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Abstract. Analysis of a developmental mutant in Dic- 
tyostelium discoideum which is unable to initiate mor- 
phogenesis has shown that a protein kinase of the 
MAP kinase/ERK family affects relay of the cAMP 
chemotactic signal and cell differentiation. Strains in 
which the locus encoding ERK2 is disrupted respond 
to a pulse of cAMP by synthesizing cGMP normally 

but show little synthesis of cAMP. Since mutant cells 
lacking ERK2 contain normal levels of both the cyto- 
solic regulator of adenylyl cyclase (CRAC) and 
manganese-activatable adenylyl cyclase, it appears that 
this kinase is important for receptor-mediated activa- 
tion of adenylyl cyclase. 

D 
ICTYOSTELIUM discoideum amoebae grow and di- 
vide as individual cells feeding upon bacteria or de- 
fined axenic media. Upon removal of the food 

source, a developmental process is initiated that culminates 
"in the differentiation of cells into spore and stalk cells (12, 
31, 45, 46). Starvation induces the expression of a number 
of proteins involved in the synthesis and sensing of cAMP. 
An adenylyl cyclase (53) synthesizes cAMP which is then 
secreted. Extracellular cAMP can bind to G protein-coupled 
receptors on the cell surface (25). The cAMP receptor 
CAR1 (64) and the G protein ot subunit G~2 (37) are neces- 
sary for initial responses to extracellular cAMP. They medi- 
ate chemotactic responses to cAMP and stimulate adenylyl 
cyclase, resulting in the synthesis and secretion of cAMP in 
response to the binding of ~tracellular cAMP to CAR1. The 
result is a positive feedback loop that generates waves of 
cAMP moving outward from aggregation centers, and cell 
movement towards aggregation centers. After the formation 
of a mound, an apical tip develops that elongates to a first 
finger that fails onto the substratum to form a migrating slug 
or pseudoplasmodium. Within the slug, ammonia, DIF, and 
cAMP are important signaling molecules that coordinate cell 
movement and cell-type differentiation (2, 9). Under ap- 
propriate conditions the slugs subsequently culminate to 
form fruiting bodies in which 80 % of the cells differentiate 
into spores. 

It has been demonstrated in a number of different systems 
that MAP kinases/ERKs are activated by extraceUular stim- 
uli (1, 3, 15, 56, 66). ERKs can be activated either by G 
protein-coupled receptors or tyrosine kinase receptors. For 
tyrosine kinase receptors, activation of ras is followed by ac- 
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tivation of a kinase cascade involving raf, MEK, and then 
ERKs. For G protein-coupled receptors, o~ or/~/~ subunits 
can be important for activation, but the role of ras may vary 
with cell type (10, 16). A MEK kinase, distinct from raf, can 
activate MEK in responses activated by G proteins in mam- 
malian cells (41). In Saccharomyces cerevisiae, the mating 
pheromone activates a kinase cascade involving a MEK ki- 
nase, MEK, and MAP kinase that leads to transcriptional ac- 
tivation of genes involved in mating and cell cycle arrest (15). 
Substrates for ERKs can include other kinases (including 
tyrosine kinase receptors), cytoskeletal elements, transcrip- 
tion factors, components of the cell cycle machinery, and 
other signal transduction enzymes (such as PLA2) (7, 30, 
44, 49, 52, 58, 65). Such a wide range of substrates suggests 
that ERKs play a critical role in many signal transduction 
systems. In Dictyostelium, the MAP kinase ERK1 has been 
shown to be essential for growth and to play a role in mul- 
ticellular development (19). Overexpression of ERK1 results 
in abnormal slug morphogenesis and fruiting body formation. 

In this paper we identify an ERK in Dictyostelium which 
is important for receptor-mediated stimulation of adenylyl 
cyclase and subsequent cellular differentiation. Although 
ERKs have been shown to be stimulated in response to recep- 
tor activation in a variety of cell types, the data presented 
here present the first suggestion that they can play a role in 
the activation of adenylyl cyclase, and that ERKs are neces- 
sary for the normal developmental cycle of Dictyostelium. 

Materials and Methods 

Generation of Gene Disruptions 
The plasmid DIV6 was constructed by inserting the PstI/SacI fragment from 
DIV1 containing the pyr5-6 gene into pGEM5zf(+). REMI with DIV6 was 
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performed by digesting DIV6 with BamHI and electroporating into HL330 
with 100 U of Sau3A enzyme per electroporation (38). 

