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A B S T R A C T

Fluid intelligence is an individual’s innate ability to cope with complex situations and is gradually reduced across 
adults aging. The realization of fluid intelligence requires the simultaneous activity of multiple brain regions and 
depends on the structural connection of distributed brain regions. Uncovering the structural features of brain 
connections associated with fluid intelligence decline will provide reference for the development of intervention 
and treatment programs for cognitive decline. Using structural magnetic resonance imaging data of 454 healthy 
participants (18–87 years) from the Cam-CAN dataset, we constructed structural similarity network for each 
participant and calculated the node degree. Spearman correlation analysis showed that age was positively 
correlated with degree centrality in the cingulate cortex, left insula and subcortical regions, while negatively 
correlated with that in the orbito-frontal cortex, right middle temporal and precentral regions. Partial least 
squares (PLS) regression showed that the first PLS components explained 32 % (second PLS component: 20 %, 
pperm < 0.001) of the variance in fluid intelligence. Additionally, the degree centralities of anterior insula, 
supplementary motor area, prefrontal, orbito-frontal and anterior cingulate cortices, which are critical nodes of 
the multiple-demand network (MDN), were linked to fluid intelligence. Increased degree centrality in anterior 
cingulate cortex and left insula partially mediated age-related decline in fluid intelligence. Collectively, these 
findings suggest that the structural stability of MDN might contribute to the maintenance of fluid intelligence.

Introduction

Fluid intelligence is a physiologically based cognitive ability that 
reflects an individual’s ability to learn and solve problems. Meanwhile, 
it is arguably the defining feature of human cognition and is associated 
with a variety of cognitive abilities, such as memory and executive 
function (Kent, 2017). Fluid intelligence generally declines during 
normal aging (Michael and Barbey, 2020), affecting the independent 
living of the older adults. Nevertheless, there are significant individual 
differences in intelligence, for instance, the parieto-frontal integration 
theory suggests that the changes in the structure and function of the 
lateral and medial frontal and parietal lobes and the underlying white 
matter connections partly explain individual variation in intelligence 
(Deary et al., 2021). Additionally, cognitive and physical training 
showcased specific impactions on brain structure and function, which 
were associated with better intellectual performance (Joubert and 

Chainay, 2018). Therefore, understanding the brain basis of age-related 
fluid intelligence decline may help to identify malleable targets that 
could inform the development of feasible interventions.

In recent years, graph theory analysis has been widely used to reveal 
the brain structural and functional connectivity patterns related to 
behavior and cognition, which regards the brain as a network 
comprising a set of nodes and edges (Liao et al., 2017; Ziegler, 2012). 
Using graph theory analysis, previous magnetic resonance imaging 
(MRI) studies have shown age-related alterations in the network prop
erties of large-scale networks, including salience network (SN), fronto
parietal network (FPN) and default mode network (DMN) (Cao et al., 
2016; Fan et al., 2021; Malagurski et al., 2020). Using resting-state 
functional MRI (rs-fMRI) data, Chong et al. found that poorer global 
cognitive performance in older adults was associated with higher 
participation coefficient in the control network, Gard found that mind
fulness was positively correlated with fluid intelligence and global 
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network efficiency (Chong et al., 2019; Gard et al., 2014). Graph theory 
analysis of resting state magnetoencephalogram signals also shows that 
the high frequency functional networks of individuals with high fluid 
intelligence exhibit lower degree and higher separation (Bruzzone et al., 
2022). Graph theory researches have shown that network measures 
representing different facets of functional architecture are correlated 
with intelligence, such as clustering coefficients and network efficiency 
(Li et al., 2009; Zuo et al., 2020). However, little is known about 
whether age-related alterations in structural network properties can 
account for the decline in fluid intelligence.

Diffusion-weighted imaging (DTI) is a powerful tool to elucidate 
local anatomical connectivity, which constructs individual structural 
networks by tracing the main direction of water molecule diffusion by 
reconstructing the trajectory of axon bundles.

