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Abstract The problem of deciphering how low-level patterns (action potentials in the brain, 
amino acids in a protein, etc.) drive high-level biological features (sensorimotor behavior, enzymatic 
function) represents the central challenge of quantitative biology. The lack of general methods for 
doing so from the size of datasets that can be collected experimentally severely limits our under-
standing of the biological world. For example, in neuroscience, some sensory and motor codes 
have been shown to consist of precisely timed multi-spike patterns. However, the combinatorial 
complexity of such pattern codes have precluded development of methods for their comprehen-
sive analysis. Thus, just as it is hard to predict a protein’s function based on its sequence, we still 
do not understand how to accurately predict an organism’s behavior based on neural activity. Here, 
we introduce the unsupervised Bayesian Ising Approximation (uBIA) for solving this class of prob-
lems. We demonstrate its utility in an application to neural data, detecting precisely timed spike 
patterns that code for specific motor behaviors in a songbird vocal system. In data recorded during 
singing from neurons in a vocal control region, our method detects such codewords with an arbi-
trary number of spikes, does so from small data sets, and accounts for dependencies in occurrences 
of codewords. Detecting such comprehensive motor control dictionaries can improve our under-
standing of skilled motor control and the neural bases of sensorimotor learning in animals. To further 
illustrate the utility of uBIA, we used it to identify the distinct sets of activity patterns that encode 
vocal motor exploration versus typical song production. Crucially, our method can be used not 
only for analysis of neural systems, but also for understanding the structure of correlations in other 
biological and nonbiological datasets.

Editor's evaluation
This work introduces a new unsupervised Bayesian method for identifying important patterns in 
neural population responses. The method offers improvements relative methods that do not assume 
correlations in neural responses, and is likely to also outperform methods that take into account 
pairwise correlations in neural responses.

Introduction
One of the goals of modern high-throughput biology is to generate predictive models of interac-
tion networks, from interactions among individual biological molecules (Marks et al., 2011) to the 
encoding of information by networks of neurons in the brain (Schneidman et al., 2006). To make 
predictions about activity across networks requires one to accurately approximate—or build a model 
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of—their joint probability distribution, such as the distribution of joint firing patterns in neural popu-
lations or the distribution of co-occurring mutations in proteins of the same family. To successfully 
generalize and to improve interpretability, models should contain as few as possible terms. Thus 
constructing a model requires detecting relevant features in the data: namely, the smallest possible 
set of spike patterns or nucleotide sequences that capture the most correlations among the network 
components. By analogy with human languages, where words are strongly correlated co-occurring 
combinations of letters, we refer to the problem of detecting features that succinctly describe correla-
tions in a data set as the problem of dictionary reconstruction, as schematized in Figure 1. It is the first 
step towards building a model of the underlying data, but it is substantially different (and potentially 
simpler) than the latter: detecting which features are relevant is not the same as quantifying how they 
matter in detail.

In recent years, the problem of dictionary reconstruction has been addressed under different 
names for a variety of biological contexts (Natale et al., 2018) including gene expression networks 
(Margolin et al., 2006; Lezon et al., 2006), protein structure, protein-protein interactions (Marks 
et al., 2011; Morcos et al., 2011; Bitbol et al., 2016; Halabi et al., 2009), the structure of regulatory 
DNA (Otwinowski and Nemenman, 2013), distribution of antibodies and pathogenic sequences 
(Mora et al., 2010; Ferguson et al., 2013), species abundance (Tikhonov et al., 2015), and collec-
tive behaviors (Bialek et al., 2012; Couzin and Krause, 2003; Lukeman et al., 2010; Kelley and 
Ouellette, 2013; Pérez-Escudero and de Polavieja, 2011). The efforts to identify interactions in 
neural activity have been particularly plentiful (Stevens and Zador, 1995; Schneidman et al., 2006; 
Pillow et al., 2008; Bassett and Sporns, 2017; Williams, 2019). The diversity of biological applica-
tions notwithstanding, most of these attempts have relied on similar mathematical constructs, and 

Figure 1. The dictionary reconstruction problem. In many biological systems, such as understanding the neural code, identifying protein-DNA binding 
sites, or predicting 3-D protein structures, we need to infer dictionaries — the sets of statistically over- or under-represented features in the datasets 
(relative to some null model), which we refer to as words in the dictionary. To do so, we represent the data as a matrix of binary activities of ‍N ‍ biological 
units (spike/no spike, presence/absence of a mutation, etc.), and view ‍M ‍ different experimental instantiations as samples from an underlying stationary 
probability distribution. We then use the uBIA method to identify the significant words in the data. Specifically, uBIA systematically searches for 
combinatorial activity patterns that are over- or under-represented compared to their expectation given the marginal activity of the individual units. If 
multiple similar patterns can (partially) explain the same statistical regularities in the data, they compete with each other for importance, resulting in 
an irreducible dictionary of significant codewords. In different biological problems, such dictionaries can represent neural control words, DNA binding 
motifs, or conserved patterns of amino acids that must be neighbors in the 3-D protein structure.

https://doi.org/10.7554/eLife.68192
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most have suffered from the same limitations. First, unlike in classical statistics and traditional quan-
titative model building, where the number of observations, ‍M ‍, usually vastly exceeds the number of 
unknowns to be estimated, ‍K ‍, ‍K/M ≪ 1‍, modern biological data often has ‍M ≫ 1‍, but also ‍K/M ≫ 1‍. 
Indeed, because of network features such as protein allostery, recurrent connections within neural 
populations, and coupling to global stimuli, biological systems are rarely limited to local interactions 
only (Schwab et al., 2014; Merchan and Nemenman, 2016; Nemenman, 2017), so that the number 
of pairwise interactions among ‍N ‍ variables is ‍K ∼ N2‍, and the number of all higher order interactions 
among them is (that is, interactions that involve more than two network variables at the same time) 
is ‍K ∼ 2N ‍. Put differently, words in biological dictionaries can be of an arbitrary length, and spelling 
rules may involve many letters simultaneously, some of which are far away from each other. Because of 
this, reconstruction of biological dictionaries from data sets of realistic sizes requires assumptions and 
simplifications about the structure of possible biological correlations, and will not be possible by brute 
force. The second problem is that, as in human languages, biological dictionaries have redundan-
cies: there are synonyms and words that share roots. For example, a set of gene expressions may be 
correlated not because the genes interact directly, but because they are related to some other genes 
that do. Similarly, a certain pattern of neural activity may be statistically over- or under-represented 
(relative to a null model) not on its own, but because it is a subset or a superset of another, more 
important, pattern. Identifying irreducible words—the root forms of biological dictionaries—is there-
fore harder than detecting all correlations while also being crucial to fully understanding biological 
systems. Together, these complications make it impossible to use standard methods for reconstructing 
combinatorially complex dictionaries from datasets of realistic sizes.

In this work, we propose a new method for reconstructing complex biological dictionaries from 
relatively small datasets, as few as ‍M ∼ 102 . . . 103‍ samples of the joint activity and test it on neural 
data from songbirds. We focus on the regime ‍M ≫ N ‍, which means ‍N ‍ of a few tens for our datasets. 
While small compared to some of the largest high throughput biological datasets, this regime is rele-
vant in many biological contexts, and especially in studies of motor systems, where recording from 
multiple single motor units is hard. Crucially, the method imposes no limitation on the structure of the 
words that can enter the dictionary — neither their length nor their rules of spelling — beyond the 
obvious limitation that (i) words that do not happen in the data cannot be detected, and (ii) that data 
contain few samples of many words, rather than of just a few that repeat many times. Additionally, 
we address the problem of irreducibility, making the inferred dictionaries compact, non-redundant, 
and easier to comprehend. The main realization that allows this progress is that instead of building an 
explicit model of the entire joint probability distribution of a system’s states and hence answering how 
specific significant words matter, we can focus on a more restricted, and thus possibly simpler, ques-
tion: which specific words contribute to the dictionary. In other words, unlike many other methods, 
we do not build an explicit model of the underlying probability distribution, which would allow us to 
‘decode’ the meaning of the data, but only detect features that can be used in such models later. We 
do this using the language of Bayesian inference and statistical mechanics by developing an unsuper-
vised version of the Bayesian Ising Approximation (Fisher and Mehta, 2015) and by merging it with 
the reliable interactions model (Ganmor et al., 2011).

We believe that the approach we develop is fully general and will allow analysis of diverse datasets 
with realistic size requirements, and with few assumptions. However, to illustrate the capabilities of 
the approach, we present it here in the context of a specific biological system: recordings from single 
neurons in brain area RA (the robust nucleus of the arcopallium) in the Bengalese finch, a songbird. 
Neurons communicate with each other using patterns of action potentials (spikes), which encode 
sensory information and motor commands, and hence behavior. Reconstructing the neural dictio-
nary, and specifically detecting irreducible patterns of neural activity that correlate with (or ‘encode’) 
sensory stimuli or motor behaviors — which we hereafter call codewords — has been a key problem 
in computational neuroscience for decades (Stevens and Zador, 1995). It is now known that in both 
sensory (Berry et al., 1997; Strong et al., 1998; Reinagel and Reid, 2000; Arabzadeh et al., 2006; 
Rokem et  al., 2006; Nemenman et  al., 2008; Lawhern et  al., 2011; Fairhall et  al., 2012) and 
motor systems (Tang et al., 2014; Srivastava et al., 2017; Sober et al., 2018; Putney et al., 2019) 
the timing of neural action potentials (spikes) in multispike patterns, down to millisecond resolution, 
can contribute to the encoding of sensory or motor information. Such dictionaries that involve long 
sequences of neural activities (or incorporate multiple neurons) at high temporal resolution are both 

https://doi.org/10.7554/eLife.68192
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more complex and more likely to be severely undersampled. Specifically, even though the songbird 
datasets considered here are large by neurophysiological standards, they are too small to build their 
statistical models, which is the goal of most existing analysis approaches. This motivates the general 
inference problem we address here.

The power of our approach is illustrated by discoveries in the analysis of the songbird vocal motor 
code. Specifically, while it is known that various features of the complex vocal behaviors are encoded 
by millisecond-scale firing patterns (Tang et al., 2014), here we identify which specific patterns most 
strongly predict behavioral variations. Further, we show that dictionaries of individual neurons are 
rather large and quite variable, so that neurons speak different languages, which nonetheless share 
some universal features. Intriguingly, we detect that codewords that predict large, exploratory devia-
tions in vocal acoustics are statistically different from those that predict typical behaviors. Collectively, 
these findings pave the way for development of future theories of the structure of these dictionaries, 
of how they are formed during development, how they adapt to different contexts, and how motor 
biophysics translates them into specific movements. More importantly, the development of this 
method and its successful application to neural and behavioral data from songbirds suggests its utility 
in other biological domains, where reconstruction of feature dictionaries is equally important, and 
where new discoveries are waiting to be made.

