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ABSTRACT

Small interfering RNA (siRNA) induces sequence-
specific post-transcriptional gene silencing in
mammalian cells. Different efficacy of each siRNA
is considered to result from sequence preference by
protein components in RNAIi. To obtain mechanistic
insight into siRNA functionality, here we describe a
complete data set of siRNA activities targeting all
possible position of a single mRNA in human cells.
Seven hundred and two siRNAs covering open
reading frame of enhanced green fluorescent pro-
tein mRNA (720 bases) were examined with mini-
mized error factors. The most important finding is
that specific residues at every third position of
siRNAs greatly influence its RNAi activity; the
optimized base composition at positions 3n+1
(4,7,10,13,16,19) in siRNAs have positive effects on
the activity, which can explain the waving siRNA
activity with 3 nucleotides (nt) periodicity in the
sequential positions of mMRNAs. Since there was an
obvious correlation between siRNA activity
and its binding affinity to TRBP, a partner protein
of human Dicer, the 3-nt periodicity might correlate
with the affinity to TRBP. As an algorithm
(‘siExplorer’) developed by this observation
successfully calculated the activities of siRNAs
targeting endogenous human genes, the 3-nt
periodicity provides a new aspect unveiling siRNA
functionality.

INTRODUCTION

The double-stranded RNA (dsRNA) interference (RNA1)
method results in sequence-specific gene silencing
and as such is an invaluable tool for rapid genetic
analysis in many ecukaryotic systems, including
plants, fungi, insects, protozoans and mammals (1-6).

In mammalian cells, such sequence-specific gene silencing
has been successfully performed by utilizing short 21-23
nucleotide (nt) dsSRNAs known as small interfering RNAs
(siRNAs) (7-10) that escape from the dsRNA-induced
antiviral pathways (11-14). To date, many endogenous
genes in mammalian cells have been characterized using
the siRNA technique (1,2,15). Instant knockdown of
mRNAs as well as non-coding RNAs by siRNAs have
now become a general tool in many fields of life science.
siRNA also has a great potential to be used in medical
applications. Together with development of delivery
technique in vivo, several examples of animal experiments
using siRNAs have been reported (16,17).

Fundamental studies on RNAi pathway to explain
siRNA functionality are supporting rapid development of
siRNA technology and its application. The guide strand
of siRNA complementary to the target mRNA is loaded
into RNA-induced silencing complex (RISC) (7,18). RISC
recognizes and determines the target site for cleavage by
hybridizing the guide strand of siRNA. Argonaute 2 has
been identified as a catalytic subunit of RISC for mRNA
cleavage (19-26). In many organisms, RNAi machinery is
involved in translational repression mediated by
micro(mi)RNAs, which are natural substrates for RNAi
machinery. miRNA is a single strand non-coding RNA
that matures from precursor RNA with short hairpin
structure (pre-miRNA). RNase IlI-nuclease Dicer pro-
cesses pre-miRNA to produce double-stranded miRNA
and selects one strand to be a guide strand serving as
a translational suppressor in RISC-like miRNP (27-29).
Thus, the two processed strands are destined to distinct
pathways. According to biochemical studies in Drosophila
melanogaster, RISC assembly is initiated with siRNA
recognition by Dicer2 and its partner protein R2D2 to
form RISC-loading complex (RLC) (30). During this
complex formation, it is known that relative thermo-
dynamic instability at the 5 end of siRNA results in
asymmetric recognition of siRNA by Dicer-2-R2D2
complex. This asymmetric recognition is believed to
determine which strand to serve as a guide strand in
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both miRNA and siRNA (31,32). In fact, many knock-
down experiments using large number of siRNAs show
that efficacious siRNAs have unstable 5 end of their guide
strands (33). On the basis of this observation, algorithms
that design efficacious siRNAs were developed by several
groups (34-39). In addition, assuming dicing is coupled
with RISC formation, two groups independently
succeeded in designing siRNAs to be good substrates
for Dicer with potent efficacy at sub-nanomolar
level (40,41).

RNAi pathway consists of many steps, including
siRNA recognition by Dicer with its partner protein,
unwinding siRNA, RISC assembly, target selection, target
cleavage by Argonaute protein, product release and RISC
recycling (27,42). Efficacy of siRNA is supposed to be
determined by total efficiency of each step. In the initial
step of RISC formation, strand selection of siRNA by
asymmetric recognition of Dicer and its partner protein is
a dominant role. In human, transactivating response
(TAR) RNA-binding protein (TRBP) was identified as a
partner protein for human Dicer (43,44). TRBP has three
double-stranded RNA-binding domains (dsRBDs), two of
which have a pivotal role in recognizing dsSRNA (45) and
the third domain at the C-terminus is required for
interaction with human Dicer. Molecular mechanism on
how Dicer—TRBP complex recognizes siRNA asymmetry
is not fully understood. Recently, another dSRBD protein,
PACT, was identified as a partner protein for human
Dicer (46).

To obtain general rules embedded in siRNA sequences
that provide a clue to understand molecular mechanism
in RNAi pathway, we precisely determined RNAI
activities of 702 siRNAs with complete double-stranded
form targeting all possible position of ORF of EGFP
mRNA (720 bases) in HeLa cells and analyzed relation-
ship between siRNA sequences and their activities. The
data clearly showed that efficacy of siRNAs is associated
with the thermodynamic instability of the guide strand 5’
end as proposed. In addition, we found total base
composition and specific residues at every third position
of siRNAs to be involved in the RNAI activity. We have
developed an algorithm on the basis of this observation
that successfully predicts the siRNA activities targeting
endogenous genes, suggesting that the three nucleotides
periodic efficacy of siRNA was shown to be a universal
phenomenon in human RNAi pathway.