A second gene-disruption construct was made by inserting the full-length 
Thyl gene (14) into the BglII site within an ERK2 eDNA clone. The DNA 
was linearized and transformed into the Thyl auxotrophic strain JH10 (13, 
22) and selected in standard HL5 medium in the absence of exogenous 
thymidine. Individual clones were isolated and screened for gene disruption 
by Southern blot. To complement the strain, the ERK2 eDNA was inserted 
into the expression vector Exp4(+) (47) downstream from the Actin 15 pro- 
moter. Mutants were transformed with the expression vector via electropo- 
ration and selecting for resistance to 10 #g/ml of G418. 

Sequencing 
Sequencing was performed using a Applied Biosystems sequencer and 
specific primers. The eDNA was isolated from a lambdaZAP library (59) 
generated from the RNA of cells starved for 12-16 h. The eDNA was se- 
quenced in both directions, and the genomic flanking sequence was se- 
quenced in one direction to confirm the eDNA sequence. Sequences were 
obtained and analyzed using the GCG analysis package (Genetics Computer 
Group, Madison, WI). 

Bacterial Expression of the ERK2 Protein 
A GST-ERK2 fusion protein in vector pGEX-KG (21) was made as de- 
scribed for the Dictyostelium ERK1 protein (19). Escherichia coli BL21 
(DE3) was used for transformation with pGEX and PGEX-KG-ERK2. 
These transformants were cultured for 4-6 h at 30°C or overnight at 20°C 
after the addition of IPTG at 0.I mM. Glntathione-S-transferase (GST) t 
and GST-ERK2 fusion protein were prepared as previously described (62). 
Phosphorylation was performed for 10 min at 30°C in 20 #1 of kinase mix- 
ture (50/~M NaaVO4, 10 mM MgC12, 1 mM EGTA, 0.4 ug/ml leupeptin, 
40 #M benzamidine, 0.4/~M microcystin LR, 25 mM/3-glycerophosphate, 
pH 7.5, 100 #M ATP, 0.05 uCi/ml [32p]-3,-ATP, and 200/zM DTT) with or 
without myelin basic protein (MBP) at 0.5 mg/ml. GST or GST-ERK2 was 
used at 0.4 mg/ml. The reaction was stopped by adding 7/zl of 4x  sample 
buffer for SDS-PAGE. The samples were fractionated on two 10% acryl- 
amide gels. One gel was stained with Coomassie brilliant blue, while the 
other was used for electrotransfer of proteins to Immobilon-P membrane 
according to Harlow and Lane (24). The phosphorylated bands were then 
excised out, and hydrolyzed for 2 h at ll0*C (33). After drying in vacuo, 
hydrolysates were subjected to thin layer electrophoresis at pH 3.5 for 45 
rain (28). 1.5 mg protein was combined with a mixture of phosphoserine, 
phosphothreonine, and phosphotyrosine and used for the analysis. Phos- 
phoamino acids were identified with ninhydrin. 

Northern Analysis 
The procedure is based upon a method kindly provided by J. Franke 
(Columbia Univ., NY). Cells were grown to 2 x 10~/mi in HL-5 medium. 
The cells were washed, and then resuspended in 1 mM MgCI2, .2 mM 
CaCI2 at 107/mi. They were starved for 4 h. The cells were then can- 
trifuged and resuspended in ice-cold nuclear lysis buffer (10 mM Mg- 
acetate, 10 mM NaCI, 30 mM Hepes pH 7.5, 10% sucrose, 2% NP-40, 
using DEPC-treated solutions). After 5 rain on ice, nuclei were collected 
by centrifuging at 14,000 rpm in an Eppendorf microcentrifuge at 4"C. The 
supernatant (cytoplasmic RNA) and pellet (nuclear RNA) were treated with 
50% (wt/vol) guanidine thiocyanate, phenol/choroform extracted, and dis- 
solved in water. Typically, 10 times more cytoplasmic RNA was isolated 
than nuclear RNA. The RNAs were then loaded proportionately on a gel, 
electrophoresed, and blotted. The blots were probed with the ERK2 eDNA 
using the Boehringer Mannheim Genius kit. 

