative bleeding>1,000ml. The incidence of SSI was 5.6%
(p = 0.001) and was identified as an independent risk factor
for SSI.

In the present study, we found that low serum albumin
was an important risk factor for SSI. Serum albumin level
is closely related to the nutritional status, liver and kidney
function of patients. Hypoproteinemia will lead to immune
suppression, local tissue edema, impaired microcirculation, and
increased tissue fluid exudation, which will affect normal wound
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FIGURE 4 | The importance of the variables in the NB model model is in decreasing order as follows: Pre-operative HbA1c, EBL, operation time, pre-operative Alb,

BMI, and age. HbA1c, glycated hemoglobin A1c; EBL, estimated blood loss; Alb, albumin; BMI, body mass index.

healing and create conditions for bacterial colonization. Previous
literature has reported pre-operative hypocalcemia as a risk factor
for post-operative spinal infection (30), and another interesting
finding is that electrolyte variables such as blood calcium and
potassium in this investigation were not statistically significantly
different between the SSI andNon-SSI groups. Patients with toxic
shock syndrome are usually found to suffer from hypocalcemia,
which may be due to an increase in calcitonin secretion caused
by the infection, resulting in lower blood calcium levels (34).
Many previous studies have reported hypocalcemia in ∼40%
of patients with bacteremia (35). According to the inclusion
and exclusion criteria of our study, none of the patients in
the 2 groups had a significant active infection before surgery,
so it is not difficult to explain why there was no statistically
significant difference in pre-operative blood calcium between
the 2 groups.

Compared with other research attempting to determine the
risk of SSI following MIS-TLIF, our work has several advantages.
First, a few studies focused on patients undergoing MIS-TLIF
under the Quadrant channel. This may provide a reference for
spine surgeons. Furthermore, while ML approaches have shown
unparalleled prediction performance in MIS-TLIF under the
Quadrant channel in recent reports, There is, however, little
research in the available literature on applying ML algorithms
to SSI following MIS-TLIF. As far as we know, this is the first
study to develop a prediction model usingML algorithms for risk
evaluation of SSI with easy-to-use clinical and laboratory data.
Fortunately, our prediction model evidences good predictive
performance of the model, which distinguishes itself from linear
models adopted by previous research.

In this study, several limitations of this study require attention.
First, the nature of a retrospective study might have introduced a
selection bias. Second, the ML algorithm model we established,
to some extent, was confined to one single center, which might
restrict its generalizability pending further validation in real-
world scenarios. Third, further independent external validation
is required to confirm these findings. Finally, we collected as
comprehensive a collection of SSI-related variables as possible,
but there were still some important variables, such as methicillin-
resistant Staphylococcus aureus (MRSA) carriage, that were not
available in a timely manner. This could limit the generalizability
of the study. Future research was needed to further look into
this issue.

CONCLUSIONS

We developed and validated ML algorithms for individualized
prediction of SSI following MIS-TLIF by utilizing readily
available pre-operative variables. The ML-based prediction
model can identify whether patients are at high risk of SSI and
may assist the clinician in decisionmaking. In the future, we hope
to enlarge the sample size in the following study and obtain more
reliable achievements further.
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