MATERIALS AND METHODS
siRNA preparation

shRNA was transcribed by T7 RNA polymerase and then
converted into siRNA by limited digestion with ribonu-
clease T1 (47) (see supporting information). We prepared
702 species of siRNAs that target all positions of the
720nt EGFP coding region. The siRNA sequences
targeting  glyceraldehyde-3-phosphate  dehydrogenase
(GAPDH) mRNA (1008 nt) start from nucleotide posi-
tions 8, 23, 33, 43, 53, 65, 93, 109, 120, 132, 145, 167, 198,
231, 241, 304, 337, 349, 368, 383, 402, 409, 448, 473, 491,
519, 539, 587, 595, 613, 636, 655, 676, 710, 734, 746,
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761, 777, 789, 798, 802, 817, 845, 863, 889, 916, 941, 950,
974 and 989 for the experiment shown in Figure 7A, and
sequential nucleotide positions 950-974 for the experiment
shown in Figure 7B. The siRNA sequences targeting
B-catenin mRINA start from nucleotide positions 579, 598,
654, 1224, 1694, 1681, 1898, 2101, 2219 and 2254 (Figure
S4). For fluorescence correlation spectroscopy (FCS),
3-TAMRA (6-carboxy-tetramethylrodamine)-labeled
passenger strands for EGFP416 and EGFP64 were
chemically synthesized and purified by HPLC
(Hokkaido System Science, Inc.). Four nanomoles of
TAMRA-labeled RNA was annealed with equal amount
of its non-labeled guide strand at 37 C for 30 min in 20 ul
of 30mM HEPES-KOH (pH 7.8), 100mM potassium
acetate and 2mM magnesium acetate, which was then
purified by non-denaturing gel.

Expression and purification of human TRBP

The plasmid pGSX-TRBP (48) was kindly provided by
Dr Joo Yong Lee (The Catholic University of Korea).
The coding region of human TRBP in pGSX-TRBP was
amplified using primers 5'-cgcggatcccatgagtgaagaggag
caaggct-3’ and 5-gcagatcgtcagtcagtcacgatg-3’. The pro-
duct was cloned into EcoRI/HindIII site of pET-21b. The
recombinant TRBP with C-terminal his-tag was induced
by 100 uM IPTG and expressed at 25 C for overnight.
Then, it was purified by Ni-charged Hi-trap chelating
column according to the manufacturer’s instruction
(GE healthcare).

Cell culture and transfection

HeLa cells stably expressing Hyg/EGFP were kindly
provided by Dr M. Miyagishi (University of Tokyo).
Hyg/EGFP gene was derived from pHygEGFP
(Clontech), which expresses EGFP fused with a hygro-
mycin-resistance gene. The cells were cultured in
Dulbecco’s modified Eagle’s medium containing 10%
fetal bovine serum (FBS), 100 unit/ml penicillin,
100 pg/ml  streptomycin  and 100 pg/ml hygromycin.
About 7.5x 10* cells were inoculated in 6-well plates
and cultivated for 48 h. The medium was then changed to
1 ml OPTI-MEM 1 (Gibco) without hygromycin. The cells
were transfected with 10pmol siRNAs for EGFP
(f.c. 10nM) by using 10pul Oligofectamine (Invitrogen)
and then incubated for 4 h. Thereafter, 500 ul Dulbecco’s
modified Eagle’s medium with 30% FBS was added.
In the case of GAPDH, normal Hela cells were
transfected with 25 pmol siRNAs (f.c. 25nM).

Flow cytometry and immunofluorescence

Seventy-two hours after the transfection, the cells were
trypsinized and washed twice with cold PBS, and
resuspended in Hanks’ buffer containing 0.1% sodium
azide and 0.2% BSA. EGFP fluorescence was measured
by flow cytometry using FACScalibur (Becton
Dickinson). GAPDH was measured by fixing the washed
cells with 3% paraformaldehyde for 1h, permeabilizing
with 0.2% Triton X-100 in PBS for 2 min, followed by the
addition of mouse anti-GAPDH or anti--catenin mono-
clonal antibodies (Chemicon). After a 30 min incubation
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at room temperature, the cells were washed three times
with PBS containing 1% BSA and then FITC-conjugated
anti-mouse antibodies (Zymed laboratories) were added
and incubated for 30 min. The cells were washed three
times with PBS containing 1% BSA and resuspended in
Hanks’ buffer/0.2% BSA. The FITC fluorescence was
measured by flow cytometry.

Fluorescence correlation spectroscopy (FCS)

FCS measurements were performed using a MF20 single
molecule fluorescence detection system (Olympus).
Helium—Neon laser (543 nm) was used for the detection
of TAMRA-Iabeled siRNA. TAMRA-labeled siRNA or
single-stranded (ss)RNA (1 nM) was mixed with different
concentrations (0-200nM) of recombinant human
TRBP in 25ul mixture consisting of 50mM HEPES-
KOH (pH 7.8), 100mM KCl, 5mM MgCl, and 7mM
2-mercaptoethanol. For the competition analysis, non-
labeled competitor siRNA (5nM) was added to the
mixture in the same buffer and the concentration of
TRBP was fixed at 150 nM. Competitor siRNA sequences
targeting EGFP mRNA start from nt positions 8§, 25, 37,
50, 64, 99, 123, 166, 176, 242, 264, 299, 359, 371, 383, 416,
417, 418, 450, 476, 485, 532, 591, 617, 626, 662 and 701.
Data acquisition time was 3 or 5s and measurements were
repeated 5 or 6 times per well.

Thermodynamic energy calculation of 5’ ends of siRNNAs

Thermodynamic parameters for the second 3’ dangle base,
the first 3’ dangle base and RNA duplexes were obtained
from the literatures (49-51). For each of 702 siRNAs
targeting EGFP mRNA, thermodynamic stability
(kcal/mol) of four base pairs in the passenger or guide
strand 5 end with 2-nt 3’-overhang was calculated.
Stability differences were obtained by the value of the
guide strand minus the value of the passenger strand. All
calculated values for 702 siRNAs are shown in Table S1.