Measurement of cAMP and cGMP 
Cells were grown in HL-5 to 2 x 106/mi and were then washed two times 
with Soerensen's phosphate buffer and starved at 107/mi in 1 mM MgCI2, 
0.2 mM CaC12. Beginning at 4 h, they were pulsed every 6 rain with 100 
nM CAMP. At 6-8 h, the cells were removed, centrifuged, and washed twice 
in cold phosphate buffer. They were resuspended at 5 x 107/mi and trans- 
ferred to a glass, round bottomed tube and aerated for 10 rain in a water 

1. Abbreviations used in this paper: ACA, adenylyl cyclase; CRAC, cyto- 
solic regulator of adenylyl cyclase; GST, glutathionine-S-transferase; MBP, 
myelin basic protein; REMI, restriction enzyme-mediated integration. 

bath at 23°C. They were then stimulated with 10 #M 2'deoxycAMP, 5 mM 
DTT, and 100-ul samples taken at the indicated time points. The samples 
were added to 100 ul of 3.5% perchloric acid, and frozen. For analysis, the 
samples were thawed, neutralized with 50% KHCO3, centrifuged, and the 
superuatants were assayed using a cAMP RIA kit (Amersham Corp., 
Arlington Heights, IL). Samples for cGMP were treated identically and as- 
sayed using a cGMP RIA kit (Amersham Corp.). 

In Vivo Labeling of Cells 
Cells were labeled following a procedure developed by David Knecht (Univ. 
of Connecticut, Storrs, CT). Cells were grown in HL-5 and washed two 
times in phosphate buffer. They were resuspended in 1 mM CMFDA (C- 
2925; Molecular Probes) in phosphate buffer at 107/ml. The cells were 
gently shaken in this buffer for 15 min, then washed and resuspended in 
HL-5 for 1 h at 2 x 106/ml. They were then washed free of HL-5 and 
resuspended at 107/mi in phosphate buffer. Labeled cells were mixed with 
unlabeled cells in a 1:10 ratio. 100 ul was spread on a 1% agar plate contain- 
ing 1 mM CaCI2, 1 mM MgCI2, in phosphate buffer and allowed to dry. 
The plate was then sealed and incubated in the dark at 23°C until analyzed. 
Labeling had no effect on the kinetics or morphology of development. The 
images were acquired using a BioRad MRC 600 confocal microscope using 
a 20 or 40x objective. A Z-series through the entire structure was acquired 
and then projected into a single plane for presentation. 

Measurement of Adenylyl Cyclase and Cytosolic 
Regulator of Adenylyl Cyclase 
Adenylyl cyclase activation was measured as described (53). Briefly, control 
and mutant cells were starved for 4 h in suspension with stimulation by 100 
nM cAMP pulses. They were then lysed by passage through a 5-#m filter, 
and the total adenylyl cyclase activity of the lysate assayed using ct-[32P] - 
ATP in the presence of 5 mM MnSO4. Cytosolic regulator of adenylyl 
cyclase (CRAC) activity was determined as the ability to reconstitute 
GTP-~-S stimulation of adenylyl cyclas¢ in lysates of synag 7 mutant cells. 
Synag 7 cells lack only endogenous CRAC activity and upon the addition 
of extracts from cells containing CRAC will activate adenylyl cyclas¢ (43). 
Synag 7 cell lysates were prepared in the presence of cAMP and GTP-3,-S, 
mixed with supernatants from control and mutant lysates, and then adenylyl 
cyclase activity measured in the absence of MnSO4. 

Figure 1. Aggregation morphology of transformants growing on 
bacterial lawns. The edge of  the colony is on the right hand side. 
For HS176, the positive control, cells to the left of the edge of the 
colony begin to starve due to the depletion of the bacterial food 
source. They form streams leading into aggregates and eventually 
fruiting bodies on the left side of the image. HS172 and HS173 are 
two transformants showing no aggregation. 
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Figure 2. Southern blot of recapitulation of IS240 insertions. 
Genomic DNA was cut with ClaI, blotted and probed with the reca- 
pitulation vector containing both the flanking sequences and selec- 
table marker. HL330 (the parental strain) shows a single 3.8-kb 
band. The original mutant, AK240, and four aggregation-defective 
transformants show a shift to around 9-kb, indicating recapitula- 
tion of the insertion at the same site. HS176, the control transfor- 
mant, shows the 3.8-kb band intact and the vector inserted into a 
high molecular weight band. 

Results 

Isolation o f  erkB Mutants  

To identify genes encoding novel components essential for 
aggregation, we isolated a series of mutants that are defective 
in aggregation using restriction enzyme mediated integration 
(REMI) (38). This technique uses restriction enzymes to 
facilitate integration of a selectable vector into randomly 
distributed cognate restriction sites. Strain HL330 lacks the 
pyr5-6 gene (encoding the UMP synthase) and is therefore 
unable to grow in the absence of uracil (32). The plasmid 
DIV 6 (which contains the pyr5-6 gene) was linearized with 
BamI-II and electroporated into HL330 cells together with 
the restriction enzyme Sau3A. Sau3A generates ends com- 
patible with the ends produced by BamHI, and cuts fre- 
quently in the Dictyostelium genome. Transformants con- 
taining the DIV6 plasmid were selected in medium lacking 

uracil, and screened for strains that were defective in aggre- 
gation. 