However, limitations on long-distance projections make it chal
lenging to map the connectivity between all brain regions, and its sta
tistical analysis might be compromised by head movements and false 
positive connections (Dauguet et al., 2007; Thomas et al., 2014; Walker 
et al., 2012). Individual structural similarity networks also could be 
constructed by assessing statistical similarity between brain regions, 
which might capture biologically meaningful factors associated with 
development, aging and brain disorders (Wang et al., 2020; Wang et al., 
2022). Kong et al. constructed individual structural similarity networks 
by quantifying the similarity of the probability distribution of gray 
matter volumes (GMV) in two brain regions, and found that the global 
and local efficiency of the network decreased with age (Kong et al., 
2015). Similarly, compared to healthy controls, Li et al. found that the 
nodal degree of bilateral superoccipital gyrus and right medial frontal 
gyrus were smaller in schizophrenia (Li et al., 2019). Wang et al. 
assessed the reliability of this method for constructing individual 
structural similarity networks and found that all the network topology 

properties examined showed fair to excellent reliability, suggesting that 
single-subject structural network analysis is a reliable method to char
acterize structural organization of the human brain (Wang et al., 2016).

In the present study, we predict individual fluid intelligence with 
structural similarity networks, and we hypothesize that age-related 
changes in hubness of key nodes (nodal degree) would be associated 
with declines in fluid intelligence. For each participant, we first 
extracted the GMV of all voxels in each brain region and calculated its 
probability distribution function (PDF). Second, we quantified the sim
ilarity of the probability distribution of GMV in each two brain regions 
by Kullback–Leibler (KL) divergence and constructed the structural 
similarity matrix. Third, the similarity matrix was binarized by applying 
a sparsity threshold. Fourth, we calculated graph-based degree of each 
node. Finally, node degrees were entered to a partial least squares (PLS) 
regression model as predictors to predict individual fluid intelligence 
scores. The main analysis process is shown in Fig. 1.

Methods

Participants

This study included four hundred twenty-two healthy participants 
(18–87 years old, 199 male and 223 female) from the Cambridge Centre 
for Ageing and Neuroscience (Cam-CAN, http://www.cam-can.org/) 
dataset (Supplementary Table 1) (Shafto et al., 2014). Demographic 
data acquisition, a health and lifestyle questionnaire and Mini-Mental 
State Exam (MMSE) were conducted for each participant. All partici
pants have high scores (greater than 24) on the MMSE, good hearing 
(enable to hear 35 dB in either ear), are bilingual English-speakers from 
birth or native English-speakers, without MRI contraindications and 
neurological disorders. Written informed consent was obtained from 

Fig. 1. Analysis flowchart of this study. First, gray matter volume of all voxels in each brain region was extracted from the processed structural magnetic resonance 
images based on AAL atlas and used to estimate the probability distribution function. Second, KL divergence was used to estimate the similarity of the probability 
distribution of gray matter volume between each two brain regions, so as to construct the individual similarity matrix. Third, individual binary matrix was created by 
thresholding the similarity matrix. Fourth, graph-based degree of each node was calculated for each participant. Finally, partial least square regression was per
formed to predict the individual fluid intelligence score, and node degrees were entered as predictors. MRI, magnetic resonance imaging; AAL, anatomical automatic 
labeling; KL, Kullback–Leibler; PLS, partial least squares.
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each participant, and this study was approved by the Cambridgeshire 2 
Research Ethics Committee.

Fluid intelligence test

Fluid intelligence is related to the complex cognitive measures and 
reflects an individual’s ability to respond to complex situations and 
solve problems (Chen et al., 2020). In this study, fluid intelligence was 
measured using the standard Cattell Culture Fair, Scale 2 Form A 
(Shafto, et al., 2014), a pen-and-paper test that contains four subtests 
(series completion, classification, matrices, conditions) of nonverbal 
puzzles. Participants chose a response from multiple options and 
recorded their responses on an answer sheet for each trial. There are 46 
trials in total, and a correct response was given a score of 1. Participants 
with scores below 12 were excluded as not actively participating in the 
test. In this study, Spearman correlation was performed to examine the 
relationship between age and fluid intelligence.

Structural MRI images acquisition

All high-resolution (1 mm × 1 mm × 1 mm) 3D T1-weighted images 
were acquired using a Magnetization Prepared Rapid Gradient Echo 
(MPRAGE) sequence on a 3 T Siemens TIM Trio System (32-channel 
head coil). Parameters are as follows: repetition time (TR) = 2250 ms, 
echo time (TE) = 2.99 ms, inversion time (TI) = 900 ms, field of view 
(FOV) = 256 mm × 240 mm × 192 mm, flip angle =9 degrees, accel
eration factor = 2, acquisition time = 4 minutes and 32 seconds.