Results
The dictionary reconstruction problem
We formalize the dictionary reconstruction problem as follows. An experimental dataset consists of 
‍M ‍ samples of a vector of binary variables of length ‍N ‍, ‍⃗σ = {σi}N

0 ‍, which we call letters (or spins, 
by analogy with statistical physics). These samples are assumed to be taken from a stationary joint 
probability distribution ‍P(σ⃗)‍, but the distribution is unknown. From the frequency of occurrence of 
various combinations of σs in the dataset, we need to detect words in the model defined by ‍P(σ⃗)‍, 
namely those patterns of σs that are significantly over- or under-represented (statistically anomalous) 
compared to some null model. While different null models are possible, a common choice is the 
product of marginal distributions ‍Pnull =

∏N
i=1 P(σi)‍. In this case, words are defined as correlated 

patterns of binary letters. Additionally, to be a part of the dictionary, a word must be irreducible. That 
is, it must be statistically anomalous not only with respect to the null model, but also with respect to its 
own various parts. For example, a word ‍σ1σ2σ3‍ all equal to 1 is a word in a dictionary only if it is statisti-
cally anomalous with respect to its frequency expected from frequencies of ‍σ1σ2‍, ‍σ1σ3‍, ‍σ2σ3‍, and also 
from frequencies of ‍σ1σ2σ3σ4‍, ‍σ1σ2σ3σ5‍, ‍σ1σ2σ3σ4σ5‍, and so on, eventually accounting for all other 
words that include any combination of letters ‍σ1‍, ‍σ2‍, and ‍σ3‍. In principle, such statistical over- or under-
representation of a word has a precise mathematical definition, based on comparing the entropy of 
the maximum entropy distribution constrained by frequencies of all other words in the distribution to 
that constrained additionally by the word itself (Margolin et al., 2010). For example, three anomalous 
overrepresented words are shown in the top right panel of Figure 1. Similarly, an example of anom-
alous underrepresentaion is shown in light blue in Figure 1, right middle panel, in which the word 
1.1 is underrepresented relative to the frequency expected from the (marginal) frequencies of 1·· and 
··1. In practice, performing these many comparisons is impossible for all but the simplest cases. Even 
approximate analyses, aiming to prove that a method results in irreducible dictionaries under some 
specific assumptions, have not been very successful to date. As a result, typical methods for dictionary 
reconstruction are assessed in their ability to build irreducible dictionaries based on heuristics, such as 
having a low probability of including overlapping words. We will follow the same route here.

Songbird neural motor code as a dictionary reconstruction problem
Owing to their complex and tightly regulated vocal behavior and experimentally accessible nervous 
system, songbirds provide an ideal model system for investigating the neural dictionaries underlying 
complex motor behaviors (Doupe and Kuhl, 1999; Kuebrich and Sober, 2015). We recorded from 
individual neurons in the motor cortical area RA of Bengalese finches during spontaneous singing 
and quantified the acoustic ‘features’ of song, specifically the fundamental frequency (which we will 
refer to as ‘pitch’), amplitude, and spectral entropy of individual vocal gestures, or ‘syllables’, as 
described previously (Sober et al., 2008; Tang et al., 2014; Wohlgemuth et al., 2010). The data sets 

https://doi.org/10.7554/eLife.68192
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are sufficiently large to be used as examples of dictionary reconstruction, allowing us to illustrate the 
type of biological insight that our approach can gain: we have 49 data sets — spanning 4 birds, 30 
neurons and sometimes multiple song syllables for each neuron — for which we observed at least 200 
instances of the behavior and the associated neural activity, which we estimate below to be the lower 
threshold for a sufficient statistical power.

To represent analysis of this motor code as a dictionary reconstruction problem, we binarize the 
recorded spiking time series so that ‍σt = (0, 1)‍ indicates the absence or presence of a spike in a time 
slice of ‍[(t − 1)∆t, t∆t]‍, see Figure 2. Thus each time interval is represented by a binary variable, and 
interactions among these patterns are described by over-represented or under-represented sequences 
of zeros and ones in the data. Using a complementary information-theoretic analysis, Tang et al., 
2014 showed that the mutual information between the neural spike train and various features of song 
acoustics peaks at ‍∆t = 1 . . . 2‍ ms. Thus, studying precise timing pattern codes means that we focus 
on ‍∆t = 2‍ ms (our datasets are not large enough to explore smaller ‍∆t‍) as discussed previously in Tang 

Figure 2. Quantification of the neural activity and the behavior. A spectrogram of a single song syllable in top-left corner shows the acoustic power 
(color scale) at different frequencies as a function of time. Each tick mark (bottom-left) represents one spike and each row represents one instantiation of 
the syllable. We analyze spikes produced in a 40ms premotor window (red box) prior to the time when acoustic features were measured (red arrowhead). 
These spikes were binarized as 0 (no spike) or 1 (at least one spike) in 2ms bins, totaling 20 time bins. The different acoustic features (pitch, amplitude, 
spectral entropy) were also binarized. For different analyses in this paper, 0/1 can denote the behavioral feature that is below/above or above/below its 
median, or as not belonging/belonging to a specific percentile interval. The inset shows the area RA within the song pathway, two synapses away from 
the vocal muscles, from which these data were recorded.

https://doi.org/10.7554/eLife.68192
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et al., 2014. Detection of statistically significant codewords at this temporal resolution would both 
re-confirm that this neural motor code is timing based, consistent with previous analyses (Tang et al., 
2014), as well as for the first time reveal the specific patterns that most strongly predict behavior. We 
focus on neural time series of length ‍T = 40‍ ms duration preceding a certain acoustic syllable, which 
includes the approximate premotor delay with which neurons and muscles influence behavior (Tang 
et al., 2014). Thus the index ‍t‍ runs between 1 and ‍T/∆t = 20‍.

Since we are interested in words that relate neural activity and behavior, we similarly binarize the 
motor output (Tang et al., 2014), denoting by 0 or 1 different binary characteristics of the behavior, 
such as pitch being either below or above its median value, or outside or inside a certain range 
(Figure 2). We treat the behavioral variable as the 0’th component of the neuro-behavioral activity, 
which then has ‍N = 21‍ binary variables, ‍⃗σ = {σi}N−1

0 ‍. Building the neural-behavioral dictionary is then 
equivalent to detecting significantly over- or under-represented patterns in the probability distribution 

‍P(σ⃗)‍. Focusing specifically on the statistically anomalous words that include the behavioral bit results 
in detection of codewords, for which the neural activity is correlated with (or is predictive of) the 
behavioral bit. Note that ‍2N = 221 ≈ 2 · 106‍, which is much greater than ‍M ∼ 100 . . . 1000‍ observations 
of the activity that we can record, illustrating the complexity of the problem. In fact, similar to the 
famous birthday problem (one gets coinciding birthdays with a lot fewer people than the number of 
days in a year), one expects a substantial number of repeating samples of the activity of the full length 
‍N ‍ — and hence the ability to detect statistically over- and under-represented binary words – only 
when ‍M ∼

√
2N ‍, which is what limits the statistical power of any dictionary reconstruction method. 

Crucially, the approach presented here works by analyzing all patterns, not just patterns of the full 
length, allowing us to detect anomalous sub-words even in more severely undersampled regimes.

The unsupervised BIA method (UBIA) for dictionary reconstruction
To reconstruct dictionaries in the neural motor code dataset and others with similar properties, 
we have developed the unsupervised Bayesian Ising Approximation (uBIA) method based on the 
Bayesian Ising Approximation for detection of significant features in linear Gaussian regression prob-
lems (Fisher and Mehta, 2015). Specifically, we extend BIA to detect significant interaction terms 
in probability distributions, rather than in linear regression models. For this, we write the probability 
distribution ‍P(σ⃗)‍ without any loss of generality as

	﻿‍

log P(σ⃗|θ⃗) = − log Z +
∑N

i=0 θiσi +
∑N

j≥i θijσiσj+∑N
k≥j≥i θijkσiσjσk + · · · + θ0...Nσ0 × · · · × σN =

− log Z +
∑

µ θµ
∏

i∈Vµ
σi, ‍�

(1)

where ‍Z ‍ is the normalization coefficient (Amari, 2001). We use the notation such that ‍Vµ‍ is a nonempty 
subset of indexes ‍i ∈ [0, N]‍, and ‍µ = [1, 2N+1 − 1]‍ is the subset number. Then ‍{θµ} = θ⃗ ‍ are coefficients 
in the log-linear model in front of the corresponding product of binary σs. In other words, ‍Vµ‍ denotes 
a specific combination of the behavior and / or times when the neuron is active. If ‍θµ‍ is nonzero for a 
term ‍

∏
i∈Vµ

σi‍, where ‍i = 0‍ (the response variable) is in ‍Vµ‍, then this specific spike word is correlated 
with the motor output, and is a significant codeword in the neural code, see Figure 1. Finding nonzero 

‍θµs‍ is then equivalent to identifying which codewords matter and should be included in the dictionary 
in Figure 1, and inferring the exact values of ‍θµ‍ tells how they matter. Notice that Equation 1 makes 
precise the definition of the order of an interaction, which corresponds to the number of variables ‍σi‍ 
in the interaction term.

A common alternative model of probability distributions uses ‍x = 2σ − 1 = ±1‍ instead of ‍σ = (0, 1)‍. 
A third order term coupling, for example, ‍σiσjσk‍ represents a combination of first, second, and third 
order terms in the corresponding xs, and vice versa. Thus which words are codewords may depend 
on the parameterization used, but the longest codewords and nonoverlapping groups of codewords 
remain the same in both parameterizations. Our choice of σ vs ‍x‍ is for a practical reason: a codeword 
in the σ basis does not contribute to ‍P‍ unless all of its constituent bins are nonzero. Thus since spikes 
are rare, we do not need to consider contributions of very long words to the code.