For strain AK240, colonies grown on bacterial lawns did 
not aggregate (Fig. 1). To rescue the DIV6 plasmid together 
with flanking sequences marking the insertion site (termed 
IS240), genomic DNA from AK240 was cut with ClaI 
(which does not cut in the DIV6 vector), religated, and used 
to transform E. coli. The resulting plasmid, p240ClaI, con- 
tains a 3.8-kb insert of flanking sequence, divided into 2.1 
and 1.7-kb fragments by the insertion of DIV6. This plasmid 
was then used to recapitulate the insertion event in a new 
strain via homologous recombination, by linearizing the 
plasmid with ClaI and transforming in the absence of restric- 
tion enzymes. Roughly 90% of the transformants recovered 
by this procedure were defective in aggregation. Four inde- 
pendent aggregation-defective transformants, labeled HS172, 
HS173, HS174, and HS175, were chosen for further study 
along with a control strain, HS176, that aggregates normally 
(Fig. 1). A Southern blot of the transformants (Fig. 2), 
probed with the disruption vector p240ClaI, revealed that 
the 3.8-kb ClaI fragment in HL330 was shifted to around 9 
kb in AK240 and the recapitulated insertions, HS172-175. 
The transformed control, HS176, had the 3.8-kb band intact, 
and the vector had inserted into a high molecular mass band. 
A vector-specific probe confirmed that the vector (which 
does not hybridize to HL330 genomic DNA), labeled the 
9-kb band in HS172-175 and the high molecular mass band 
in HS176 (data not shown). Thus recapitulation of the inser- 
tion event resulted in recapitulation of the mutant phenotype, 
indicating that disruption of the encoded flanking sequences 
resulted in the mutant phenotype. 

Structure o f  the erkB Gene 

Sequencing the 2.1-kb flanking sequence of IS240 revealed 
an open reading frame. This fragment was used to identify 
a cDNA clone with sequence identical to the genornic open 
reading frame. A single intron interrupts the coding se- 
quence in genomic DNA. When the 2.1-kb region was used 
to probe genomic Southern blots of HL330 cut with various 
restriction enzymes, only a single locus was recognized (Fig. 
3 A). An arrayed set of YAC clones that represents the Dic- 

820 Z 6 1  

m es 75 i ts  60 Io ~ ~2s ~ i~s ,o 9s 1so 6s zs  

5m B B N Sm e A N 
3 4 0 4  - -  I-'1 

3205 
1--I 

3499 

3256 I - ' I  

Figure 3. (A) Southern blot of the gene encoding ERK2 in HL330. HL330 DNA was digested with the enzymes shown, blotted and probed 
with the 2.1-kb genomic fragment. The digestion pattern shown is consistent with data from the genomic sequence-only BclI has restric- 
tion sites within the probed sequence. (B) Chromosomal map surrounding the erkB locus. The telomeric end of chromosome 4 was mapped 
by REMI-RFLP probing with erkB and surrounding genes (Kuspa and Loomis, in press). Yeast Artificial Chromosome clones recognized 
by an erkB probe are positioned relative to rare restriction sites flanking the locus (39). 
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1 
DdERK2 ..... % .............................. MSSE 
DdERKI .......... MTQQQLQQLM PPPPTSDTSN FNDNISYFVY 
RnERKI AAAAAAPGGG GGEPRGTAGV VPVVPGEVE ........ VVK 
Scfus3 ..................................... MPK 

50 
DIDKHVLRKY 
GSQFTVPRRY 
GQPFDVGPRY 
RIVYNISSDF 

51 I II 
DdERK2 EVFHKIGKGA YGIVWEAIDK KPHHTVALKK IFDAFQNATD 
DdERKI SIVKCIGHGA YGVACSAKDN LTGEKVAIKK ISKAFDNLKD 
RnERKI TQLQYIGEGA YGMVSSAYDH VRKTRVAIKX IS.PFEHQTY 
Scfus3 QLKSLLGEGA YGWCSATHK PTGEIVAIKK IE.PFDKPLF 

IIl 100 
AQRTFR3IMF 
TKRTLRIIHL 
CQRTLREIQI 
ALRTLR3IKI 

101 IV V 150 
DdERK2 LQELHGHENI IKLLNVIKA...DNDRDIYL VFEHMETDLH AVIRA.KILE 
DdERKI LRHFK.HENL ISIKDILKPN SKEQFEDYYI VSELMDTDLH QIITSPQPLS 
RnERKI LLGFR.HENV IGIRDILRAP TLEAMRDVYI VQDLMETDLY KLLKS.QQLS 
Scfus3 LKHFK.HENI ITIFNIQRPD SFENFNEVYI IQELMQTDLH RVI.STQMLS 