RESULTS
Activity distribution of 702 siRINAs that target EGFP mRNA

We have recently developed a method for synthesizing
siRNAs derived from in vitro transcribed short hairpin
(sh)RNA (47) (supplementary information, Figure S1).
Seven hundred and two different species of siRNAs that
target all the nucleotide positions of EGFP mRNA
(720 nt) were prepared with high quality (Figure S2). If
siRNA has an inverted repeat in its sequence, it is difficult
to obtain dsRNA by simple annealing procedure of
both strands that are synthesized chemically, because
each strand tends to form intra-molecular hairpin-like
structure. In this method, since siRNAs are generated
from shRNA, all siRNAs are prepared as complete
double-stranded form (47) (Figure S2). The prepared
siRNAs consist of a 19-nt double-stranded region
corresponding to the target sequence of mRNA with
2-nt overhangs at both 3’ ends. The quality of 702 siRNAs
was confirmed by mass spectrometry and polyacrylamide
gel electrophoresis (Figure S2). Each siRNA (10nM) was

Nucleic Acids Research, 2007, Vol. 35, No.4 e27

80
70 -
4 _
< 60 _
E _
= 50T =iElEEs
S 5
° 40
g30'
E
Zz 20
DHH HH
ODJDIIIIJIIIIIJI!IIIIID
N o WwowouwouwoOwowowowo wmo
 Er -~ N NOO T TDWOO~MRDOS O
L} L A R | [ I B A [ T
Omomomcmcmomomomcmo'
*—‘—NN(’J(“JVVLOU‘)(D(BI‘*P-—NWO)Q

RNAI activity (%)

Figure 1. Distribution histogram of 702 siRNA activities that target
EGFP mRNA. RNAI activities are described as a percentage of
decreased EGFP fluorescence by siRNA knockdown. The average
activity of 702 siRNAs is 53.75% and the standard deviation is 20.6.

then introduced into HeLa cells that stably express EGFP.
The fluorescence of EGFP was measured by flow
cytometry 72h after the siRNA transfection. The rate
with which EGFP fluorescence was decreased by siRNA
knockdown was quantified as the RNAI activity (the best
and the worst activities are defined as 100 and 0%,
respectively). The data obtained in this experiment
were highly reproducible. The RNAi activities of the
702 siRNAs show nearly normal probability distribution
(Figure 1). Large majority of siRNAs show middle
activities and fewer ones show very high or very low
activities. IC50 value of the most efficacious siRNA was
estimated as about 0.1 nM (data now shown). The average
activity of 702 siRNAs is 53.75% and the standard
deviation is 20.6. This is the first demonstration of
a complete set of siRNA activities targeting all possible
positions in ORF of a certain mRNA.

Thermodynamic instability of the guide strand 5’ end of
siRNA involved in its activity

It is known that Drosophila Dicer-2 with its partner
protein recognizes siRNA asymmetrically by sensing
relative thermodynamic instability at the 5’ ends of both
strands. This asymmetric recognition is supposed to be the
fundamental principle of the strand selection for siRNAs
(31,32). To investigate whether the complete set of
siRINA activities in this study actually correlate with
the instability of the guide strand 5 end, we calculated
thermodynamic energy of both 5 ends for 702 siRNAs
(see Materials and Methods and Table S1). The thermo-
dynamic stability of the guide or passenger strand
5" end for each siRNA is plotted with its RNAIi activity
(Figures 2A,B). As expected, there is an apparent
correlation between instability of the guide strand 5 end
and its RNAIi activity with a correlation coefficient
(R value) 0444 (P=2.6x10"%) (Figure 2A).
Meanwhile, as shown in Figure 2B, there is little
correlation between the instability of passenger strand
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5" end and its RNAi activity (R value is 0.135,
P=3.4x10"%. If human Dicer with its partner (TRBP)
senses the stability of the passenger strand 5 end in a
positive manner, the correlation coefficient should be
a negative value in this plot. In addition, to examine
relative stability of both strands, we made another plot
(Figure 2C) for the RNAI activity against the energy
difference for each siRNA which was calculated by the
differential energy of the guide and the passenger strand
5" ends (Table S1). Although it is a positive correlation,
the plots are still dispersed in the graph with
R factor 0.236 (P=2.4x10"""). These results clearly
illustrated that the instability of the guide strand 5’ end is
a major factor contributing to the asymmetrical strand
selection.

Base composition of siRNA and its activity

To elucidate the other factors in siRNA sequence to be
involved in its activity, we next examined base composi-
tion of each siRNA. The base composition of each siRNA
was represented as the value B (base composition value),
which was calculated by Equation (1) given below, where
Ny stands for the number of specific bases (X =A, U, G or
C) in the siRNA and Py stands for the coefficient given to
each base (X=A, U, G or C). Summation of Ny and Py
must be 19 and 1, respectively.

B=Ppr-Na+ Py-Ny+ Pg-Ng+ Pc-Nc 1
(Na + Ny + Ng+ Nc =19, PA + Py + P+ Pc =1)

The correlation between the B values obtained with
various Py values for each base and the RNAI activities
of all the siRNAs were then analyzed to calculate R
values. This analysis was completely carried out by
examining all possible combination of Py values changing
at 0.05 steps, showing the R values ranging from —0.601
to 0.601 (Figures 3A,B and S3A-S in supplementary
information). To obtain a higher R value between the B
value and the RNAI activity, we found that Po + Py has
to be greater than Pg + Pc, Pa has to be greater than Py,
and Pg has to be greater than P (Figures 3A,B
and S3A-S). The best coefficients to achieve the highest
R factor (0.601) for each base was found to be
Pp:Py:PG:Pc=0.4:0.35:0.15:0.1 (Figure 3A). The worst
coefficients to yield the lowest R factor (—0.601) was
found to be Pa:Py:Pg:Pc=0.1:0.15:0.35:0.4 (Figure 3B).
The results showed that the RNAI activity turned out
to correlate closely with the total base composition of
siRINA sequence.

Periodical effect of every third position in siRNA
involved in RNAI activity

We next analyzed the effect of the residues at certain
positions in the siRNA on its RNAi activity. At each
position (1-19) of the 702 siRNAs, the R values between
the best Py values (P4, Py, Pg and P are 0.4, 0.35, 0.15
and 0.1) and their activities (1-nt analysis) are plotted in
Figure 4A. For example, if the position 1 of a certain
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Figure 2. Scatter plots for the knockdown activities of the 702
EGFP siRNAs versus thermodynamic stability of both ends in
siRNAs. (A) Scatter plot for the activities of 702 siRNAs versus
thermodynamic energy of the guide strand 5 end. The correlation
coefficient (R) is 0.444 (P=2.6x10"%). (B) Scatter plot for the
activities of 702 siRNAs versus thermodynamic energy of the
passenger strand 5 end. The correlation coefficient (R) is 0.135
(P=3.4x10"%. (C) Scatter plot for the activities of 702 siRNAs
versus stability difference (g.s. —p.s.) of both strands. The correlation
coefficient (R) is 0.236 (P=2.4x10"'%. Blue spots represent
10 siRNAs that exhibit less stable guide strand 5 end
but show lower activity (less than 30). Red spots represent
10 siRNAs that exhibit more stable guide strand 5’ end but show
higher activity (more than 70). Number near the spot corresponds
to the passenger strand 5 end position of each siRNA in EGFP
mRNA.
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Figure 3. Effect of the total base composition of 702 siRNAs on their ability to silence EGFP expression. Correlation between the total base
composition of the 702 EGFP siRNAs and their activities. The correlation coefficients are plotted against the different B values that were obtained by
changing the coefficients for each base in Equation (1). (A) Coefficients for A+U=0.75, G+C=0.25. (B) Coeflicients for A+ U=0.25,
G+ C=0.75. Other graphs with different coefficients are shown in Figure S3A-S.