We would like to investigate the neural dictionary systematically and without arbitrarily truncating 
Equation 1 at some order of interactions or making other strong assumptions about the structure of 
the words in the dictionary. In fact, this is possibly the biggest distinction of our approach from others 

https://doi.org/10.7554/eLife.68192
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in the literature (Bialek et al., 1991; Pillow et al., 2008; Schneidman et al., 2006), which usually start 
with strong a priori assumptions. However, as discussed above, some assumptions must be made 
to solve the problem for typical data set sizes, and we would like to be very explicit about those we 
make. To achieve all of this, we define indicator variables ‍sµ = (0, 1)‍, ‍µ = 1, . . . , 2N+1 − 1‍, which denote 
if a particular sequence of ‍σi = 1‍, ‍i ∈ Vµ‍, and ‍σi = 0‍, ‍i ̸∈ Vµ‍, ‘matters’ (is a putative word in the dictio-
nary), that is, it is either statistically significantly over- or under-represented in the data set compared 
to a null model (which we define later). In other words, we rewrite ‍P(σ⃗|θ⃗)‍ without any assumptions as:

	﻿‍ log P(σ⃗|θ⃗) = − log Z +
∑

µ θµsµ
∏

i∈Vµ
σi.‍� (2)

We then choose a prior on ‍θµ‍ and on ‍sµ‍. We choose to focus on problems where there are many 
weak words in the dictionary; in other words, typically ‍|θµ| ≪ 1‍. We make this choice for two reasons. 
First, detecting words that are strongly anomalously represented is easy, and does not require a 
complex statistical apparatus. Second, having many contributing small effects is more realistic biologi-
cally. Specifically, for songbird vocal motor control, since many neurons control the muscles and hence 
the behavioral output, individual spikes in single neuron can only have a very weak effect on the motor 
behavior. We thus work in the strong regularization limit and impose priors

	﻿‍
P(θµ|sµ = 1) ∝ exp

[
− 1

2ϵ (θµ − θ∗µ)2
]

, ϵ ≪ 1.
‍� (3)

Note that the prior distribution ‍P(θµ|sµ = 0)‍ is irrelevant since, for ‍sµ = 0‍, ‍θµ‍ does not contribute 
to ‍P(σ⃗|θ⃗, s⃗)‍.

At this point, we need to choose the null model for the occurrence of letter patterns. We do this 
by choosing ‍θ̄µ‍ in a way such that the a priori averages (calculated within the prior only) and the 
empirical averages (frequencies, observed in the data) of individual ‍σis‍ are equal, ‍⟨σi⟩ = σi ‍ (we always 
use ‍⟨. . . ⟩‍ and ‍ ‍ to denote a priori and a posteriori expectations, respectively). This is equivalent to 
saying that the null model reproduces the firing rate of neurons and the frequency of the behavior, 

‍Pnull =
∏N

i=1 P(σi)‍. This is possible to do since, in typical problems, marginal probabilities ‍P(σi)‍ are, 
indeed, well-known, and it is the higher order interaction terms, the words in the dictionary, that make 
the reconstruction hard. Finally, we choose the least informative prior ‍P(sµ = 1) = P(sµ = 0) = 0.5‍, so 
that a priori a particular word has a fifty-fifty chance of being included in the neural dictionary. If we 
have reasons to suspect that some words are more or less likely to be included a priori, this probability 
can be changed.

Since we are only interested in whether a word is anomalous enough to be in the dictionary, but 
not in the full model of the joint probability distribution, we integrate out all ‍θµ‍, after having observed 
‍M ‍ samples of the ‍N ‍ dimensional vector ‍⃗σ‍. To perform this calculation, we start with the Bayes formula 
(notice that for the whole set of ‍M ‍ samples of the vector ‍⃗σ‍ we use the notation ‍⃗σ‍)

	﻿‍
P(⃗s|σ⃗) ∝ P(σ⃗ |⃗s) =

ˆ
dθ P(σ⃗|θ⃗, s⃗)

∏
µ|sµ=1

P(θµ|sµ = 1).
‍�

(4)

Now we make two approximations. First, we evaluate the integral in Equation 4 using the saddle 
point approximation around the peak of the prior, ‍⃗θ∗‍. This is a low signal-to-noise limit, and it is 
different from most high signal-to-noise approaches that analyze the saddle around the peak of the 
posterior. This leads to

	﻿‍ log P(σ⃗ |⃗s, ϵ) ∝ − 1
2 log |I − ϵH| + ϵ

2 b⊺(I − ϵH)−1b,‍� (5)

where ‍H‍ and ‍b‍ have size ‍S × S‍ and ‍S‍ respectively, being ‍S =
∑

µ sµ‍ being the total number of active 
variables. Their elements corresponds to

	﻿‍

bµ = ∂L
∂θµ

∣∣∣∣
θ⃗∗

,

Hµν = ∂2L
∂θµ∂θν

∣∣∣∣∣
θ⃗∗

,
‍�

(6)

https://doi.org/10.7554/eLife.68192
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where ‍L = log P(σ⃗|θ⃗)‍ is the log-likelihood. Second, we do all calculations as a Taylor series in the small 
parameter ‍ϵ‍ (see below on the choice of ‍ϵ‍). Both approximations are facets of the same strong regu-
larization assumption, which insists that most coupling constants ‍θµ‍ are small. Again, the logic here is 
that we may not have enough information to know what θ is a posteriori, but we should have enough 
to know if it is nonzero. Following Fisher and Mehta, 2015, we obtain

	﻿‍
log P(σ⃗ |⃗s, ϵ) ∝ ϵ

2
(
Tr[H] + b⊺b

)
+ ϵ2

2

(
1
2 Tr[H2] + b⊺Hb

)
.
‍� (7)

Finally, after explicitly reintroducing We now explicitly reintroduce the indicator variables and by 
taking into account the both ‍H‍ and ‍b‍ are restricted to the dimensions where ‍sµ = 1‍. That is, for 
example, the term ‍b⊺b‍ corresponds to ‍

∑
µ b2

µsµ‍. Finally, adding the normalization, we get

	﻿‍
P(⃗s|σ⃗, ϵ) = 1

Z(ϵ) exp
[
ϵ
∑

µ hµ(σ⃗)sµ + ϵ2 ∑
µν Jµν (σ⃗)sµsν

]
,
‍� (8)

where the magnetic fields (biases) ‍hµ‍ and the exchange interactions ‍Jµν‍ are

	﻿‍

hµ(σ⃗) = 1
2

[
∂2L
∂θ2

µ
+
(

∂L
∂θµ

)2
]�����

θ⃗∗

,

Jµν (σ⃗) = 1
4

[
∂2L

∂θµ∂θν

(
∂2L

∂θµ∂θν
+ 2 ∂L

∂θµ

∂L
∂θν

)]�����
θ⃗∗

,
‍�

(9)

see ‘Geometric interpretation of uBIA Field’ in ‘Materials and Methods’ for a geometric interpretation 
of the field.

Notice that Equation 8 has a familiar pairwise Ising form (Thompson, 2015), with data-dependent 
magnetic fields ‍hµ‍ and the couplings ‍Jµν‍. This Ising model has ‍2N ‍ spins, replacing the Ising model 
with ‍N ‍ spins, but with higher order interactions in Equation 1. Naively, we created a harder problem, 
with many more variables! However, since most of the ‍2N ‍ words do not appear in the actual data, and 
because of the ‍ϵ2‍ in front of the pairwise coupling term, evaluating posterior expectations ‍⟨sµ⟩‍ for 
all word that actually occur is relatively easy, as we show now. Indeed, plugging in the model of the 
probability distribution, Equation 1, we get for the fields and the exchange interactions

	﻿‍
hµ = M2

2

[
(σµ − ⟨σµ⟩)2 − var(σµ)

M

]
,
‍�

(10)

	﻿‍
Jµν = M2

4
cov(σµ,σν )

[
cov(σµ,σν ) − 2M(σµ − ⟨σµ⟩)(σν − ⟨σν⟩)

]
.
‍�

(11)

Here, to simplify the notation, we defined ‍σµ ≡
∏

i∈Vµ
σi‍, and we remind the reader that ‍M ‍ 

represents the number of samples. Further, angular brackets, ‍cov‍, and ‍var‍ denote the a priori expecta-
tions, covariances, and variances of frequencies of words in the null model, which matches frequency 
of occurrence of each individual ‍σi‍ (probability of firing in every time bin for the songbird data). Simi-
larly, overlines denote the empirical counts or correlations between co-occurrences of words in the 
observed data. Specifically, denoting by ‍nµ‍ the marginal frequencies of the word ‍Vµ‍ in the data, these 
expectations and frequencies are defined as follows:

	﻿‍

σµ = 1
M

M∑
m=1


 ∏

i∈Vµ

σ{m}
i


 = nµ

M
,
‍�

(12)

	﻿‍
⟨σµ⟩ =

∏
i∈Vµ

⟨σi⟩ =
∏

i∈Vµ

ni
M

,
‍�

(13)

	﻿‍

var(σµ) = ⟨σ2
µ⟩ − ⟨σµ⟩2 = ⟨σµ⟩

(
1 − ⟨σµ⟩

)
=

∏
i∈Vµ

ni
M


1 −

∏
i∈Vµ

ni
M


 ,

‍�
(14)

https://doi.org/10.7554/eLife.68192
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	﻿‍

cov(σµ,σν ) = ⟨σµσν⟩ − ⟨σµ⟩⟨σν⟩ =
∏

k∈Vµ∪Vν

nk
M

−


∏

iµ

ni
M





∏

j∈Vν

nj
M


 ,

‍�
(15)

To derive these equations, note that ‍σ
2
i = σi‍. Note also that ‍cov(σµ,σν ) = 0‍ if the intersection of 

‍Vµ‍ and ‍Vν‍ is empty.

Equation 10 has a straightforward interpretation. Specifically, if the difference between the a 
priori expected frequency and the empirical frequency of a word is statistically significantly nonzero 
(compared to the a priori standard error), then the corresponding word is anomalously represented. 
It does not matter whether the word is over- or under-represented: in either case, if the frequency 
deviates from the expectation, then the field ‍hµ‍ is positive, biasing the indicator ‍sµ‍ toward 1, and 
hence toward inclusion of the word in the dictionary. If the frequency is as expected, then the field 
is negative, and the indicator is biased towards 0, excluding the word from the dictionary. Note 
that as ‍M ‍ increases, the standard error goes down, and the field generally increases, allowing us to 
consider more words. The sign of ‍θµ‍ would reflect whether the word is over- or underrepresented. 
However, estimating the exact value of ‍θµ‍ from small datasets is often impossible and is not our goal, 
even though, in Figure 2, we denote words as under- or over-represented by whether their empirical 
frequency is smaller or larger than the a priori expectation. Thus in some aspects, our approach is 
similar to the previous work (Schnitzer and Meister, 2003), where multi-neuronal patterns are found 
by comparing empirical firing probabilities to expectations. However, we do this comprehensively for 
all patterns that occur in data. Crucially, in addition, the exchange interactions ‍Jµν‍ also allow us to 
account for reducibility of the dictionaries.

To see this, recall that correlations among words create a problem since a word can occur too 
frequently not in its own right, but either (a) because its sub-words are common, or (b) it is a sub-word 
of a larger common word, as illustrated in Figure 1. In other approaches, resolving these overlaps 
requires imposing sparsity or other additional constraints. In contrast, the couplings ‍Jµν‍ address this 
problem for uBIA naturally and computationally efficiently. Notice that because of the factor of 2 in the 
negative term in Equation 11, the exchange interactions are predominantly negative if one expects 
the two studied words to be correlated, and if they co-occur in the empirical data as much as they are 
expected to co-occur in the null model because of the overlaps in their composition, ‍Vµ‍ and ‍Vν‍. Nega-
tive ‍Jµνs‍ implement a mechanism, where statistical anomalies in data that can be explained, in prin-
ciple, by many different ‍θµs‍ are attributed predominantly to one such ‍θµ‍ that explains them the best, 
bringing the dictionary closer to the irreducible form. On the other hand, the exchange interactions 
are positive if one expects correlations between the words a priori, but does not observe them. Thus, 
in principle, a word can be included in the dictionary even at zero field ‍hµ‍. Crucially, every word affects 
the probability of every other word to be included in the dictionary by means of their corresponding 

‍Jµν‍. In this way, while uBIA is not equivalent to the full maximum entropy definition of irreducibility 
(Margolin et al., 2010), it comes close.