Structural MRI images preprocessing

All structural MRI (sMRI) images were preprocessed with the 
Computation Anatomy Toolbox 12 (CAT12, Department of Psychiatry, 
University of Jena) to obtain voxel-wise GMV for each participant. First, 
we examined the structural images of each participant, weeding out 
those with significant motion artifacts. Second, individual sMRI images 
were segmented into gray matter (GM), white matter (WM) and cere
brospinal fluid (CSF) using the unified segmentation model with tissue 
probability maps (TPMs). Third, the GM images were spatially 
normalized to the Montreal Neurological Institute (MNI) space with a 
high-dimensional DARTEL algorithm and further nonlinearly modulated 
to compensate for spatial normalization effects. Fourth, the GM images 
were resampled to 1.5 mm3 voxels according to previous study (Wang 
et al., 2016). Finally, the images were spatially smoothed with a 
Gaussian kernel of 6 mm full width at half maximum (FWHM). Partic
ipants with poor image segmentation and processing quality (below -B) 
were eliminated. Total intracranial volume (TIV), calculated as the sum 
of GM, WM, and CSF volumes, was calculated and included as a co
variate for further analyses.

Similarity matrix construction

The structural similarity matrix was constructed for each participant 
using KL divergence, which measures the difference between two 
probability distributions in probability theory. Specifically, GMV values 
of all voxels in each brain region were first extracted based on 
Anatomical Automatic Labeling (AAL) atlas. Then, the probability 
density functions of GMV in each region were calculated based on a 
normal kernel function (a MATLAB function: ksdensity), and the PDFs 
were further calculated. Finally, the differences in GMV probability 
distributions between each of the two brain regions were quantified with 
KL divergence as follows: 

DKL(P,Q) =
∑n

i=1

(

P(i)log
P(i)
Q(i)

+ Q(i)log
Q(i)
P(i)

)

.

P and Q are PDFs of GMV, and n is the number of sample points, 27 

sampling points were chosen as in previous study (Wang et al., 2016). 
Since KL divergence is a measure of difference, it was converted to a 
similarity measure as follows: 

KLS(P,Q) = e− DKL(P,Q).

e is natural exponential. KL divergence-based similarity (KLS) ranges 
from 0 to 1, 1 represents identical distributions of GMV between two 
brain regions. A weighted similarity matrix of an individual is shown in 
Supplementary Fig. 4 A.

Graph theoretic analysis

The GRETNA toolbox (http://www.nitrc.org/projects/gretna/) was 
used to perform graph theoretic analysis. Prior to topological charac
terization of the derived connectivity matrices, a thresholding procedure 
is typically applied to exclude the confounding effects of spurious con
nections (Gong et al., 2009). In order to exclude noisy elements, indi
vidual structural similarity matrix Cij = [cij] was converted into a binary 
network Aij = [aij] by employing a sparsity threshold S, which was 
defined as the ratio of the actual number of edges to the maximum 
possible number of edges in the network: 

Aij = [aij] =

{
1,&cij < KLSthres

0,&others 

where KLSthres is subject-specific KLS threshold. With thresholding, 
there were same number of nodes and edges across all binary networks. 
Due to the lack of a conclusive method for selecting a single threshold 
(Lo et al., 2011), a continuous sparsity range of 0.1 < S < 0.7 (interval =
0.05) was selected following a previous work (Homan et al., 2019). For 
the brain networks at each sparsity level, the nodal degree was 
computed for each node, which defined as the number of connections 
(edges) that a node has with other nodes in the network. As sparsity 
increases, high-confidence connections are preserved (low-strength or 
unreliable connections are excluded), and the differences of nodal de
gree in the network decrease (Lo et al., 2011; Luo et al., 2021). The 
binarized similarity matrices of an individual at each sparsity level S are 
shown in Supplementary Fig. 4. Finally, the area under the curve (AUC) 
of the nodal degree was calculated for further analyses, which reflects 
the measure across the sparsity parameter S. This method provides a 
summary scalar for topological characterization and has proven to be 
sensitive in detecting changes in brain network topology (Li et al., 
2021).