siRNA has A-base, its Py value is 0.4. The result shows
that Px values for positions 4, 7, 10, 13, 16 and 19 (i.e. the
3n+1 positions, where n=counting number) correlate
relatively well with the activity to yield positive R factor,
while the Px values for positions 2, 5, 8, 11, 14 and 17
(i.e. the 3n 4 2 positions) do not correlate with the activity
(R factors are nearly 0). Positions 3, 6, 9, 12, 15 and 18
(i.e. the 3n positions) show R factors that fall between the
R factors of the 3n+ 1 and 3n+ 2 positions. In contrast,
we also examined the correlation between the B values
calculated from 18-nt positions for 702 siRNAs in which
each specific position had been systematically excluded
and their activity (18-nt analysis) (Figure 4A, bars).
The resulting R factors arising from this 18-nt analysis
showed a clear negative relationship with the R factors
of the 1-nt analysis at each position (Figure 4A, plots).
Thus, the R factors of the 18-nt analysis for 702 siRNAs
that lack a residue at position 3n+ 1 show a significant
reduction, the R factors from the data omitting position
3n show a mild reduction, and the R factors from the data
omitting position 3n+2 show no reduction. Position 1
does not strongly correlate with the activity.

The effect of particular bases at each nucleotide position
on the RNAI activity was further assessed by correlation
analysis (Figure 4B). For example, in the case of analysis
for A-base, if the position 1 of a certain siRNA has
A-base, its base-specific value is counted as 1. If it is a base
other than A-base (U, C or G), its value is counted as 0.
The base-specific values (one or zero) for each base against
each specific position of 702 siRNAs were obtained.

Then, we examined correlation analysis of the base-
specific value (one or zero) for each siRNA against its
activity (Figure 4B). A-base was found to be the most
effective base for the RNAI activity, whereas G- and
C-bases confer the negative effect. A-base at positions 3n
and 3n+ 1 shows the positive effect. U-base at positions
3n+1 shows the positive effect, whereas U-base at
positions 3n+2 shows the negative effect. Namely, A3,
A4, A6, A7, U10, A12, A13, A15, W(A&U)16, A18 and
A19, have positive effects on the RNAIi activity. In
particular, A19 has the strongest effect on the activity.
G- and C-bases at positions 3n and 3n+ 1, namely, C3,
G4, Co, C7, G10, C12, S(G&C)13, C15, S16, G18 and
S19, are associated with a negative effect on the RNAI
activity. No strong correlation with the activity was found
for any of the bases in positions 3n+ 2, which indicates
that any of the bases can be present at positions 3n+ 2
without influencing the activity of the siRNA. These
results are consistent with the periodical effect of every
third position of siRNA found in Figure 4A. As a result of
this experimentation, the ideal siRNA sequence that
would yield the most efficient activity was found to be
5-NNAANAANNUNAANAWNAA-3', although total
base composition should be considered as another factor.

As shown in Figure 5C, the RNAI activities of siRNAs
targeting sequential positions (1-50) in EGFP mRNA
clearly showed periodical fluctuation at every third
position. This phenomenon can be explained by the
periodic efficacy of every third position in siRNAs. The
3-nt periodicity of waving RNAI activities is well observed
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in mRNA regions where A and U frequently appear at
every third position, such as in positions 1-50, 110-160,
270-300 and 450-550 (Table S1). This periodical effect of
every third position of siRNA implies the molecular
mechanism of siRNA functionality in RNAi pathway.

Development of an algorithm that calculates siRNA activity

Based on these results, we tried to calculate the activity
of a certain siRNA from its sequence information.
To simplify the calculation, the B value associated
with the optimal base composition of the 19-nt siRNA
(which we termed the ‘macro effect’) and the positional
effect of the individual base at each position (which
we termed the ‘micro effect’) were considered separately.
These effects were parameterized so that the concrete
value that represented the prediction of the siRNA
activity could be calculated. First, the best coefficients
Py to yield the highest R factor were standardized
from Pa:Py:Pg:Pc=0.4:0.35:0.15:0.1 to 6.073:5.111:1.265
:0.304 by a linear expression 19.23 x Py+1.6193 to
calculate the transformed B values (macro effect)
that could be parallelized to the actual RNAi activ-
ity (0-100%) (Equation (2)). For example, the

macro effect value of the siRNA that targets position
5 of EGFP mRNA (Figure 2C), whose passenger
strand is 5-UGAGCAAGGGCGAGGAGCU-3, is cal-
culated as 6.073 x 545111 x2+41.265x9+0.304 x 3
(=52.884).

(Macro effect) = 6.073 - No +5.111 - Ny
+ 1.265- Ng 4+ 0.304 - Nc

The macro effect values for 702 siRNAs were calculated
and plotted with their actual activities in Figure SA. The
line chart of the macro effects fits well with a large
undulating curve formed by the sequential RNAI
activities of the 702 siRNAs, the R factor of which
results in 0.601 (P=2.6 x 10~7°). However, as shown in
Figure 5C, the macro effects do not correspond well
with sequential activities of siRNAs fluctuating at every
third position. To elevate higher R factor by predicting
such fluctuating activity, the micro effect values associated
with periodical effect of every third position of siRNA
are required.