Knowing the coefficients ‍hµ‍ and ‍Jµν‍, one can numerically estimate ‍⟨sµ⟩‍, the posterior expectation 
for including a word ‍Vµ‍ in the dictionary. Generally, finding such marginal expectations from the joint 
distribution in disordered systems is a hard problem. However, here ‍hµ ∝ ϵ‍ and ‍Jµν ∝ ϵ2

‍, so that the 
fields and the interactions create small perturbations around the ‘total ignorance’ solution, ‍⟨sµ⟩ = 1/2‍ 
(this is a manifestation of our general assumption that none of the words is very easy to detect). 
Therefore, we calculate the marginal expectation using fast mean field techniques (Opper and Saad, 
2001). We use the naive mean field approximation, which is given by self-consistent equations for the 
posterior expectations in terms of the magnetizations ‍mµ = 2⟨sµ⟩ − 1‍,

	﻿‍
tanh−1(mµ(ϵ)) = ϵ

2

[
hµ + ϵ

∑
ν

Jµν + ϵ

2
∑
ν

Jµνmν (ϵ)

]

‍�
(16)

	﻿‍
= 1

2

[
ϵhµ + ϵ2heff

µ (ϵ)
]

,
‍�

(17)

so that interactions among spins are encapsulated in an effective field ‍ϵh
eff
µ ‍. We solve Equation 16 iter-

atively (Fisher and Mehta, 2015), by increasing ‍ϵ‍ from 0 —that is, from the total ignorance ‍⟨sµ⟩ = 1/2‍ 
or ‍mµ = 0‍ — and up to the limiting value ‍ϵmax‍ in steps of ‍δϵ = M−1/20‍. This limiting value ‍ϵmax‍ is 

https://doi.org/10.7554/eLife.68192
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determined by the two approximations involved in the strong regularization assumption. First, the 
saddle point approximation around the peak of the prior in Equation 4 implies that the characteristic 
width of the prior should be smaller than that of the likelihood, ‍ϵ ≤ ϵ1 = 1/M ‍. Second, the Taylor series 
up to second order in ‍ϵ‍ for the posterior of the indicator variables implies that the quadratic correc-
tions should not be larger than the linear terms. Within the mean field approximation, this means 
that ‍⟨|hµ|⟩µ ≥ ⟨|ϵheff

µ (ϵ)|⟩µ‍, which is saturated at some ‍ϵ2‍ (notice that, in contrast to our usual notation, 
the averages here are over the indices, and not the data). Thus, overall we take ‍ϵmax = min{ϵ1, ϵ2}‍. In 
other words, we use the largest ‍ϵ‍ (the weakest possible regularization), which is still consistent with 
the strong regularization limit. Additionally we have used the TAP equations (Opper and Saad, 2001), 
instead of Equation 16 to calculate magnetizations. These are more accurate since they account for 
how a spin affects itself through its couplings with the other spins. However, corrections due to this 
more complicated method were observed to be negligible in our strong regularized regime, since 
they were of higher order in ‍ϵ ≪ 1‍. Thus, all results that we report here, and the software implementa-
tion of uBIA on GitHub, (copy archived at swh:1:rev:a374c0d478958aaf38415c7b616bbdebe83c6219) 
are based on the mean field estimation.

Note that the analysis above, and our GitHub code, only focused on words that appear in the data. 
However, most of the ‍2N ‍ possible words must be absent from any realistic dataset. In the Supplemen-
tary Materials, we show that neglecting these words when calculating posterior probabilities for word 
inclusion does not lead to significant errors.

Testing and fine-tuning uBIA on synthetic data
To verify that uBIA can, indeed, recover dictionaries and to set various adjustable parameters involved 
in the method, we tested the approach on synthetic data that are statistically similar to those that we 
expect to encounter in real-world applications, such as our neural recordings. We used the log-linear 
model, Equation 1, as a generative model for binary correlated observables ‍⃗σ‍ with ‍N = 20‍. While some-
what small compared to many state of the art experimental datasets, this choice of ‍N ‍ is highly relevant 
to the motor control studies, which are our primary target in this work. We chose the individual biases 
in the generative model from a normal distribution, ‍θi ∼ N (−0.7, 0.12)‍, which matched the observed 
probability of a spike in a bin in the bird data. That is, ‍p(σi = 1) ≃ [1 + exp(−2θi)]−1 ∼ q ∼ 0.2‍. Then 
we selected which binary variables interacted. We allowed interactions of 2nd, 3rd, and 4th order, 
with an equal number of interactions per order. For different tests, we chose the interaction strengths 
from (a) the sum of two Gaussian distributions, one with a positive mean and the other with a nega-
tive one, ‍mean(θµ) = ±0.5‍, ‍std(θµ) = 0.1‍, and (b) from one Gaussian distribution centered at zero with 

‍std(θµ) = 0.5‍. Both choices reflect our strong regularization assumption, so that effects of individual 
variables on each other are weak, and a state of one variable does not determine the state of the 
others, and hence does not ‘freeze’ the system. We were specifically interested in performance of 
the algorithm in the case where ‍⃗θ ‍ are distributed as the sum of Gaussians. On the one hand, this 
tested how the algorithm deals with data that are atypical within its own assumptions. On the other 
hand, this choice ensured that there were fewer values of ‍⃗θ ‍ that were statistically indistinguishable 
from zero, making it easier to quantify findings of the algorithm as either true or false. We have addi-
tionally tested other distributions of ‍⃗θ ‍, but no new qualitatively different behaviors were observed. 
Finally, for both types of distributions of ‍⃗θ ‍, we also varied the density of interactions α (number of 
interactions per spin), from ‍α = 2‍ to ‍α = 4‍, which spans the interaction densities of tree-like and 2D 
lattice-like networks. We generated ‍M ‍ samples from these random probability distribution and we 
applied our pipeline to reconstruct the dictionary. We tested on 400 distributions from each family. 
As the first step, we discarded high-order words absent in the data using a threshold on the expected 
number of occurrences ‍⟨σµ⟩M = ⟨nµ⟩ < 0.02‍. Next, we selected ‍Nmax‍ words that have the highest 
(absolute) values in magnetic field ‍hµ‍ (we have tested ‍Nmax = 200, 500, 2000, 5000‍, and finally used 
500 after not observing substantial differences). To decide which of these high-field words are to 
be included in the dictionary, we built the Ising model on the indicator variables, Equation 8, with 
its corresponding magnetizations ‍mµ‍ given by the mean field equations. We started from an inverse 
regularization strength of ‍ϵ = 0‍ and then decreased the regularization strength by increasing ‍ϵ‍ in steps 
of ‍δϵ = 1/(20M)‍, up to ‍ϵmax = min{ϵ1, ϵ2}‍, as detailed above.

Next we needed to identify the significance threshold for the magnetization ‍mµ‍, or, equivalently, 
for the posterior probability of including a word into the dictionary ‍⟨sµ⟩ = (mµ + 1)/2‍. As is often the 

https://doi.org/10.7554/eLife.68192
https://github.com/dghernandez/decomotor
https://archive.softwareheritage.org/swh:1:dir:72fe5ae0cf1ae9883ee2cf60b634fe81cc86eb0d;origin=https://github.com/dghernandez/decomotor;visit=swh:1:snp:c8680421bc03b5ff09d2d14d1823f09a546b3545;anchor=swh:1:rev:a374c0d478958aaf38415c7b616bbdebe83c6219
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case, this is affected by two contradictory criteria. Setting the threshold high would miss a lot of 
weakly significant words (high false negatives), but the words remaining in the dictionary would be 
likelier to be true (low false positives). In contrast, setting the threshold low would admit weakly 
significant words (lowering false negatives) at the cost of also admitting words by chance (increasing 
false positives). To measure false positives and negatives, we used two metrics: precision and recall. 
The precision, ξ, is the fraction of the words included in the dictionary that are true, that is, have 
a nonzero ‍θµ‍ in the generated true model. The recall, η, is the fraction of the words in the gener-
ated model with ‍θµ ̸= 0‍ that were included in the dictionary. Fundamentally, there are no first princi-
ples arguments for the choice of the magnetization inclusion threshold, and thus we explored many 
different values of ‍m‍ and infer the functions ‍ξ(m)‍ and ‍η(m)‍ for every data set explored. In Figure 3, 
we plot the precision vs. recall curves parametrically as a function of ‍m‍. We see that, as the amount 
of data increases, the recall generally increases, though it remains small. However, since data set sizes 
are relatively small, we do not expect to detect all words, especially in the case where ‍θµ‍ are allowed 
to be close to 0 in the generative model (Gaussian distributed). Thus we emphasize precision over 
recall in setting parameters of the algorithm: we are willing to not include words in a dictionary, but 
those words that we include should have a high probability of being true words in the underlying 

Figure 3. Results of the synthetic data analysis. Performance on synthetic data as a function of the density of interactions α, the distributions ‍p(θ)‍ for 
the strength of interactions, and the number of samples ‍M ∈ {200, . . . , 1600}‍ (logarithmically spaced). The first and the second columns correspond 
to precision-recall curves for the different density of interactions (significant words) per variable, ‍α ∈ {2, 4}‍, within the true generative model. The top 
and the bottom rows corresponds to the interaction strengths ‍⃗θ ‍ selected from the sum of two Gaussian distributions, or a single Gaussian, as described 
in the text. For the first two columns, we vary the significance threshold in marginal magnetization ‍m(nfalse)‍, such that the full false discovery rate on 
the shuffled data ‍nfalse ∈ [0.005, 40]‍. In the third column we show the value of ‍nfalse‍ that corresponds to the precision of 80% as a function of ‍M ‍ (the 
number of samples), so that the precision is larger than in the shaded region. This region is quite large and overlaps considerably for the four cases 
analyzed, illustrating robustness of the method.

https://doi.org/10.7554/eLife.68192
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model. It is thus encouraging that, in all tested cases, there was an underlying magnetization threshold 
that allowed for a high (e.g. 80%) precision to ensure that almost all of the words that we detected 
can be trusted to be true. Crucially, we see that the precision-recall curves are remarkably stable with 
the changing density of interactions. As a final point for interpreting these figures, we point out that 
η is smaller when interactions coefficients are taken from a Gaussian centered at zero. However, one 
could argue that missing words with very small ‍θµ‍ should not be considered a mistake: they are not 
significant words in the studied dictionary.