151 VI VII 200 
DdERK2 EIIKKQYTIYQ LLKALKYMliS ANVLHRDIKP 8NLLLNSECL VKVADFGLIiR 
DdERKI DDHCQYFVYQ MLRGLKHIHS ANVLIiRDLKP SNLLINEDCL LKICDLGL~R 
RnERKI NDHICYFLYQ ILRGLKYIHS ANVt,RRDLHP SNLLINTTCD LKICDFGLAR 
Scfus3 DDHIQYFIYQ TLRAVKVLIiG SNVIHRDLKP SNLLINSNCD LKVCDFGLJR 

201 * * VIII 
DdERK2 SIT ..... SL ESIAEANPVL TEYVATRWXR APEILLGSTK 
DdERKI VED ........ ATHQ..GFM TEYVATRWXR AP.VILSWNK 
RnERKI IAD ........ PEHDHTGFL TEYVATRWYR APEIMLNSKG 
Scfus3 IIDESAADNS EPTGQQSG.M TEX'VATRW%rR APEVMLTSAK 

IX 250 
YTKGVDMWBI 
YTKAIDIWSV 
YTKSIDIWSV 
YSRAMDVWSC 

251 X 
DdERK2 GCILGELLGE KAMFPGNSTM NQLDLIIEVT GRP.SAEDIE 
DdERKI GCIFAELLGR KPLFQGKDYI HQITLIIETI GSP.SEEDIC 
RnERKI GCILAEMLSN RPIFPGKHYL DQLNHILGIL GSP.SQEDLN 
Scfus3 GCILAELFLR RPIFPGRDYR HQLLLIFGII GTPHSDNDLR 

300 
AIKSPFAGTM 
NIANEQARQF 
CIINMKI&RNY 
CIESPRAREY 

301 XI 350 
DdERK2 LEBLPPSNPR ..SLSDMYPS ASVDALDLLK KLSQFNPDKR ITAEL%LAHP 
DdERKI IRSLNMGNQP KVNFANMFPK ANPDAIDLLE RMLYFDPSER LTVEEJ&LAXP 
RnERKI LQSL..PSKT KVAWAKLFPK SDSKALDLLD RMLTFNPNER ITVEF~%LAHP 
Scfus3 IKSLPM..YP AAPLEKMFPR VNPKGIDLLQ RMLVFDPAER ITAKEALEKP 

351 400 
DdERK2 FVTQFHNPAE EPHFDRIIKI SID...DGQK FPIAEYRNRL YNDIIKKKKE 
DdERKI YFQSLHDPSD EPICLHK .... FSLNFEAWD LNRDLLKELI YNEMLAYHPE 
RnERKI YLEQYYDPTD EPVAEEP .... FTFDMELDD LPKERLKELI FQETARFQPG 
Scfus3 YLQTYHDPND EPEGEPIPPS FFEFDHHKEA LTTKDLKKLI WNEIFS .... 

401 450 
DdERK2 ERKKQTNPTK PDTTAPTLST .............................. 
DdERKI DPQAPYYTDL NNPNFNLSRI QSSSELFNLL QQQKQPIHQQ VNQQSIKINN 
RnERKI APEAP ............................................. 
Scfus3 .................................................. 

Figure 4. Sequence compari- 
son of Dictyostelium ERK2 
(DdERK2) with 19. dis- 
coideum ERK1 (DdERK1), 
rat ERK1 (RnERKI), and S. 
cerevisiae FUS3 (Scfus3). 
Amino acid residues identical 
in all four proteins are in bold 
type, kinase homology do- 
mains (23) are indicated by 
Roman numerals above the 
sequences, and the threonine 
and tyrosine which are phos- 
phorylated in activated ERKs 
are marked by asterisks. 

tyostelium genome (39) was also probed and a single locus 
was identified that was mapped to chromosome 4 (Fig. 3 B). 
The sequence has been deposited in GenBank (accession 
number L33043). 

The deduced amino acid sequence predicts a protein prod- 
uct of molecular weight 42,010 and pI 7.1. The sequence 
shows about 40% identity to MAP kinases/ERKs from di- 
verse organisms (Fig. 4), and the encoded protein has been 
named ERK2 (the corresponding genetic locus is erkB). 
Similar homology is seen to another ERK gene from Dic- 
tyostelium, ERK1. ERK1 shows a different pattern of expres- 
sion and cells lacking ERK1 are not viable (19), indicating 
that the Dictyostelium ERK1 and ERK2 proteins perform 

different functions. In addition, the Dictyostelium ERK2 
amino acid sequence shows ,o40% identity to mammalian 
ERK1 and ERK2 while Dictyostelium ERK1 shows ,050% 
identity to those ERKs. The predicted ERK2 protein con- 
tains residues conserved in all kinases including the ATP- 
binding site in region I (Gly-X-GIy-X-X-GIy) and eight invar- 
iant residues present in protein kinases (23). In addition, 
there is the sequence TEY (starred), of which the threonine 
and tyrosine are phosphorylated when these protein kinases 
are activated (48, 54, 69). 