Partial least squares regression analysis

First, a multivariable linear regression model was performed to 
examine the relationship between the nodal degree and age, with 
gender, education level and TIV as covariates. This model was fitted for 
each region, and the t-statistic was extracted. Significance was set at p <
0.05, and FDR correction was conducted to correct multiple compari
sons across all regions. Multivariate PLS regression is used to calculate 
the optimal low-dimensional solution of the relationship between a set 
of predictors and response variables, which is suitable for highly 
collinear predictors and can reduce the risk of overfitting. In the present 
study, PLS regression was performed to detect the relationship between 
nodal degree and fluid intelligence. Individual fluid intelligence scores 
were entered as response variables (422 × 1 vector), the degrees of each 
node in each participant were entered as predictor variables (422 × 90 
matrix). Taking into account the possible effects of inter-individual 
differences, both the response vector and prediction matrix regressed 
the effects of potential confounders, including gender (Ingalhalikar 
et al., 2013), education level (Malagurski et al., 2020) and TIV (Malone 
et al., 2015). Residuals were used for actual PLS regression analysis. The 
statistical significance of the variance explained by each PLS component 
was detected by permuting response variables 5000 times (permutation 
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test). Spearman correlation coefficients between predictor scores of each 
PLS component and fluid intelligence were calculated. Bootstrapping 
was used to estimate the contribution of each node to each PLS 
component, and the ratio of the weight of each node to its bootstrap 
standard error was used to calculate the Z scores (Li et al., 2021; Morgan 
et al., 2019). Normalized Z scores were used to measure the correlation 
of each node to each PLS component (Homan et al., 2019). To verify the 
replicability of the results in this study, half of the participants were 
randomly selected for additional PLS regression analysis. The codes for 
PLS regression analysis are openly available at https://github.com/
SarahMorgan/Morphometric_Similarity_SZ.

Mediation analysis

Further, bootstrapped mediation analysis was performed to investi
gate whether age-related decline in fluid intelligence was mediated by 
regional changes of nodal degree. We regressed out the effects of gender, 
education level and TIV on the independent (X, age), dependent (Y, fluid 
intelligence) and mediating (M, regional nodal degree). The residuals 
were normalized and used for further analysis. We examined the rela
tionship between age and regional nodal degree (path a), between the 
regional nodal degree and fluid intelligence (path b), and the total effect 
(path c) of age on fluid intelligence. The significance of the indirect ef
fect (path c’) of age on fluid intelligence through the regional nodal 
degree was tested with a bootstrapping analysis (resampled 10,000 
times). The mediation analysis was conducted using the Mediation 
ToolBox (https://github.com/canlab/MediationToolbox).

Results

As shown in Supplementary Fig. 1, we found a significant negative 
correlation (r420 = − 0.58, p < 0.001) between age and fluid intelligence 
in this study. The first PLS component (PLS1) accounted for 29.78 % of 
the variance in fluid intelligence, and the explanation rate was signifi
cant (pperm < 0.001). The PLS1 scores were positively correlated with 
fluid intelligence (r420 = 0.56, p < 0.001, Fig. 2 A), which indicates the 
predictive effectiveness of network node degree on individual fluid in
telligence. We calculated the ratio of each node’s weight to its bootstrap 
standard error to assess the contribution of each node to PLS1. We found 
that the nodes with greater weight were mainly located in prefrontal 
cortex, temporal cortex and middle occipital cortex (Fig. 2 B).

The second PLS component (PLS2) accounted for 19.26 % of the 
variance in fluid intelligence, and the explanation rate was significant 
(pperm < 0.001). The PLS2 scores were also positively correlated with 

fluid intelligence (r420 = 0.38, p < 0.001, Fig. 3 A). Meanwhile, the 
nodes with greater weight were mainly located in posterior cingulate 
cortex, orbito-frontal cortex, left insula, pallidum and part of precentral 
regions (Fig. 3 B). As shown in Supplementary Fig. 2, other PLS com
ponents were not significantly explain the variance in fluid intelligence 
(pperm > 0.05).