An additional way of measuring the accuracy of our approach is by exploring the full false discovery 
rate nfalse — the total number of dictionary words that are false positives, averaged over our usual 400 
realizations of the training samples — produced by our algorithm on fully reshuffled data, where every 
identified word is false, by definition. We did this with reshuffling that kept the observed frequency of 
individual variables ni constant. We mapped out computationally the relation ‍nfalse(m)‍, which, together 
with ‍ξ(m)‍ explored above, allowed to explore the dependence between ξ and ‍m‍. Figure 3 shows 
that ‍ξ = 80%‍ corresponds to ‍nfalse < 1‍ for every data set that we have tried. Specifically, by keeping 
nfalse below 0.5 (only about half a word detected falsely, on average, in shuffled data), we can reach a 
precision as high as 80%, with the recall of 20% - 30% of the codewords depending on the number 
of samples, the distribution of ‍⃗θ ‍, and α. This shows that the findings of our approach are robust to 
variation of many parameters.

For the rest of this work, we set the magnetization threshold as a function of the false discovery 
rate, and we will admit words to the dictionary only when they have their marginal magnetizations 

‍mµ > m(nfalse = 0.5)‍. With that, we are confident that our method produces dictionaries, in which a 
substantial fraction of words correspond to true words in the data, though the details of how many 
may depend on various (often unknown) properties of the data themselves, including with respect to 
patterns that are possible yet were never observed empirically.

To quantify the effect of interactions in among words in shaping the final dictionary, we check how 
many words with a field larger than the smallest field of a putative codeword corresponding to the 
kept codewords were discarded. Crucially, of such words with large magnetic field were We observe 
that ‍∼ 40%‍ of all such large-field words are removed from the final dictionary due to the word-word 
exchange interactions. This signifies that uBIA works as designed in identifying multiple words that 
can explain a statistical pattern and choosing the smallest subset of words able to explain it.

We finish this section with the following observation about the performance of uBIA in regimes 
that are even more severely undersampled than considered above, so that most of relatively long 
words only happen once or never in the data. In this regime, uBIA has two major strengths. First, 
uBIA analyzes putative codewords of arbitrary length, so that then it will detect short sub-patterns 
as codewords – and, in any reasonable dataset, at least some short sub-patterns will coincide – for 
example, there are only ‍N ‍ first order words formed by ‍N ‍ interacting units, and typically ‍M ≫ N ‍. 
Second, uBIA detects not just over-representation of patterns, but also their under-representation. 
Thus, if a complex spike word happens once or does not happen at all, it may enter the uBIA dictio-
nary as well precisely because it happens so infrequently.

Reconstructing songbird neural motor codes
Having fine-tuned the method on synthetic data, we can now test it on a biological dataset. We 
applied uBIA to the songbird data, confirming the precise timing pattern nature of the code in this 
dataset. We then demonstrate the generality of the algorithm by applying it to different parameter-
izations of the data, which allows us to make surprising observations about control of exploratory vs 
typical renditions of the song by the birds. Notice that, for all applications below, we have to binarize 
the behavior (pitch). This inevitably results in the loss of resolution and the corresponding loss of code-
words. However, such binarization is meaningful in the context of songbirds (Tang et al., 2014), and, 
crucially, it cannot lead to emergence of keywords where they would not exist otherwise.

Statistical properties of the motor codes
We start with Figure 4, which explores the occurence of just two specific codewords found by uBIA that 
encode high-pitch renditions of syllables. Note that these codewords are, indeed, overrepresented 
together with the high pitch vocalizations. Analyzing if a particular word is correlated with an acoustic 
feature is, of course, not hard. However, detecting words that should be tested, without a multiple 

https://doi.org/10.7554/eLife.68192
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hypothesis testing significance penalty is nontrivial. Thus the power of uBIA comes from being able to 
systematically analyze abundances of combinatorially many such spike patterns, and further to identify 
which of them are irreducibly over- or under-represented. Figure 5 illustrates statistical properties 
of entire neural-behavior dictionaries discovered by uBIA for different songbird premotor neurons 
and for three features of the acoustic behavior. While we reconstruct the dictionaries that include all 
irreducible words, including those that have only anomalous firing patterns but a statistically normal 
behavioral bit, here we primarily focus on codewords, which, recall, are defined as statistically anoma-
lous relations between the behavior and the neural activity. We do the analysis twice, first for behavior 
binarized as ‍σ0 = 1‍ for the above-median acoustic features, and then for the below-median acoustic 
features. This way we detect words that predict either a behavior or its opposite. We do this because 
the same pattern of spikes should not be anomalous in the same way simultaneously when studying 
both the above and the below median codes, since the pattern cannot code for two mutually exclu-
sive features. Detecting such patterns thus serves as a consistency check on our method. There were 
0.7 such codewords on average per dictionary. This is consistent with the expected false discovery 
rate of lt1 codewords per neuron for data sets of our size and statistical properties, further increasing 
our confidence in the method.

The most salient observation is that the inferred codewords consist of present or absent spikes in 
specific 2ms time bins, (Figure 5A). This is consistent with our previous analysis (Tang et al., 2014), 
which identified the same timescale for this dataset by analyzing the dependence of the mutual 
information between the activity and the behavior on the temporal resolution, but was unable to 
detect the specific words that carry the information. The second crucial observation is that most of 
codewords are composed of multiple spikes, (Figure 5C) representing an orthographically complex 
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Figure 4. Sample multispike codewords. (A) Probability distribution an acoustic parameter (fundamental frequency, or pitch). For this analysis, we 
consider the output to be ‍σ0 = 1‍ when the pitch is above median (blue), and zero otherwise (red). (B) Distribution of two sample codewords (a two-spike 
word in the left raster, and a three-spike word in the right raster) conditional on pitch. In each raster plot, a row represents 40ms of the spiking activity 
preceding the syllable, with a grey tick denoting a spike. Every time a particular pattern is observed, its ticks are plotted in black. Note that these two 
spike words are codewords since they are overrepresented for above-median pitch (blue box) compared both to the null model based on the marginal 
expectation of individual spikes, and to the presence of the patterns in the low pitch region. Labels (a) and (b) identify these patterns in Figure 5B.
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pattern timing code (Sober et al., 2018), in contrast to single spike timing codes, such as in Bialek 
et al., 1991. Large number of codewords of 2 or more spikes (and thus 3 or more features, including 
the behavior itself) suggests that analyzing these dictionaries with the widely used lower order MaxEnt 
or GLM methods that typically focus on lower-order statistics (see Online Methods) would miss their 
significant components. Our third crucial observation is that very few sub-words / super-words pairs 
occur in the dictionaries (Figure 5A; e.g. the second codeword coding for entropy in neuron 2 in the 
panel A is a subword of the others). Finally, similarly to our synthetic data analysis, 30% of words with 
large magnetic field were removed from the final dictionary due to word-word interactions. This indi-
cates that uBIA fulfills its goal of rejecting multiple correlated explanations for the same data.

We quantify these observations as follows. In the 49 different datasets, the average size of a 
dictionary within one dataset is 14 words. Of these words, on average 5.6 include the behavioral 
feature and hence are codewords (Figure 5D). That there are so many specific temporally precise 
codewords suggests that the behaviorally-relevant spike timing patterns are the rule, rather than the 
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Figure 5. Statistical properties of neural dictionaries. (A) Sample neural-behavioral dictionaries for two neurons from two different birds (columns) 
and for three different acoustic features of the song (rows: pitch, amplitude, and the spectral entropy). The light gray curve in the background and the 
vertical axis corresponds to the probability of neural firing in each 2ms bin (the firing rate). The rectangular tics represents the timing of spikes in neural 
words that predict the acoustic features. For example, a two spike word with tics at points ‍t = i, j‍ corresponds to the probability that the word ‍µ = (i, j)‍ 
is a codeword for the acoustic feature with a probability statistically significantly higher than 1⁄2. Codewords for high (low) output, that is, ‍σ0 = 1‍ above 
(below) the median, are shown in blue (red). Full (empty) symbols correspond to over(under)-occurrence of the codeword-behavior combinations 
compared to the null model. Finally full (empty) black symbols represent words that over(under)-occur in the blue code and under(over)-occur in the 
red code. Words labeled (c)-(g) are also shown in (B). (B) Frequency of occurrence of statistically significant codewords for different acoustic features in 
different neurons. Only first 200 codewords shown for clarity. Plotting conventions same as in (A), and letters label the same codewords as in (A) and 
in Figure 4B. (C) Proportion of ‍m‍-spike codewords found in the dictionaries analyzed. An ‍m‍-spike word corresponds to an ‍(m + 1)‍-dimensional word 
in the neural-behavioral dictionary. Most of the significant codewords have two or more spikes in them. (D) Mean number of significant codewords, 
averaged across all neurons and acoustic features. An average neuron has 5.6 codewords in our dataset, of which 3.1 code for the pitch, 2.5 for the 
amplitude, and 2.8 for the spectral entropy, with the number of words coding for pairs of features or for all three of them indicated by the overlap of 
rectangles in the Venn diagram. For comparison, our estimated false discovery rate is 0.3 words, so that only ∼0.3 spurious words are expected to be 
discovered in each individual dictionary. We note that about a third of all analyzed dictionaries are empty, so that those that have words in them typically 
have more than illustrated here. (E) Mean inter-spike interval (ISI) for the codewords (spike words that code for behavior) vs. all spike words that are 
significantly over- or under-represented, but do not code for behavior. Averages in each of the four analyzed birds are shown, illustrating that the ISI 
statistics of the coding and non-coding words are different, but the differences themselves vary across the birds. Star denotes 95% confidence. Other 
properties of the dictionaries (mean number of spikes in codewords, fraction of codewords shared by three vocal features, proportion of under/over-
occurring codewords), do not differ statistically significantly across the birds.
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exception, in this dataset. We found that 66% of codewords are unique to one of the three analyzed 
acoustic features. This further quantifies the observation that some neurons in RA are selective for 
specific acoustic features, as noted previously (Sober et al., 2008). Across all neurons and all acoustic 
features, only 15% of codewords consist of a single spike (or absence of spike), while 58%, 23%, and 
4% consist of two, three, and four spikes respectively, (Figure 5C) (we are likely missing many long 
codewords, especially with small θ’s due to undersampling). This observation is consistent across all 
neurons and acoustic features, again indicating that coding by temporally precise spike patterns is a 
rule and not an exception.