In contrast, the parameters for the micro effect
cannot be calculated directly from the data shown in
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Figure 5. Comparison of the sequential knockdown activities of the 702 siRNAs targeting EGFP with the prediction values. (A) Correlation between
siRNA activities and the B values (macro effect). siRNA activities (%), which are the rate of EGFP fluorescence reduction, are shown by bars. The
B values for 702 siRNAs are plotted in blue. The correlation coefficient of the RNAi activity against the B values is 0.601 (P=2.6 x 10~'°). (B) The
prediction values calculated by the algorithm are plotted in red. The correlation coefficient of the RNAI activities against the prediction values is
0.726 (P=5.9 x 107'1%). (C) Predicting periodical fluctuation of sequential siRNA activities. The nucleotide sequences show the passenger strand of
EGFP siRNAs for positions 1-50. The colored bases represent bases that have positive or negative effects on the activity according to the analysis
shown in Figure 3B. The RNAI activities (%) of the siRNAs for EGFP are shown in bars. The B value and the prediction value calculated for each
siRNA are plotted in blue and red, respectively. The correlation coefficient of the RNAI activities against the prediction values in this region is 0.805

(P=19x107"%.

Figure 4A and B because they contain both the macro and
micro effects. Thus, the parameters for the micro effect
were calculated from the difference values between the
siRNA activities and the macro effect values. The
difference values can be assumed to be comprised mainly
of the micro effect that is derived from the positional effect
of the individual bases without the macro effect. To
calculate the micro effect value, the micro parameter Qy;
given to each base (X=A, U, G or C) at each position
(i=position 1-19) for each siRNA is defined. Thus, the
micro effect value is obtained by summing up the Qy;
parameters for each siRNA (Equation (3)). The optimized

parameter sets of Qy; for the micro effect were determined
computationally to maximize the correlation between the
micro effect value and the difference value (Table 1). For
example, the micro effect value of the siRNA that targets
position 5 of EGFP mRNA (5-UGAGCAAGGGCG
AGGAGCU-3) (Figure 5C) is calculated as —3.155+
0.364+1.190—1.3624-0.698+3.034+3.038 —0.735—0.938 —
0.737—1.119-0.17742.6014+1.037+1.962+2.758 —1.090 —
0.530+ 1.354 (=8.143).

19
(micro effect) = Z (Oxi)
i=1
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Table 1. Optimized parameters for the micro effect.

Bases/Positions A U G C

1 —1.555 —3.155 3.492 3.136
2 —2.237 —1.856 0.364 —0.067
3 1.190 —0.341 —1.226 —0.808
4 —0.179 0.070 —1.362 —0.136
5 —0.154 —2.258 —0.454 0.698
6 3.034 —1.407 0.387 —4.081
7 3.038 —1.440 0.637 —2.676
8 2.341 —2.697 —0.735 —0.317
9 —2.028 2.113 —0.938 1.935
10 —1.455 2.521 —0.787 —0.126
11 —0.938 —0.136 0.614 —1.119
12 1.112 —1.519 -0.177 —1.279
13 2.601 0.200 —2.095 —1.296
14 2.092 —2.258 1.037 —1.388
15 1.797 —1.356 1.962 —1.801
16 2.758 2.128 —2.188 —1.491
17 0.915 —1.295 —1.090 —1.119
18 1.971 2.482 —2.853 —0.530
19 5.310 1.354 —2.785 —2.627

Finally, the prediction value was obtained by adding the
micro effect value to the macro effect value. For example,
the prediction value of the siRNA that targets position 5 is
52.884 + 8.143(=61.027), which nicely correlates with its
actual activity (63 & 1.5). The prediction values against the
702 siRNAs were calculated accordingly (Table S1).

The correlation coefficient of the prediction values
against the 702 siRNA activities increased to 0.726
(P=5.9 x 107"%). The line chart of the prediction values
nicely fits with the sequential RNAI activities of the 702
siRNAs (Figure 5B). In positions 1-50 (Figure 5C), the
periodic fluctuation of the activity at every third position
can be estimated completely by the prediction values as a
correlation coefficient 0.805 (P=1.9 x 107'%). As shown in
the scatter plots (Figure 6), actual RNAI activities of 702
siRNAs aligned well with their prediction values ranging
from high to low values, so that the plots appear to
assemble in a diagonal line. Nine of the 702 siRNAs with
prediction values beyond 80 also showed RINAI activities
of over 80%. Thus, it is possible to design highly active
siRNAs based on this algorithm. This algorithm is
available as ‘siExplorer’ (http://rna.chem.t.u-tokyo.ac.jp/
siexplorer.htm).

Calculation of the siRNA activities targeting
endogenous genes

To validate this calculation method in terms of its general
applicability for endogenous genes, we prepared 50
randomly selected designs of siRNAs that target
GAPDH mRNA. The knockdown efficiency measured
by immunofluorescence using flow cytometry was quanti-
fied as the RNAI activity (%). The correlation coefficient
of the prediction values against the activities was
found to be 0.776 (P=3.4 x 10~'") (Figure 7A). To see
whether the periodical effect of every third position of
siRNAs in sequential RNAI activity occurred with this
gene as well, we prepared 25 siRINAs that target sequential
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Figure 6. Scatter plots for the knockdown activities of the 702 EGFP
siRNAs versus the prediction values. Prediction value for each siRNA
is listed in Table S1. Blue and red spots correspond to those in
Figure 2C. The correlation coefficient (R) is 0.726 (P=5.9 x 107116y,

positions within a 3’ end region of GAPDH mRNA
(positions 950-974) where A and U residues appear
frequently at every third position. As shown in
Figure 7B, the siRNAs bearing A or U residues at
3n+ 1 positions showed higher RNAI activity than ones
targeting the next positions. Thus, the waving RNAi
activity with 3-nt periodicity of siRNAs was clearly found
in positions 956, 959, 962, 965, 968, 971 and 974. The line
chart of the prediction values fits well with the sequential
RNAI activities. This result demonstrated that the micro
effect associated with the 3-nt periodicity is also important
for calculating activities of siRNAs against GAPDH
mRNA (Figure 7B). Furthermore, we designed 10 siRNAs
that target [B-catenin mRNA; five siRNAs with high
prediction values (75-95) and five siRNAs with low
prediction values (22-42). This algorithm can be applic-
able to design efficacious siRNAs for B-catenin mRNA
(Figure S4). These results support the validity of our
method for calculating siRNA activity that effectively
silence endogenous genes. In addition, the 3-nt periodical
fluctuation of siRNA activity was supposed to be a
general phenomenon in human RNAI.