ERK2 Protein Kinase Activity 
To determine whether ERK2 has the biochemical properties 
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Figure 6. (A) Developmental regulation of ERK2 mRNA. Axeni- 
cally grown AX4 cells were starved in suspension for the timed in- 
dicated, total RNA isolated, and probed with the 0.5-kb 
SstI/HindlII fragment from AK240. (B) Cytoplasmic and nuclear 
RNA were separated as described, and probed with the ERK2 
cDNA. 

Figure 5. Phosphorylation of MBP by a GST-ERK2 fusion protein. 
(A) Autoradiogram of in vitro phosphorylation of MBP with GST- 
ERK2 expressed in E. coli and purified using glutathione 
Sepharose. Phosphorylation of MBP was assayed in lanes I and 2 
and autophosphorylation was assayed in lanes 3 and 4. Lanes I and 
3, GST protein; lanes 2 and 4, GST-ERK2. The band with the 
asterisk is the size of GST-ERK2. The two additional phos- 
phorylated bands present in the GST-ERK2 lanes are not always 
seen and may be breakdown products of GST-ERK2. (B) A 
Coomassie brilliant blue-stained gel used for autoradiography in A. 
(C) Phosphoamino analysis of phosphorylated MBP and GST- 
ERK2. After fractionation of phosphorylated proteins by SDS- 
PAGE, proteins were blotted onto a PVDF membrane and then ex- 
posed to x-ray film. Phosphorylated bands were excised from the 
membrane and subjected to acid hydrolysis, followed by thin layer 
chromatography. Ori indicates the spotted position of acid 
hydrolysates. 

of a MAP kinase, a GST/ERK2 fusion protein was expressed 
in E. coli, purified and assayed for the ability to au- 
tophosphorylate and to phosphorylate MBP, a known sub- 
strate for MAP kinases. Fig. 5 A shows that affinity purified 
GST-ERK2 fusion protein, but not purified GST protein 
alone, phosphorylates MBP and also phosphorylates a band 
of the same size as the fusion protein (Fig. 5 B). Phos- 
phoamino acid analysis Shows that the fusion protein phos- 
phorylates MBP predominately on threonine residues while 
the autophosphorylation is predominately on tyrosine and 
serine residues (Fig. 5 C). Autophosphorylation has been 
reported for other ERKs as well (11, 57, 60). 

Expression of  erkB 

Probing Northern blots of RNA from wild-type cells with 
the ERK2 cDNA showed that a 1.8-kb mRNA was present 
at the start of development and increased two- to fivefold dur- 
ing early development (Fig. 6 A). No cytoplasmic ERK2 
mRNA accumulated in mutants in which the locus encoding 
ERK2 was disrupted, although a larger RNA of '~6 kb was 
seen in nuclear and whole cell preparations (Fig. 6 B). The 
large nuclear RNA was recognized by a probe from the inser- 
tion vector, indicating that it arose by transcriptional read- 
through into the vector sequences. Since the vector inserted 
in the 3' untranslated region, such read-through could be ex- 
pected. 

We generated a separate gene disruption construct in 

which the Thyl (14) gene was inserted into the ERK2 cDNA 
clone at amino acid position 280. This was used to create a 
different disruption of the locus encoding ERK2 in the 
thymidine auxotroph JH110. The phenotype of the resulting 
strain was found to be similar to that of strains HS172-HS175 
in that it fails to aggregate and shows reduced cAMP synthe- 
sis. Transformation of this strain with a multicopy vector 
carrying the gene encoding ERK2 fused to the actin 15 pro- 
moter region (26) resulted in strains that are once again able 
to aggregate and develop, confirming that ERK2 is essential 
for aggregation and subsequent development. 