At the same time, the observed dictionaries are quite variable across neurons and the produc-
tion of particular song syllables. Codewords are built by stitching together multiple spikes or spike 
absences, and individual spikes occur at certain time points in the (-40,0) ms window with different 
probabilities in different neurons and syllables (i.e. the firing rate is both time and neuron dependent, 
Figure 5A, grey lines). Codewords are likely to occur where the probability of seeing a spike in a bin 
is ∼50%, since these are the times that have more capacity to transmit information. Thus variability 
in firing rates as a function of time across neurons necessarily creates variability in the dictionaries 
across these neurons. Beyond this, we observe additional variability among the dictionaries that is not 
explained by the rate fluctuations. For example, we can differentiate one of the four birds from two 
of the others just by looking at the proportions of high-order codewords (an average of 0.21 bits in 
Jensen-Shannon divergence between the target bird and the rest, which means that we need around 
five independent samples/codewords to distinguish this bird from the others). This is further corrob-
orated by the fact that the mean inter-spike interval (ISI) for codewords is different from that of other 
words in the dictionaries, and this difference is also bird-dependent, see Figure 5E.

Verification validation of the inferred dictionaries
To show that the dictionaries we decoded are biologically (and not just statistically) significant, we 
verify whether Statistical significance is not a substitute for biological significance. The only way to 
interpret findings of any statistical method, including ours, is through perturbation experiments. For 
example, one could try to see if a stimulation of a neuron with a specific codeword-like patterns 
would cause (rather than merely correlate with) a certain behavior (Srivastava et al., 2017). Unable 
to do this, we do a weaker validation and check if the codewords can, in fact, be used to predict the 
behavioral features. For this, we built two logistic regression models that relate the neural activity to 
behavior. The first one uses the presence / absence of spikes in individual time bins and the second 
the presence / absence of the uBIA detected codewords as predictor variables (see Online Methods). 
Note that the individual spikes model is still a precise-timing model, which has 20 predictors (20 time 
bins, each 2 ms long), and hence one may expect it to predict better than the codewords model, 
which typically has many fewer predictors. To account for the possibility of overfitting, in all compar-
isons we test the predictive power of models using cross-validation. We emphasize that we do not 
expect either of the two models to capture an especially large fraction of the behavioral variation. 
Indeed, Tang et al., 2014 have shown that, at 2ms resolution, on average, there is only about 0.12 
bits of information between the activity of an individual neuron and the behavioral features, and 
the assumption behind our entire approach is that none of individual predictors have strong effects. 
Further, a specific model, such as logistic regression, will likely recover even less predictive power from 
the data. With this, Figure 9 compares prediction between the two models, obtaining a significantly 
higher accuracy and a lower mean cross-entropy between the model and the data for the models that 
use codewords as predictors. In other words, the higher order, but smaller, dictionaries decoded by 
uBIA outperform larger, non-specific dictionaries in predicting behavior. This is especially significant 
since uBIA codewords are detected for their statistical anomaly and irreducibility, and not directly for 
how accurately they predict behavior.

Dictionaries for exploratory vs. typical behaviors
Bengalese finches retain the ability to learn through their lifetimes, updating their vocalizations 
based on sensorimotor feedback (Kuebrich and Sober, 2015; Kelly and Sober, 2014; Sober and 
Brainard, 2009; Saravanan et al., 2019). A key element of this lifelong learning capacity is the precise 
regulation of vocal variability, which songbirds use to explore the space of possible motor outputs, 
(Figure 6A and B). For example, male songbirds minimize variability when singing to females during 
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courtship, but dramatically increase the range of variability in acoustic features such as pitch when 
singing alone (Hessler and Doupe, 1999; Woolley et al., 2014). The variability is controlled by the 
activity of nucleus LMAN. Silencing or lesioning LMAN reduces the acoustic variance of undirected 
song (Figure 6A) to a level approximately equal to that of female-directed song (Kao et al., 2005; 
Olveczky et al., 2005). Using uBIA, we can ask for the first time whether the statistics of codewords 
controlling the exploratory vs. the baseline range of motor variability are different. To do this, we 
analyze the statistics of codewords representing different parts of the pitch distribution. First, we 
define the output as ‍σ0 = 1‍ if the behavior belongs to a specific 20-percentile interval ([0 -20], [10 - 30], 
…, [80 -100] ) and compare the dictionaries that code for behavior in each of the intervals. We find that 
there are significantly more codewords for exploratory behaviors (percentile intervals farthest from 
the median, Figure 6C). This holds true for different features of the vocal output, although the results 
are only statistically significant if pooled over all features. To improve statistical power by increasing 
the number of trails in each acoustic interval, we also consider a division of the output into three equal 
intervals: low, medium, and high. In this case, there are still more codewords for the high explor-
atory pitch, and the dictionaries for each of the intervals are still multispike (Figure 6D). We further 
observe that the codewords themselves are different for the three percentile groups: the mean ISI of 
high pitch, amplitude, and spectral entropy codewords is higher, with the largest effect coming from 
the pitch and the spectral entropy (Figure 6E). Examples of typical and exploratory dictionaries are 
illustrated in Figure 6F. Note that this analysis partially addresses the concern about losing resolution 
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Figure 6. Codes for vocal motor exploration. (A) Distribution of syllable pitch relative to the mean for exploratory and performance behaviors (blue, 
intact birds, vs. grey, LMAN-lesioned animals, see main text). (B) Ratio of the histograms in (A) evaluated in the quintiles of the exploratory (blue) 
distribution centered around [10%,20,...90%] points. (C) Total number of codewords when considering the vocal output as 1 if it belongs to a specific 
20-percentile interval of the output distribution, and 0 otherwise. We observe that there are significantly more codewords for the exploratory behavior 
(tails of the distribution compared to the middle intervals). Notice that the shape of the curves parallels that in (B), suggesting that exploration drives the 
diversity of the codewords. (D) Number of codewords when considering the vocal output as 1 if it belongs to a 33-percentile (non-overlapping) interval 
of the output distribution, and 0 otherwise. Here there are significantly more codewords when coding for high pitch. Further, the codewords found for 
each of the three intervals are mostly multi-spike (histograms show the distribution of the order of the codewords for each percentile interval). (E) For 
codewords for the 33-percentile intervals, we compare the mean inter-spike intervals (ISIs). Codewords for high outputs (especially for pitch and spectral 
entropy) have a significantly larger mean ISI. (F) We illustrate dictionaries of two neurons for the medium and the high spectral entropy ranges. Notice 
that the high entropy range has significantly more codewords.
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due to discretization of behavior by exploring effects of different discretizations on the reconstructed 
dictionaries.

These findings challenge common accounts of motor variability, in songbirds and other systems, 
that motor exploration is induced by adding random spiking variations to a baseline motor program. 
Rather, the over-abundance of codewords in the exploratory flanks of the acoustic distributions indi-
cates that the mapping between the neural activity and the behavior is more reliable than in the bulk 
of the behavioral activity: multiple renditions of the same neural command result in the same behaviors 
more frequently, making it easier to detect the codewords. One possibility is that the motor system is 
less biomechanically noisy for large behavioral deviations. This is unlikely due to the tremendous vari-
ation in the acoustic structure (pitch, etc.) of different song syllables within and across animals (Sober 
and Brainard, 2009; Elemans et al., 2015), which indicates that songbirds can produce a wide range 
of sounds and that particular pitches (i.e. those at at one syllable’s exploratory tail) are not intrinsically 
different or harder for an animal to produce. Similarly, songbirds can dramatically modify syllable pitch 
in response to manipulations of auditory feedback (Sober and Brainard, 2009; Kuebrich and Sober, 
2015). A more likely explanation for the greater prevalence of codewords in the exploratory tails is 
that the nervous system drives motor exploration by selectively introducing particular patterns into 
motor commands that are specifically chosen for their reliable neural-to-motor mapping. This would 
result in a more accurate deliberate exploration and evaluation of the sensory feedback signal, which, 
in turn, is likely to be useful during sensorimotor learning (Zhou et al., 2018).

Finally, although dissecting the role of different neural structures to generating code words would 
require additional (perturbation) experiments, we can speculate about the contributions of LMAN 
inputs and local RA circuitry to shaping the statistics of activity in RA. One possibility is that the greater 
prevalence of code words in exploratory behaviors reflects the interaction of unstructured variability 
(from LMAN) with the dynamics determined by local circuitry within RA. Alternatively, inputs patterns 
from LMAN during exploration might be highly structured across LMAN neurons such that tightly-
regulated multi-spike patterns in LMAN, rather than the interaction of uncoordinated LMAN activity 
with intrinsic RA dynamics, is responsible for generating exploratory deviations in behavior. Future 
studies, including both perturbations of neural activity and recording ensembles of LMAN neurons, 
will shed light on these questions.

Discussion
In this work, we developed the unsupervised Bayesian Ising Approximation as a new method for 
reconstructing biological dictionaries — the sets of anomalously represented joint activities of multiple 
components of biological systems. Inferring these dictionaries directly from data is a key problem in 
many fields of modern data-rich biological and complex systems research including systems biology, 
immunology, collective animal behavior, and population genetics. Our approach addresses crucial 
shortcomings that so far have limited the applicability of other methods. First, uBIA does not limit the 
possible dictionaries, either by considering words of only limited length or of a pre-defined structure, 
instead performing a systematic analysis through all possible words that occur in the data sample. 
Second, it promotes construction of irreducible dictionaries, de-emphasizing related, co-occurring 
words. Finally, uBIA does not make assumptions about the linear structure of dependencies unlike 
various linear methods.

To illustrate capabilities of the method, we applied it first to simulated data sets that are similar to 
those we expect in experiments. The method was able to reconstruct the dictionaries with a very low 
false discovery rate for a wide range of parameters and statistical properties of the data (Figure 3), 
which made us hopeful that uBIA’s findings will be similarly meaningful in real-life applications. In this 
analysis, we explored the range ‍M ∼ 102 . . . 103‍, and ‍N ∼ 20‍, which is highly relevant to the neuro-
biological data we focus on here. Crucially, this ‍N ‍ is smaller than in many modern high-throughput 
experiments. Indeed, there is a necessary trade-off among the system size, the amount of data, and 
the ability to explore the interactions systematically, to all orders. Since there are many methods able 
to analyze data at much larger ‍N ‍, but with making assumptions about, in particular, pairwise structure 
of words in the dictionary (see Overview of prior related methods in the literature in Online Methods), 
we decided to focus uBIA on systematic exploration of somewhat smaller systems, ‍N ∼ 20‍.

To show that the methoduBIA, indeed, can work with real data, we applied it to analysis of motor 
activity in cortical area RA in a songbird. We were able to infer statistically significant codewords from 
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large-dimensional probability distributions (‍221 = 2, 097, 152‍ possible different words) with relatively 
small data sets (‍∼ 102 . . . 103‍ samples). We verified that the codewords are meaningful, in the sense 
that they predict behavioral features better than alternative approaches. Importantly, most of words 
in hundreds of dictionaries that we reconstructed were more complex than is usually considered, 
involving multiple spikes in precisely timed patterns. The multi-spike, precisely timed nature of the 
codes was universal across individuals, neurons, and acoustic features, while details of the codes (e.g. 
specific codewords and their number) showed tremendous variability.