In validation analysis, the second PLS1 and PLS2 accounted for 
33.88 % and 27.39 % of the variance in fluid intelligence, respectively 
(all pperm < 0.001). We found significant positive correlation between 
the PLS1 scores (r209 = 0.59, p < 0.001), PLS2 scores (r209 = 0.45, p <
0.001) and fluid intelligence (Supplementary Fig. 5). Moreover, both 
PLS1 and PLS2 show a similar spatial distribution pattern of node 
weights as the discovery analysis (rPLS1 = 0.97, rPLS2 = 0.88, all pSMASH <

0.001).
For completeness, we also detected the relationship between the 

nodal degree and age using a multivariable linear regression model, 
adding gender, education level and TIV as covariates. Confirming pre
vious findings (Chong et al., 2019;Shah et al., 2018), we found increased 
degree centrality with age in the cingulate cortex, left insula and pal
lidum, right caudate nucleus and thalamus, and decreased degree cen
trality with age in the orbito-frontal cortex, right middle temporal and 
precentral regions (Supplementary Fig. 3 and Supplementary Table 2). 
Furthermore, we found that increased degree centrality in anterior 
cingulate cortex, left insula and right caudate nucleus partially mediated 
the age-related decline in fluid intelligence (Supplementary Fig. 6). 
Node degree quantifies the number of edges linked to a node and reflects 
the degree of node participation in information transmission. The 
decreased node degree indicates that the node’s links with other nodes is 
weakened, and its participation in the network is reduced, while an 
increase is the opposite. Collectively, these findings showed that nodal 
degree of several brain regions explain a significant proportion of the 
variance in fluid intelligence, suggesting that age-related structural 
similarity network configuration changes might associated with the 
decline in fluid intelligence.

Discussion

In the present study, to characterize the brain underpinnings for age- 
related declines in fluid intelligence, we used individual structural 
similarity networks to predict fluid intelligence. We found increased 
degree centrality with age in the cingulate cortex, left insula and 
subcortical regions, and decreased degree centrality in the orbito-frontal 
cortex, right middle temporal and precentral regions. Additionally, the 
nodal degrees of the insula and anterior cingulum partially mediated 

Fig. 2. Correlation between PLS1 scores and individual fluid intelligence scores and contribution of each cortical node. A. The first PLS component was positively 
correlated with fluid intelligence score (Spearman correlation). B. The weight of each node, i.e. the contribution to the first PLS component.
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age-related decline in fluid intelligence. Collectively, this study suggests 
a link between brain network morphology and individual cognitive 
abilities, revealing key imaging features of age-related cognitive decline.

The realization of cognitive processes requires the simultaneous ac
tivity of multiple brain regions. And the structural similarity network 
might reflect synchronous changes in distributed cortical regions 
(Alexander-Bloch et al., 2013). Using sMRI data to construct individual 
structural similar networks, Li et al. found that morphological networks 
in patients with major depression accompanied by suicidal ideation 
showed decreased segregation and weaker integration, as well as 
abnormal nodal efficiency in fronto-striatum-limbic-thalamic circuit (Li 
et al., 2021). Kong et al. demonstrated decreased global and local effi
ciency of structural similar networks across adults aging (Kong et al., 
2015). Therefore, structural similarity networks might capture biolog
ical signatures associated with development, aging, and neurological 
diseases. Brain networks contain a minority of hubs, nodes that are 
highly connected to other regions. We chose nodal degree to predict 
individual cognitive ability as brain abnormalities associated with 
cognitive decline should be concentrated in network centers (Liao et al., 
2017). Using cross-sectional and longitudinal rs-fMRI data, Chong et al. 
found that the local efficiency of networks in the elderly was reduced, 
especially in SN, FPN and DMN (Chong et al., 2019). Older adults exhibit 
longitudinal reconfiguration of frontoparietal control, default mode, and 
sensorimotor networks, which might associate with worse processing 
speed or learning performance (Malagurski et al., 2020). Consistent with 
these studies, we found that the nodal degree of the prefrontal cortex, 
orbitofrontal cortex and supplementary motor area was significantly 
correlated with fluid intelligence, mainly contained in sensorimotor 
network, FPN and DMN.

Fluid intelligence is associated with multiple-demand network 
(MDN), which consists of several regions across the frontal and parietal 
lobes, including middle lateral prefrontal cortex, orbito-frontal cortex, 
anterior insula, anterior cingulate, supplementary motor area and 
intraparietal sulcus (Tschentscher et al., 2017). We found that the nodal 
degree of orbito-frontal cortex and precentral gyrus decreased signifi
cantly with age, while the nodal degree of insula and anterior cingulate 
increased significantly with age, and these changes were associated with 
the decline of fluid intelligence. Zuo et al. found that the eigenvector 
centrality in MDN mediated age-related decline in fluid intelligence, 
supporting the stability of the MDN functional architecture contributes 
to the maintenance of intelligence (Zuo et al., 2020). Reduced activation 
in MDN leads to reduced efficiency of fluid intelligence in the older 
adults (Spreng and Turner, 2019). Cao et al. revealed that increased 
functional connectivity between lateral prefrontal and superior frontal 