Examination of siRNA-TRBP interactions by fluorescence
correlation spectroscopy (FCS)

The periodical RNAI efficacy of every third position in
siRNA sequences indicates the molecular interaction of
siRNA with a protein component in RNAi machinery.
In the cell, siRNA is initially recognized by Dicer with its
partner protein to form RLC. We suppose that a part
(not all) of siRNA functionality should be determined in
this step. According to the biochemical data (43), it was
reported that human Dicer itself has a weak affinity to
dsRNA, while its partner protein TRBP has a dominant
role for dsRNA recognition in Dicer—-TRBP complex.
We have examined binding affinity of recombinant human
TRBP against EGFP siRNAs with various sequences.
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Figure 7. Prediction of siRNA activities for endogenous gene.
(A) Scatter plot for 50 GAPDH-siRNA activities versus their
prediction  values.  The  correlation  coefficient is  0.776
(P=3.4x10""". Number near the spot corresponds to the passenger
strand 5 end position of each siRNA in GAPDH mRNA.
(B) Prediction of sequential siRNA activities for GAPDH. The nt
sequences show the sense strand of GAPDH-siRNAs for positions
950-974. The color code for bases represent bases that have positive or
negative effects on the activity as described in the legend of Figure 3B.
siRNA activities (%) for GAPDH are shown in bars. The prediction
value calculated for each siRNA is plotted in red.

To measure siRNA-TRBP interaction precisely,
we employed a new technique to study molecular
interaction by FCS (52). FCS is a high-sensitive technique
to observe a single fluorescence (F)-labeled molecule in a
micro spot (1 femto-L) in a solution, which is illuminated
by a confocal laser. FCS exactly determines the diffusion
time of F-labeled molecules passing by the laser spot,
which reflects the molecular weight of the labeled
molecules. If the F-labeled siRNA interacts with TRBP,
its increased molecular weight can be observed by its slow
diffusion time. Another merit of this analysis is that FCS
can analyze the complex formation under the equilibrium
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condition in a solution mixture. Different concentrations
of recombinant human TRBP were incubated with
TAMRA-labeled siRNA or ssRNA, then the diffusion
time of the complex was measured (Figure 8A).
We prepared two F-labeled siRNAs having equal GC
content, which target positions 416 and 64 in EGFP
mRNA. EGFP416 (GGCACAAGCUGGAGUACAA)
was used as a representative siRNA with the 3-nt
periodicity showing high activity (89.95); A or U
at every 3n+ 1 position (except position 1) and G or C
at every 3n+2 position. EGFP64 (GACGUAAACG
GCCACAAGU) is a less active siRNA (53.64) with no
3-nt periodicity. In the absence of TRBP, diffusion time
of both TAMRA-labeled siRNAs showed ~400 pus.
When TRBP was titrated, a dose-dependent prolongation
of the diffusion time was observed in both EGFP416
and EGFP64 siRNAs, whereas no increase of the diffusion
time was seen in their ssRNAs, demonstrating that TRBP
specifically recognized double-stranded form of siRNAs.
In the presence of 200nM TRBP, the diffusion time
of EGFP416 and EGFP64 siRNAs was found to be
~1900 and ~1200 ps, respectively. The result revealed that
TRBP prefers to bind to efficacious siRNA having the
3-nt periodicity. To confirm this result, we carried out
a competition experiment using 27 EGFP siRNAs having
various RNAIi activities (Figure 8B). Each non-labeled
siRNA (5nM) as a competitor was mixed with TAMRA-
labeled EGFP416 siRNA (1nM) in the presence of
150nM TRBP. The FCS analysis monitoring diffusion
time of the labeled siRNA revealed that efficacious
siRNAs are more likely to compete with the labeled
siRNA. The negative correlation between the diffusion
time of the labeled siRNA and the RNAI activity of each
competitor siRNA was observed with R factor —0.589
(P=1.2x 1077, indicating that functionality of siRNA
is associated with the binding affinity to TRBP. The 3-nt
periodicity in siRNAs is supposed to originate from
siRNA-TRBP interaction in the initial step of RNAI.

DISCUSSION

Wealth of data set of siRNA activities tells us general rules
that explain molecular mechanism of RNAi. We have
described the first demonstration of a complete set of
siRINA activities targeting all possible positions in ORF
of single mRNA, while several groups have developed
algorithms based on knockdown experiments in non-
uniform condition using siRNAs against plural targets,
various cell lines and different measurement method.
To obtain comparable data set with the highest quality,
we have designed a systematic RNAi experiment with
minimized error factor. We employed HeLa cells that
stably express EGFP as host cells to measure the RNAi
activity accurately, because transient expression of EGFP
results in scattering data. In addition, we have prepared
gel-purified siRNAs with complete double-stranded form
for quantitative knockdown experiment. RNAI activity
was quantified by decreased fluorescence of EGFP that
was measured by flow cytometry. We also confirmed with
a quantitative RT-PCR that the decreased EGFP
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Figure 8. FCS measurement of binding affinity of TRBP against
various siRNAs. (A) FCS analysis measured translational diffusion
velocity of TRBP-siRNA complex passing through a confocal laser
spot in a mixture. Human TRBP was titrated in a range of 0-200 nM.
Concentration of TAMRA-labeled siRNA, ssRNA or free TAMRA is
fixed to 1nM. (B) Competition analysis using non-labeled siRNAs.
Competitor siRNA activities versus diffusion times are plotted with
error bars. Competitor siRNA sequences targeting EGFP mRNA start
from nt positions 8, 25, 37, 50, 64, 99, 123, 166, 176, 242, 264, 299, 359,
371, 383, 416, 417, 418, 450, 476, 485, 532, 591, 617, 626, 662 and 701.
Concentration of competitor siRNA and TAMRA-labeled EGFP
416 siRNA are 5 and 1nM, respectively. TRBP is fixed to 150 nM.
The correlation coefficient (R) is —0.589 (P=1.2 x 107%).

fluorescence by siRNA introduction was actually derived
from RNAi-directed mRNA degradation (data not
shown). This system allowed us to obtain reproducible
data sets with limited error values. The correlation
coefficient of two independent experiments for systematic
knockdown achieved 0.851 (data not shown).