Further, we identified codewords that correlate with three different acoustic features of the behavior 
(pitch, amplitude, and spectral entropy), and different percentile ranges for each of these acoustic 
features. Across many of these analyses, various statistics of codewords predicting exploratory vs. 
typical behaviors were different. Specifically, the exploratory dictionaries contained more codewords 
than the dictionaries for typical behavior, suggesting that the exploratory spiking patterns are more 
consistently able to evoke particular behaviors. This is surprising since the exploratory behavior is 
usually viewed as being noisier than the typical one. Crucially, exploration is a fundamental aspect 
of sensorimotor learning (Tumer and Brainard, 2007; Kuebrich and Sober, 2015; Kelly and Sober, 
2014), and it has been argued that large deviations in behaviors are crucial to explaining the observed 
learning phenomenology (Zhou et al., 2018). However, the neural basis for controlling exploration vs. 
typical performance is not well understood. Intriguingly, vocal motor exploration in songbirds is driven 
by the output of a cortical-basal ganglia-thalamo-cortical circuit, and lesions of the output nucleus of 
this circuit (area LMAN) abolishes the exploratory (larger) pitch deviations (Kao et al., 2005; Olveczky 
et al., 2005). Our findings therefore suggest that the careful selection of the spike patterns most 
consistently able to drive behavior may be a key function of basal ganglia circuits.

While the identified codewords are statistically significant, and, for the songbird data, we show 
that they can predict the behavior better than larger, but non-specific features of the neural activity, 
a crucial future test of our findings will be in establishing biological significance of uBIA findings. In 
the context of the neural motor control, biological significance may be in establishing the causal 
rather than merely correlative nature of the codewords, which can be done by stimulating neurons 
with patterns of pulses mimicking the codewords (Srivastava et al., 2017). Such verification will be 
facilitated by the speed of our method, which can reconstruct dictionaries in real time on a laptop 
computer. The speed and the relatively modest data requirements by uBIA will also allow us to explore 
how population-level dictionaries are built from the activity of individual neurons, how control of 
complex behaviors differs from control of their constituent features, how the dictionaries develop and 
are modified in development, and whether the structure of dictionaries as a whole can be predicted 
from various biomechanical and information-theoretic optimization principles.

In building uBIA, we have made a lot of simplifying assumptions. For example, in applications 
to neural populations, uBIA would explore only symmetric statistical correlations, while the phys-
ical neural connectivity is certainly asymmetric. Similarly, in the analysis of activity of a neuron over 
time bins in the current work, we did not account for causality. Further, we assumed that all data are 
stationary for the duration of the experiment, which will break down for longer experiments. Making 
useful biological interpretation of uBIA findings and designing better perturbation experiments may 
depend on our ability to lift some of these restrictions. The interpretation may be aided by extending 
uBIA to different null models. The current null model assumes independence between the units—a 
common assumption in the field. Detecting words that are represented anomalously compared to 
more complex null models, such as those preserving pairwise correlations, may focus the analysis 
on the most surprising, and hence maybe easier to interpret, codewords. This is a feasible future 
extension of uBIA. However, one would have to be careful, since, for datasets with ‍M ∼ 102 . . . 103‍, 
pairwise correlations are not known well themselves, which may introduce additional uncertainty into 
the interpretation.

We tested uBIA on a small number of biological and synthetic datasets. However, for our method 
to be broadly applicable, users will need to adjust our the hyperparameters, for example, the signifi-
cance threshold ‍m‍ and the inverse regularization strength ‍ϵ‍, depending on the statistical structure of 
their data. Different values may be required depending on the dataset size and the prevalence and 
strength of higher-order interactions. Although it is hard to say a priori what these adjustments might 
be, we offer a few suggestions. First, we note that false negatives (failure to identify a significant 
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pattern) should not be considered a failure point major problem in the undersampled regime, since it 
is manifestly impossible to observe all patterns with relatively small datasetspossible coding patterns 
with little data. More worrying would be false positive errors, in which statistically insignificant patterns 
are identified as code wordscodewords. However, our algorithms algorithm offers a self-consistency 
check: a single pattern should not be identified as predicting both the presence and the absence of a 
behavior. One can search for such errors by relabeling the presence as 0 or 1 and repeating the anal-
ysis, see Figure 5A. Hyperparameters should therefore be adjusted to keep the number of such cases, 
and with them the rate of all false positives, below an acceptable threshold More generally, one can 
do similar tests by relabeling individuals variables 0→1 —words and their partial negations should not 
be both anomalously represented. The fraction of such incorrectly identified words is a good measure 
of the false positives rate. Then one should adjust the detection threshold ‍m‍ to the smallest value that 
keeps the false discovery rate acceptable to the user.

Another important parameter is the inverse regularization strength ‍ϵ‍. We would like to keep it as 
large as possible, so that the regularization is the weakest. At the same time, our perturbative anal-
ysis depends crucially on ‍ϵ‍ being small. This suggests a trade-off for choosing ‍ϵ‍: make it as large as 
possible, but such that the perturbative constraints, discussed after Equation 17 are satisfied. This 
value will also depend on a specific dataset and cannot be predicted a priori.

Finally, additional evidence of biological significance of the method will need to come from its 
application to other types of data, such as, in particular, molecular sequences, or species abundances 
in ecology. Crucial for this will be the match between the assumptions of our method (e.g. no domi-
nant words) and the actual data in specific applications: there is no way to say a priori when this will 
happen, and one will simply need to try. Crucially, in all cases, if the method works, we expect it to 
be fast and to work well even for problems with large ‍N ‍. In part, this is because the accuracy of the 
method does not collapse for undersampled problems (large ‍N ‍ and not too large ‍M ‍, Figure 3), and its 
computational complexity is limited not by ‍N ‍, but by the number of distinct words that occur in data.

Materials and methods
Overview of prior related methods in the lterature
As we pointed out in the main text, a number of different methods have been developed for recon-
structing various biological dictionaries, or for the related problem of building the model of the under-
lying probability distribution. It is important to compare and contrast uBIA to these methods in order 
to highlight when it should be used. Since these prior methods have been especially common in 
neuroscience, and since our main biological application throughout this article is also in neuroscience, 
this is where we will focus our comparisons.

For many different experimental systems, it has been possible to measure the information content 
of spike trains (Fairhall et al., 2012; Tang et al., 2014; Srivastava et al., 2017), but the question of 
decoding – which spike patterns carry this information and how? – has turned out to be a much harder 
one. Most of the effort has been expended on decoding per se: building the model of the activity 
distribution, rather than deciding which specific spike patterns should belong to the model. Multiple 
approaches have been used, whether in the context of sensory or motor systems, starting with linear 
decoding methods (Bialek et al., 1991). All have fallen a bit short, especially in the context of motor 
codes in natural settings, where an animal is free to perform any one of many behaviors it wishes, and 
hence statistics are usually poor, with only a few samples per behavior. A leading method is General-
ized Linear Models (GLMs) (Paninski, 2004; Pillow et al., 2008; Gerwinn et al., 2010), which encode 
the rate of spike generation from a certain neuron at a certain time as a nonlinear function of a linear 
combination of past stimuli (sensory systems) or of future motor behavior (motor systems) and the 
past spiking activity of a neuron and its presynaptic partners. GLM approaches can detect the impor-
tance of the timing of individual spikes and sometimes interspike intervals for information encoding, 
but generalizations to detect importance of higher order spiking patters are not yet well established. 
Another common approach is based on maximum entropy (MaxEnt) models (Schneidman et  al., 
2006; Granot-Atedgi et al., 2013; Savin and Tkačik, 2017). These replace the true distribution of 
the data with the least constrained (i. e., maximum entropy) approximation consistent with low-order, 
well-sampled correlation functions of the distribution. The In some versions of the method, one then 
searches for the constraints that affect the distributions the most, and only focuses on those, thus 
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avoiding overfitting (Barrat-Charlaix et al., 2021). The MaxEnt approach is computationally intensive, 
especially when higher order correlations are constrained by data. As a result, almost all of the appli-
cations focus on, at most, constraining pairwise activities in the data. At the same time, to approxi-
mate empirical distributions well, a large number of such constraints is constraints—even just pairwise 
ones—is often required. This requires very large datasets, especially if one is interested in relating 
the neural activity to the external (behavioral or sensory) signals. Such large datasets are hard to 
obtain in the motor control setting. More recently, feed-forward and recurrent artificial neural network 
approaches have been used to decode large-scale neural activity (Pandarinath et al., 2018; Glaser 
et al., 2017), but these have focused primarily on neural firing rates over large (tens of milliseconds) 
temporal windows, and typically require larger datasets than considered here.

As a result of the large data set size requirement and of the focus on building the model of 
the neural activity rather than finding statistically anomalous features in it, to date, there have not 
been successful attempts to reconstruct neural dictionaries from data. A success method must (i) 
resolve spike timing in words of the dictionary to a high temporal resolution, (ii) be comprehensive 
and orthographically complex, not limiting the words to just single spikes or pairs of spikes, and (iii) 
discount correlations among spiking words to produce irreducible dictionaries that only detect those 
codewords that cannot be explained away by correlations with other words in the dictionary.

There are methods (Ganmor et al., 2015; Prentice et al., 2016) that are more closely related to 
our approach, and which can be used within the same pipeline as uBIA, potentially for even better 
results —specifically in an undersampled regime. When modeling high-dimensional data using too 
few samples, all such methods tend to decrease complexity of their fitted models (MacKay, 1992), 
such as using fewer parameters or sparser dictionaries. In this regime, such methods can be improved 
if there is some a priori information regarding which elements of the model must be fitted first. Here, 
uBIA could be invaluable: it can be used first to choose the features to be included in models, and 
then a complementary algorithm can be used to actually construct a model on these feature, not 
unlike we did with the logistic regression in this work. For example, Ganmor et al., 2015 proposed 
to understand ganglion cell population activity in relation to the stimuli they encode, and they used 
a pairwise MaxEnt approach to model the (undersampled) probability distributions of neural activi-
ties conditional on specific stimuli. Alternatively, uBIA can be used first to identify conditional neural 
dictionaries (which will include only a subset of neural pairs, but also potentially higher order combi-
nations of neurons). Then the conditional MaxEnt models can be build based on such detected condi-
tional dictionaries, potentially alleviating the undersampling problem. Crucially, the same approach 
can applied to other models, not just the log-linear model, Equation 1, or the MaxEnt model. Indeed, 
as long as the log-likelihood function is specified within a model, and the derivatives of the log-
likelihood with respect to the model parameters can be evaluated, similar to Equation 9, then we 
can use uBIA to calculate the fields and the exchange interactions, and eventually the probability of 
inclusion of any term in the model.