cortex was associated with better performance after cognitive training 
(Cao et al., 2016). Better performance of individuals after multi-modal 
interventions, as reflected by fluid intelligence, can be predicted by 
larger anterior cingulate cortex volume and smaller middle frontal and 
insula volumes (Daugherty et al., 2020). Consistent with these findings, 
we found that changes in the node-degree centrality of MDN are asso
ciated with the decline of fluid intelligence, which provides 
network-based support for the maintenance of intelligence during suc
cessful aging (Nyberg and Pudas, 2019; Zuo, et al., 2020).

Additionally, we found age-related changes of nodal degrees in the 
temporal cortex and some subcortical regions, such as thalamus and 
putamen, were associated with fluid intelligence. Shah et al. evaluated 
the effect of age on the topological characteristics of nodes using func
tional brain networks, found that the nodal degree and efficiency of 
caudate, pallidum and thalamus were positively correlated with age 
(Shah et al., 2018). The thalamus acts as a relay station, different 
thalamic subregions are structurally and functionally connected to a set 
of cortical regions and thus involved in specific cognitive processes 
(Parnaudeau et al., 2018;Wolff and Vann, 2019). A recent sMRI study 
found that putamen volume was a good predictor of intelligence in older 
adults (Weerasekera et al., 2023). The structure and function of the left 
temporal lobe are associated with general intelligence. For example, 
thicker left temporal cortex corresponded to higher general and verbal 
intelligence quotient scores, which related to the selective adaptation of 
its cell microstructure and function (Heyer et al., 2022). Overall, the 
structural integrity and normal function of these regions are essential for 
the maintenance of fluid intelligence.

In the present study, we constructed morphological brain network by 
calculating interregional similarity of GMV distribution. Although ac
cording to Wang et al., KLS-based morphological similarity networks are 
specifically organized, analytical strategies sensitive and test–retest 
reliable, the biological significance underlying the similarity remains 
unclear (Kong et al., 2014;Wang et al., 2016). One possible explanation 
comes from axonal extension theory, which suggests that morphologi
cally similar regions are axonally connected to each other (Wei et al., 
2019). Moreover, strongly connected regions are cytoarchitectonically 
similar and have high levels of co-expression genes (Seidlitz et al., 
2018). Increasing evidences indicate that the influence of heredity and 
experience-related plasticity, developmental coordination or synchro
nous maturation between brain regions, play an important role in the 
formation of brain morphological networks (Alexander-Bloch et al., 
2013;Evans, 2013). Therefore, evaluating developmental, aging or brain 
disease-related changes in KLS-based brain morphological networks 
could provide more insights into this speculation in the future.

Fig. 3. Correlation between PLS2 scores and individual fluid intelligence scores and contribution of each cortical node. A. The second PLS component was positively 
correlated with fluid intelligence score (Spearman correlation). B. The weight of each node, i.e. the contribution to the second PLS component.
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Limitation

Some limitations of the present study should be mentioned. First, we 
constructed structural similarity networks by quantifying the similarity 
of the probability distribution of GMV between each pair of brain re
gions. Future studies should construct structural similar networks using 
other structural indicators to further verify the reproducibility of the 
results, such as cortical thickness and surface area. Meanwhile, further 
comparisons with other approaches to building structural networks 
should be made to provide more meaningful insights, such as white 
matter fiber bundle tracking using DTI. Second, we employed the AAL 
atlas, a widely used structural atlas in previous structural brain network 
studies (Kong et al., 2015;Wang et al., 2016), to construct KLS-based 
structural similarity networks. It is important to provide more compre
hensive insights into the effect of different parcellation schemes on the 
topological organization of individual structural brain networks in the 
future. Third, we only used node degree as a predictor and did not 
include other potential prediction data, which means that our findings 
may not be predictive when other predictors are included in the model. 
The relationship between other properties of GMV network and age and 
fluid intelligence should be further demonstrated, such as modularity, 
network efficiency, etc. Finally, future studies should use longitudinal 
data and other datasets to reveal age-related changes in structural 
similar networks and explore their predictive performance for cognitive 
function.