Most of the siRNAs showed medium activities and
fewer ones showed very high or very low activities
(Figure 1). This result indicates that it is rather difficult
to design efficacious siRNAs from long mRNA sequence.
It is possible to consider that RNAI activity depends on
the accessibility of siRNA to the target mRNA. However,
there was no evident correlation between the secondary
structure of EGFP mRNA predicted and the full set of
siRNA activities (data not shown), which suggests
that the accessibility of siRNA to the mRNA may not
be so important to the RNAIi activity. The effects of
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mRNA-binding proteins, such as the initiation complex or
UTR-binding proteins, on mRNA accessibility to siRNA
still remain to be elucidated. However, the siRNAs
targeting initiation region of GAPDH mRNA (positions
8, 23 and 33) exhibited good activities (79, 61 and 62%,
respectively; Figure 5C). Thus, it can be assumed that the
sequence of the target site is the most important factor
that determines the activity.

It has been reported that thermodynamic property of
siRNA plays an important role in overall efficiency of
RNAIi. Asymmetrical internal stabilities of both strands
in siRNA is required for specifically introducing the guide
strand into RISC to exert efficient silencing (31,33).
Actually, it is known that functional siRNAs display
lower internal stability at the 5'-guide strand as compared
with the 5-passenger strand (33). As shown in this study
using complete set of siRNA activities, we have found
clear correlation between instability of the guide strand 5
end of each siRNA and its activity (R =0.444). However,
activity of each siRINA does not correlate with the stability
of the passenger strand 5 end. The relative stability of
both strand for each siRNA showed a positive correlation
(R=0.236), but the plots are widely dispersed in the graph
(Figure 2C) and the activities of many siRNAs are not
predicted correctly. For instance, we picked 10 siRNAs
(blue plots in Figure 2C and Table 2) that exhibit less
stable guide strand 5 end but show lower activity
(less than 30), and 10 siRNAs (red plots in Figure 2C
and Table 2) that exhibit more stable guide strand 5 end
but show higher activity (more than 70). As shown in
Figure 6 and Table 2, the functionality of these siRNAs
was nicely fitted with our prediction values calculated in
consideration of the 3-nt periodicity. These results
demonstrate that the instability of the guide strand 5
end is a dominant factor to determine the asymmetric
recognition of siRNA in the process of RISC assembly,
and siRNA functionality is never determined only by the
relative stability of 5'-ends of both strands.

Total base composition of siRNA was found to be an
important factor that influence RNAI activity. The best
coefficients to achieve the highest correlation coefficient
(0.601) was found to be Pp:Py:Pg:Pc=0.4:0.35:0.15:0.1.
As the B value obtained by Equation (1) correlates
with the activity, efficacious siRNA should have AU-rich
composition. However, as the GC content of the siRNAs
for EGFP mRNA ranges from 36.8 to 84.2%, this rule can
be applied to siRNAs bearing a similar range of GC
contents. In fact, we observed that siRNAs with 10-20%
GC contents represented lower RNAI activities than the
expected values (data not shown). We do not have clear
answer for the reason why low GC content of siRNA
composition contributes the activity. One explanation is
that siRNA with lower melting temperature due to AU-
rich composition may be advantageous in the unwinding
step of dsSRNA or the recycling step of the guide strand.

The most important finding in this study is that the
RNAI activities of siRINAs targeting sequential positions
clearly showed periodical fluctuation at every third
position in EGFP and GAPDH mRNAs. This waving
RNAI activity with 3-nt periodicity is not observed in
every sequential region, but observed in regions where
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Table 2. Representative siRINAs whose activities can be predicted by the 3nt-periodicity.
A. Ten siRNAs that exhibit less stable guide strand 5" end but show lower activity (less than 30).

Position# Sequence of the passenger strand p.s. 5-end g.s. 5-end 2.8.—Pp.s. Activity Our prediction
(kcal/mol) (kcal/mol) (kcal/mol) (relative) values

31 GGGGUGGUGCCCAUCCUGG —14.42 —12.21 2.21 17.03 2342
101 GCGAGGGCGAUGCCACCUA —12.61 —10.01 2.6 28.52 49.06
104 AGGGCGAUGCCACCUACGG —13.22 —10.69 2.53 24.66 33.73
166 GUGCCCUGGCCCACCCUCG —13.43 —11.55 1.88 0.00 15.34
167 UGCCCUGGCCCACCCUCGU —13.35 —10.03 3.32 0.01 26.90
168 GCCCUGGCCCACCCUCGUG —14.42 —10.56 3.86 22.78 24.37
327 CCGCGCCGAGGUGAAGUUC —13.1 -9.8 33 28.13 32.45
677 CCGCCGCCGGGAUCACUCU —14 -9.75 4.25 26.93 34.99
682 GCCGGGAUCACUCUCGGCA —14.7 —12.25 245 15.45 38.79
683 CCGGGAUCACUCUCGGCAU —13.84 —10.89 2.95 25.13 45.64
B. Ten siRNAs that exhibit more stable guide strand 5’ end but show higher activity (more than 70).

80 AGUUCAGCGUGUCCGGCGA —8.8 —12.49 —3.69 73.34 50.73
204 CGUGCAGUGCUUCAGCCGC —11.83 —14.66 —2.83 79.54 37.74
427 GAGUACAACUACAACAGCC —104 —13.07 —2.67 85.32 69.32
428 AGUACAACUACAACAGCCA —9.09 —11.97 —2.88 81.16 79.11
429 GUACAACUACAACAGCCAC —10.32 —13.23 —2.91 75.82 61.18
455 AUAUCAUGGCCGACAAGCA —7.08 —9.64 —2.56 85.53 70.93
475 AAGAACGGCAUCAAGGUGA —7.49 —11.06 —3.57 70.62 62.47
491 UGAACUUCAAGAUCCGCCA —8.93 —12.25 —3.32 78.09 54.98
492 GAACUUCAAGAUCCGCCAC —10 —13.23 —3.23 75.05 46.75
595 AACCACUACCUGAGCACCC —9.74 —13.07 —3.33 79.56 45.68