Phenotype of  CeUs Lacking ERK2 

Aggregation in Dictyostelium cells relies upon the ability of 
cells to both sense gradients of extracellular cAMP (cAMP 
chemotaxis) and to generate these gradients via synthesis 
and secretion of cAMP (cAMP relay) (17, 36). In single-cell 
assays, the mutant cells respond chemotactically to gradients 
of cAMP in the nanomolar range (data not shown). Since the 
mutants are unable to aggregate on their own, it therefore 
seemed likely that the problem lay in cAMP production or 
relay. When we directly assayed cAMP synthesis following 
a pulse of exogenous cAMP, wild-type cells responded by a 
10-fold increase in the amount of cAMP accumulated over 
a 5-min period while mutants lacking ERK2 showed a 
strongly reduced response (Fig. 7 A). 

The defect in signal relay could be due to alterations in the 
surface cAMP receptor or coupling of activated receptor to 
adenylyl cyclase. However, we found that the mutants 
responded to a pulse of cAMP by synthesizing cGMP in a 
manner indistinguishable from that shown by wild-type cells 
(Fig. 7 B). Since the cGMP response is mediated by the 
same receptor (CAR1) and heterotrimeric G protein c~ sub- 
unit (G~2) as cAMP relay (50, 55), it appears that these 
components are fully functional in mutant cells lacking 
ERK2. Therefore, we looked to see if the genes encoding 
the cytosolic regulator of adenylyl cyclase (CRAC [29, 43]) 
and adenylyl cyclase (ACA) (53) were expressed in the mu- 
tant cells. When RNA taken at various times in development 
of wild-type and mutant cells was probed for CRAC and 
ACA mRNA, it was clear that both these genes are ex- 
pressed normally in the mutant cells (data not shown). 
Moreover, when adenylyl cyclase activity in cell extracts 
was determined in the presence of Mn 2÷, which bypasses 
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Figure 7. Stimulated synthesis of cAMP (,4) and cGMP (B). Ceils 
starved for 6-8 h in suspension were stimulated with 10 ~M 
2'deoxycAMP and samples taken and assayed for cAMP (A) or 
cGMP (B) at the marked times as described. Data points marked 
with an asterisk are significantly different from control. Filled cir- 
cles, HS176 (control); open squares, HS174 and HS175 (mutants, 
there was no difference between the two mutants). Data are the 
mean and standard error of the mean of five experiments for A and 
3 forB. 

the requirement for activation, there was no significant 
difference between the specific activities of wild-type and 
mutant cells (Table I). Likewise, CRAC activity in both mu- 
tant and control cell extracts was within the range of activi- 
ties found for wild-type cells (Table I, reference 43). We 
conclude that, either directly or indirectly, ERK2 plays an 
important role in signal relay required for aggregation. 

To determine if mutants lacking ERK2 show additional 
defects in later stages of morphogenesis, fluorescently la- 
beled mutant cells were mixed with a majority of control 
cells (1:10, mutant/control) and the mixtures induced to un- 
dergo development. Under these conditions, the small num- 
ber of mutant cells had little effect on the development of the 
wild-type cells. As a control, fluorescently labeled wild-type 
cells were mixed with unstained wild-type cells (1:10) and 

Table I. Adenylyl Cyclase and CRAC Activities 

Strain Adenylyl cyclase CRAC activity 

(pmol/min/mg) 

HS174 (mutant) 18 99 
HS176 (control) 20 183 

Total adenylyl cyclase activity was measured using Mn2*-activated cell ly- 
sates. CRAC activity of cytosolic extracts from HS174 and HS176 was deter- 
mined by addition of extracts to lysates of a CRAC mutant strain (synag 7), 
followed by measurement of adenylyl cyclase activity in the absence of Mn 2÷. 
In the absence of added cytosolic extracts the background CRAC activity was 
12 pmol/min/mg. 

observed as well. During the aggregation stage, mutant cells 
joined into streams and entered aggregates, though the 
efficiency of joining the aggregates was variable. In ag- 
gregates, mutant cells were concentrated in the center and 
along the base and edges (Fig. 8, upper left). When slugs 
formed, most mutant cells remained at the aggregation site, 
but those that entered the slug were found predominantly in 
the tip (Fig. 8, middle left). Following fruiting body forma- 
tion, labeled cells were found around the stalk and in the so- 
rus (Fig. 8, lower left). Labeled wild-type cells were found 
evenly dispersed throughout the structures at all stages (Fig. 
8, right). Although a few mutant cells were seen in the so- 
rus, they did not appear morphologically to have differen- 
tiated into spores. Sporulation of mutant cells was directly 
tested by determining the number that could survive treat- 
ment by detergent (61). From 50:50 mixtures of mutants and 
wild-type cells, less than 0.1% of the spores surviving deter- 
gent treatment were mutant, while in 90:10 mixtures (mu- 
tant/wild-type), 0.4% of the spores were mutant. This 
dramatically reduced rate of sporulation of mutant cells indi- 
cates that ERK2 functions in a cell autonomous manner to 
regulate cell differentiation. 