Conclusion

In conclusion, this study constructed individual structural similarity 
networks in terms of the KL divergence-based similarity measurement, 
and further investigated the age-related change pattern and predicted 
individual fluid intelligence level. The results showed age-related 
changes of the structural centrality (measured by nodal degree) in the 
MDN. And the changes of structural centrality were associated with age- 
related decline in fluid intelligence. This study explores the age-related 
changes of large-scale brain morphological network topology, which 
provides a valuable reference for the study of cognitive aging.

Author Statement

We verify that this manuscript is an original work, has not been 
published elsewhere previously and is not under consideration for 
publication elsewhere. We additionally verify that all authors provide 
their approval regarding submission of this manuscript.

All authors declare no competing interests and consent to the pub
lication of the paper.

This study was approved by the Cambridgeshire 2 Research Ethics 
Committee.

Author Contributions

LMC and OYZ designed the project. YLZ and ZQ analyzed the data 
and wrote the manuscript. LXY, ZM and CXL contributed to the statis
tical concepts.

CRediT authorship contribution statement

Mingchun Lu: Project administration, Conceptualization. Zhen 
Ouyang: Writing – review & editing, Project administration. Mei 
Zhang: Investigation. Xiaolin Chen: Visualization. Qin Zhang: Writing 
– original draft, Software, Data curation. Xiaoyang Li: Validation. Lizhi 
Yu: Writing – original draft, Formal analysis.

Declaration of Competing Interest

All authors declare no competing interests.

Acknowledgments

The authors would like to thank all participants from the Cam-CAN 
dataset.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.ibneur.2024.06.005.

References

Alexander-Bloch, A., Giedd, J.N., Bullmore, E., 2013. Imaging structural co-variance 
between human brain regions. Nat. Rev. Neurosci. 14, 322–336.

Bruzzone, S.E.P., Lumaca, M., Brattico, E., Vuust, P., Kringelbach, M.L., Bonetti, L., 2022. 
Dissociated brain functional connectivity of fast versus slow frequencies underlying 
individual differences in fluid intelligence: a DTI and MEG study. Sci. Rep. 12.

Cao, M., Huang, H., Peng, Y., Dong, Q., He, Y., 2016. Toward developmental 
connectomics of the human brain. Front Neuroanat. 10, 25.

Cao, W., Cao, X., Hou, C., Li, T., Cheng, Y., Jiang, L., Luo, C., Li, C., et al., 2016. Effects of 
cognitive training on resting-state functional connectivity of default mode, salience, 
and central executive networks. Front Aging Neurosci. 8, 70.

Chen, P.Y., Chen, C.L., Hsu, Y.C., Cam, C.A.N., Tseng, W.I., 2020. Fluid intelligence is 
associated with cortical volume and white matter tract integrity within multiple- 
demand system across adult lifespan. Neuroimage 212, 116576.

Chong, J.S.X., Ng, K.K., Tandi, J., Wang, C., Poh, J.H., Lo, J.C., Chee, M.W.L., Zhou, J.H., 
2019. Longitudinal changes in the cerebral cortex functional organization of healthy 
elderly. J. Neurosci. 39, 5534–5550.

Daugherty, A.M., Sutton, B.P., Hillman, C.H., Kramer, A.F., Cohen, N.J., Barbey, A.K., 
2020. Individual differences in the neurobiology of fluid intelligence predict 
responsiveness to training: evidence from a comprehensive cognitive, mindfulness 
meditation, and aerobic exercise intervention. Trends Neurosci. Educ. 18.

Dauguet, J., Peled, S., Berezovskii, V., Delzescaux, T., Warfield, S.K., Born, R., Westin, C.- 
F., 2007. Comparison of fiber tracts derived from in-vivo DTI tractography with 3D 
histological neural tract tracer reconstruction on a macaque brain. NeuroImage 37, 
530–538.

Deary, I.J., Cox, S.R., Hill, W.D., 2021. Genetic variation, brain, and intelligence 
differences. Mol. Psychiatry 27, 335–353.

Evans, A.C., 2013. Networks of anatomical covariance. NeuroImage 80, 489–504.
Fan, F., Liao, X., Lei, T., Zhao, T., Xia, M., Men, W., Wang, Y., Hu, M., et al., 2021. 

Development of the default-mode network during childhood and adolescence: A 
longitudinal resting-state fMRI study. Neuroimage 226, 117581.
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