A and U frequently appear at every third position.
By analyzing positional effect of siRNA on the RNAI
activity, this phenomenon can be explained by
the periodical efficacy at positions 3n+1 (4,7,10,13,16
and 19) in siRNA, which implies the molecular mechanism
of siRNA functionality in RNAi pathway. The optimized
base composition at positions 3n+1 in siRNAs have
positive effects on the RNAI activity, whereas no strong
correlation with the activity was found for any of the bases
at positions 3n+2 (2,5,8,11,14 and 17). The positions 3n
(3,6,9,12,15,18) also have positive effects on the activity
but less efficient than those of 3n+ 1. Reynolds ez al. (34)
reported siRINA-specific features that contribute to overall
efficiency of RNAI by a systematic analysis of 180 siRNAs
targeting two different genes, and found the passenger
strand-specific base preferences; A-base at position 3 and
19, U-base at position 10, the absence of G at position 13
and the absence of G or C at position 19. This result
completely falls within our observation that A and U at
positions 3n+ 1 are involved in efficient RNAI activity.
The strongest effect of A19 on RNAI efficacy is a common
observation with other groups (34-39). Basically, the effect
of A-base at positions 3n + 1 show more positive than that
of U-base (Figure 4B). Exceptionally, the effect of U-base
goes beyond that of A-base at position 10. U10 seems to
correlate with the cleavage reaction catalyzed by RISC,
which cleaves the target mRNA between positions 10
and 11 (9,21,22). Similar tendency was also reported by
Jagla et al. (53). They performed knockdown experiments
using 601 siRNAs targeting one exogenous and three
endogenous genes, and observed A/U preference at
positions 10 and 19, and G/C preference at position 1,
which is consistent with our results. However, none of the

previous studies found any positive effects of A- or U-base
at positions 3, 4, 6, 7, 12, 13, 15, 16 and 18, which clearly
shape 3n and 3n+ 1 periodicity in our study. The common
problem in the previous studies is that the source data
used include considerable error values by merging data
obtained from different knockdown experiments for
various targets with different measurement methods.
On the other hand, as we performed RNAIi experiments
using the largest set of siRNAs (702 designs) targeting
a single mRNA, we got a comparable data set with
minimized error factor.

In order to derive a fundamental principle of RNAi
mechanism from the correlation between siRNA
sequences and their activities, we have developed an
algorithm that calculates the activity of siRNA based on
the analysis of the complete data set. A simple algorithm
calculating the prediction value of siRNA functionality
was developed by combining the macro effect associated
with the optimal base composition and the micro
effect associated with the positional effect. In fact, the
prediction values of 702 siRNAs for EGFP mRNA
obtained by this algorithm showed very good match
with their actual activities with a high correlation
coefficient (0.726). Actually, the algorithm successfully
predicted activities of endogenous genes; 75 siRNAs
for GAPDH and 10 siRNAs for B-catenin mRNAs.
Recently, we have reported two examples for successfully
knocking down human mitochondrial enzymes by
siRNAs designed by this algorithm (54,55).

Several groups have already reported the algorithms or
guidelines for the selection of efficacious siRNAs based on
the activities of siRNAs that target different genes
(34-39,53). Functional siRNAs are selected through
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several criteria, such as GC content, base preference and
bias of internal stability of strand termini. Meanwhile,
here we suggest that siRNAs targeting only one gene are
needed for such statistical analysis because it is difficult
to normalize siRNA activities against different target
mRNAs that are measured by means of different methods.
Our algorithm does not incorporate any criteria to select
functional siRNAs, but just calculates the predicted
activity from their sequence information. Thus, we could
successfully predict wide variety of siRINAs whose activity
range from low to high. As shown in Figures 5B and 6,
the prediction values extensively fit well with actual
activities of most of the siRNAs. This algorithm can
design siRNAs with lower activity (such as 50 or 30%),
which might be applicable to knockdown essential genes
or to control gene function by changing siRNA activity.
RNAi pathway consists of multiple RNA-—protein
interactions characterized by many steps. Although our
experiment observed overall efficiency of RNAi and
cannot differentiate efficacy of each step, the periodical
effect at every third position and base specificity of
positional effect may provide a new aspect in RNAI
mechanism. At the initial step of RNAi pathway in
human, siRNA is recognized by Dicer with its partner
protein TRBP or PACT. Two dsRBDs in TRBP are
considered to have a dominant role for siRNA recogni-
tion. FCS measurement of TRBP-siRNA interaction
revealed that TRBP preferentially interacts with effica-
cious siRNAs having A/U at 3n+ 1 positions, although
the correlation does not appear to be so significant. Thus,
strong affinity of siRNA-TRBP interaction may contri-
bute siRNA functionality. In addition, it is supposed that
the 3-nt periodicity is derived from binding affinity of
siRNA-TRBP interaction. According to the structural
studies of dsRBD-dsRNA interaction (56-58), dsRBD
binds to only one face of the A-form helix of dSRNA and
spans 16 bp (Figure S5). The regions 1 and 2 of dsRBD
mainly interacts with two adjacent minor grooves so as to
form hydrogen bonds with base pairs in the dSRNA which
correspond to positions 3, 4 and 16 in the passenger strand
of siRNA. The region 3 interacts with phosphate back-
bone in the major groove (positions 7 and 13 in siRNA).
Since base pairs at every third position of both strands
align as straight lines on the two opposite faces of A-form
helix of siRNA (Figure S5), it can be speculated that one
dsRBD in TRBP binds to one of the two faces of the
siRNA helix by mainly recognizing base pairs at positions
4 and 16 (3n+1) in two adjacent minor grooves.
Additional contact between phosphate backbone in the
major groove at positions 7 and 13 (3n+ 1) and region 3 of
dsRBD may support this interaction. Another face
of siRNA helix might be recognized by the other
dsRBD in TRBP. A- or U-base preference at position
3n+1 for siRNA functionality might be explained by
sequence-specific recognition of dSRBD in TRBP. Further
study will be necessary to test sequence preference of
PACT which is another partner for human Dicer.
Otherwise, considering that Dicer has a single dsRBD to
be required for its function, one face of siRNA helix might
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be recognized by the dsRBD of Dicer. Alternative
interpretation of the 3-nt periodicity is involved in the
last step of RNAI. After unwinding siRNA, the guide
strand paired with the target mRNA is recognized by
Argonaute 2 protein in the RISC complex. Argonaute 2
has a highly conserved Piwi domain which is a slicer for
the target cleavage (19). The crystal structure of
Archaeoglobus fulgidus Piwi protein bound to dsRNA
have shown that the guide—target duplex forms a short
A-form helix (19,24), one face of which is bound to a
positive surface of Piwi where putative catalytic site is
located. In this interaction, if Piwi has a sequence
preference of base pairs at every third position which
aligns on the one face of the RNA helix, it is another
candidate for the 3-nt periodicity. Further studies are
still necessary to elucidate the molecular mechanism of
this issue.
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