Discussion 

The data presented here demonstrate that the ERK2 protein 
is important for both activation of adenylyl cyclase and sub- 
sequent development. The initial integration site, IS240, al- 
though not within the coding sequence, appears to perturb 
expression of ERK2 by interfering with mRNA processing. 
The relatively large nuclear RNA present in these transfor- 
mants could be produced by loss of the appropriate termina- 
tion signals, leading to a mislocalization of the RNA, and 
loss of expression of the protein. The fact that disruption by 
a separate plasmid utilizing the Thyl selection marker at a 
site within the coding region results in the same phenotype 
indicates that the consequences of disruption of erkB are not 
allele-specific. 

ERK2 could either be directly on the pathway activat- 
ing adenylyl cyclase or indirectly regulate the coupling of 
adenylyl cyclase to the cAMP receptor. One form of indirect 
regulation of adenylyl cyclase by ERK2 could be through 
regulation of the expression of factors necessary for the acti- 
vation of cyclase. Alternatively, one of the proteins directly 
involved in activation of cyclase may require phosphoryla- 
tion by ERK2 in order to be competent for coupling the 
cAMP receptor to cyclase. For example, other signals such 
as PSF or CMF (8) might activate pathways necessary to al- 
low coupling of the cAMP receptor to cyclase. The observa- 

The Journal of Cell Biology, Volume 128, 1995 410 



Figure 8. Localization of cells in mixtures of mutant and control 
transformants. 1:10 mixtures of HS174 to control cells were induced 
to undergo development on agar. Either mutant or 10% of control 
cells were labeled with CMFDA. Structures at each stage of devel- 
opmeut were analyzed with a confocal microscope and projections 
made of the entire structure, viewed from above. Left, mutant cells 
stained; right, control cells stained; top, aggregates, middle, slug 
stage; bottom, fruiting bodies. 

tion that mutant ceils can respond chemotactically to cAMP 
and that they respond to addition of cAMP by a burst in 
cGMP synthesis argues against such mechanisms, since 
cAMP-stimulated cGMP synthesis develops to a maxi- 
mum sensitivity after cells are competent for stimulation of 
adenylyl cyclase by the cAMP receptor (34). 

Several mechanisms for the direct involvement of ERK2 
in activation of cyclase are possible. As noted above, the 
cAMP receptor of Dictyostelium is a G protein-coupled 
receptor. Another intracellular enzyme that is activated by 
binding of cAMP to the receptor is phospholipase C. 
Through increases in intracellular calcium and diacyl- 
glycerol, this could lead to activation of a protein kinase C 
that could in turn activate a raf homologue, leading to activa- 
tion of ERKs (5, 27, 35, 63). Alternatively, free B/'Y subunits 
could activate a ras coupled pathway (10, 16, 68), or, as in 
the mating response of S. cerevisiae, free (J/,y subunits might 
activate a pathway utilizing a byr2 homologue which in turn 
could activate a MEK homologue which would activate 
ERK2 (15, 41). A potential substrate for ERK2 is CRAC, a 
protein necessary for receptor-stimulated activation of ade- 
nylyl cyclase. Experiments to test these possibilities are in 
progress. 

The defects in cell localization and differentiation in 
chimeras with wild-type cells are particularly intriguing. 
Chemotactic responses of mutant cells in multiceUular ag- 
gregates may be reduced, or the cells may be blocked in de- 
velopment of the appropriate systems necessary for correct 
localization within aggregates. In addition, there may be a 
direct defect on differentiation, since even in the stalk, mu- 
tant cells often do not show appropriate stalk cell morphol- 
ogy. A block in cell differentiation may be due to the inability 
to activate adenylyl cyclase, leading, in turn, to a block in 
the activation of protein kinase A and subsequent responses 
stimulated by this protein kinase (67). Alternatively, ERK2 
might be translocated to the nucleus, as has been shown for 
mammalian ERKs, where it could regulate gene transcrip- 
tion (6, 20, 42). Indeed, both explanations may be correct. 
Further work identifying the targets of ERK2 in the cell will 
aid in distinguishing among these possibilities. 

In summary, the work described here demonstrates that an 
ERK plays an important role in coupling cell surface recep- 
tors to adenylyl cyclase and cell differentiation. This is the 
first demonstration that ERKs can be involved in the activa- 
tion of adenylyl cyclase. Since there are several different 
ERKs present in most cells, there may be a complex network 
of interactions mediated by ERKs. The generation of cells 
lacking specific ERKs as described here (4, 40, 51) provides 
a critical tool for dissecting such networks. 
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