On the other hand, as the number of samples increases, we might want to increase the complexity 
of the involved models by adding additional explanatory terms. Choosing which terms to add is a 
combinatorially complex problem, and one generally wants to add terms that are non-redundant. 
Here, uBIA can be useful as well by providing a broad picture of how various terms in the more complex 
models interact, and hence biasing us towards growing the model complexity in complementary, 
rather than competing directions. For example Prentice et al., 2016 considered a Hidden Markov 
model to describe ganglion cell activity, where different hidden modes activated at different time 
points. For a fixed mode, the probability distribution of the neural population activity was modeled as 
belonging to an exponential family. Before adding a new mode, one can calculate the uBIA exchange 
interactions between it and the already existing modes, as in Equation 9. If the exchange interactions 
are negative, the new mode is (partially) redundant with the existing one, and should probably be 
skipped in favor of another, more independent mode. Again, as long as the likelihood function can be 
written analytically and is differentiable with respect to the model parameters, uBIA can be applied 
in this way.

https://doi.org/10.7554/eLife.68192
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Direct application of MaxEnt methods to synthetic and experimental 
data
To illustrate that traditional MaxEnt methods for creating generative models do not work in our 
undersampled data regime, we apply the methods described in Ganmor et al., 2015 to both our 
synthetic dataset and to our data collected from songbirds. First, note that the Ganmor method 
assumes that activity is dominated by a single (silent) state and then detects words in a hierarchical 
fashion. Specifically, higher order patterns (i.e. deviations from the silent state) cannot be detected 
unless all constituent lower order patterns have already been shown to be statistically significant. This 

α = 2 α = 4

Figure 7. Comparison of Ganmor et al.method to uBIA. (A, B) For the synthetic data that we consider in the paper (Figure 3, interactions arising from 
the sum of two Gaussians), we obtained precision vs recall curves for the Ganmor et al. method (green and red) using a sweep over the absolute value 
of the inferred interaction threshold and comparing the detected interactions to the true ones. We also show the corresponding uBIA curves (blue) from 
Figure 3 for ‍M = 800, 1600‍. As illustrated, the Ganmor approach requires two orders of magnitude more data to begin discovering interactions and 
still does not reach the performance of uBIA for datasets with realistic sizes. (C) For the songbird data, the Ganmor et al. approach did not detect any 
interactions for most datasets. Of the 82 interactions that were detected, most corresponded to pairwise interaction between the behavior and the time 
bin. (D) Words identified by the Ganmor et al. were largely detected based on high marginal probability, consistent with an inability to detect higher 
order patterns directly. (E) The most significant detected interactions (largest interaction coefficients) generally overlap with words detected by uBIA.

https://doi.org/10.7554/eLife.68192
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requires datasets much larger than our approach, which can identify higher-order patterns directly, as 
illustrated in Figure 7.

Geometric interpretation of uBIA field
The geometric interpretation of the ‍hµ‍ fields in Equation 9 is illustrated in Figure 8, and it showcases 
a part of how uBIA weights the addition of new parameters in terms of the improvement of the fitting, 
but without the need of building a explicit model. In relation to a null model located at ‍θ∗‍, the inclu-
sion of a new parameter ‍θµ‍ in general will improve the value of the log-likelihood ‍L‍. This improvement 
would have an approximated value of ‍∆L̃µ‍ and it would require to move from ‍θ∗‍ a distance ‍∆θ̃µ‍. 
The sign of the field ‍hµ‍, which indicates the presence or absence of the parameter ‍θµ‍, is determined 
by how big is the improvement, and the magnitude of the field by how far you need to move to fit 
such parameter. Then a rather small parameter that provides an acceptable improvement to the log-
likelihood will have a high field.

Effect of absent words
To calculate posterior expectations of inclusion of words, we focus only on words that appear in a 
specific dataset. There are many more words that do not, and the effect of these absent words on 
uBIA results must be analyzed.

We start with noticing that, of the exponentially many possible words, majority do not happen in 
a realistic data set. In particular, this includes most of long words. At the same time, a priori expecta-
tions for the frequency of such words, Equation 13, decrease exponentially fast with the word length. 
Thus the fields, Equation 10, for the words that do not occur are small, and the posterior expectation 
for including these words in the dictionary is ‍⟨sµ⟩ ≈ 1/2‍, so that we do not need to analyze them explic-
itly. A bit more complicated is the fact that all words affect each other’s probability to be included in 
the dictionary through the exchange couplings ‍Jµν‍, so that, in principle, the sum in the mean field 
equations, Equation 17, is over exponentially many terms. Thus it is possible for the absent words 
collectively to have a significant effect on the probability of inclusion of more common words into the 
dictionary. Here, we show that this collective effect on the interaction terms is exponentially small in 
‍N ‍, as long as the empirical averages ‍ni/M ≪ 1‍.

To illustrate this, we start with the probabilities ‍p(σi = 1) = pi‍ of a single variable ‍‍ being active. 
We then define the average such probability ‍q = N−1 ∑

i pi‍. Without the loss of generality, we assume 

‍q < 1/2‍, and otherwise we rename ‍σi → 1 − σi‍. Denoting a long word of a high order ‍k‍ that does not 
occur in the data as ‍σω‍, we have ‍nω = 0‍. Then the corresponding field is

Figure 8. Geometric interpretation of the fields ‍hµ‍ in the uBIA method, in relation to the log-likelihood function ‍L({σ⃗}|θ⃗)‍. The uBIA method makes 
an approximate guess (dashed line in left panel) of how much in log-likelihood ‍∆L̃µ‍ we would win be fitting a parameter ‍θµ‍, and how far in parameter 
space we would need to go, ‍∆θ̃µ‍ (see left panel). The sign of the field only depends on the improvement in log-likelihood, being positive beyond a 
threshold (inclusion of a word). This complexity penalty comes from the Bayesian approach in this strong regularized regime. On the other hand, the 
farther we go in parameter space, the smaller in absolute value the field becomes (see right panel).

https://doi.org/10.7554/eLife.68192
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Here, we consider as high order words those, for which ‍qkM ≪ 1‍ (in general, ‍⟨σω⟩M = ⟨nω⟩ ≪ 1‍, 
which happens for ‍k ∼ 4 . . . 5‍ for our datasets). Then the magnetization is

	﻿‍
mω(k) ≃ tanh

( ϵ

2
hω

)
∼ − ϵM

8
qk.

‍�
(20)

This illustrates our first assertion that none of these non-occurring words will be included in the 
dictionary. However, as a group, they may still have an effect on words of lower orders. To estimate 
this effect, for a word ‍σµ‍ of a low order k0, we calculate the effective field ‍h̃

eff
µ ‍, which all of the non-

occurring words ‍σω‍ have on it. First we notice that, if ‍Vµ‍ and ‍Vω‍ do not overlap, then their covariance 
is zero, and ‍Jµω = 0‍. That is, only high-order words that overlap with ‍Vµ‍ can contribute to ‍h̃

eff
µ ‍. Since 

‍cov(σµ,σω) ∼ qk(1 − qk0 )‍, the couplings are

	﻿‍ Jµω(k) ∼ M2

4 q2k(1 − qk0 ) ×O(1).‍� (21)

Using Equation 16, this gives for the typical effective field that absent words have on the word μ

	﻿‍

h̃eff
µ ({ω} → µ) ≃ ϵ

N∑

k⪆k0

N (k) Jµω(k) (1 + ϵ

2
mω(k)),

‍�
(22)

where the number of words of order ‍k‍ that overlap with ‍σµ‍ and can affect it is given by the combina-
torial coefficient ‍N (k) ≃

(N−k0
k−k0

)
‍. This has a very sharp peak at ‍k = (N + k0)/2‍, where ‍N ≃ 2N−k0‍. We can 

approximate the sum in Equation 22 as the argument of the sum evaluated at this peak ‍k = (N + k0)/2‍, 
obtaining an effective field coming from high order words

	﻿‍
h̃eff
µ ({ω} → µ) ∼ ϵ 2N−k0 M2

4
qN+k0 (1 − qk0 )

[
1 − ϵ2M

16
q
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∝

( q
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)N
.
‍�

(25)

In other words, even the combined effect of all higher order absent words is small if the average 
frequency of individual letters is smaller than 1/2. We thus can disregard all non-occurring words in 
the mean field equations.

We stress that, for this to hold, the average of the binary variables ‍σi‍ must be small, 

‍q = N−1 ∑
i p(σi = 1) < 1/2‍. In our songbird dataset, this condition was fulfilled with ‍q ∼ 0.2‍. However, 

in 4% of cases the probability to have a spike in a certain time bin was ‍pi > 1/2‍. Thus to stay on the 
safe side, we performed additional analyses by redefining variables as ‍σi → 1 − σi‍ if the presence of a 
spike in a bin was >50 %. In other words, in such cases, we defined the absence of the spike as 1 and 
the presence as 0. For our datasets, the findings did not change with this redefinition.

This previous analysis does not imply that absent words of high order are irrelevant — it only says 
that they cannot be detected with the available datasets. In the numerical implementation of the 
method, we filter out long absent words ω such that ‍⟨σω⟩M = ⟨nω⟩ < 0.02‍, with this cutoff deter-
mined by Equation 18-20, so that, for these words, ‍hω ≪ 1‍. These words get assigned 1/2 as the 
posterior probability of inclusion in the dictionary, and their contribution to the mean field equations 
is neglected. In contrast, if a word ω is absent but ‍⟨nω⟩ ≥ 0.02‍, we include them in the analysis, 
Equation 8. Such words may turn out to be relevant code words, especially if they happen a lot less 
frequently than expected a priori.

https://doi.org/10.7554/eLife.68192
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Testing the predictive power of the uBIA dictionaries
In this section, we test whether the codewords found in data from songbird premotor neurons can 
be used to predict the subsequent behavior. We compare two logistic regression models: one that 
uses the activity in the 20 time bins to predict the behavior and another that only uses as features the 
activity of the few relevant codewords, usually far fewer than 20. The features corresponding to the 
codewords are binary, and they are only active when all the time bins of such words are active. This 
means that the model using the time bins is more complex, as it already has all the information that the 
codewords model has and more, though it does not account for combinatorial effects of combining 
spikes into patterns. In order to properly test the predictive power between these two models with 
different complexity we perform twofold cross-validation, using a log-likelihood loss function. As is 
common in these cases, an L2 penalty is included to help the convergence to a solution (the models 
were implemented with the Classify function from Mathematica, whose optimization is done by the 
LBFGS algorithm). As shown by Tang et al., 2014, not all neurons in our dataset are timing neurons, 
or even code for the behavior at all. Thus we restrict the comparison to those cases that have at least 
4 codewords (27 case in total, with 10 codewords on average). Both of the logistic regression models 
have the following structure

	﻿‍
p(y = 1|z,β) = 1

1 + exp(−β0 −
∑

i βizi)
,
‍�

(26)

where ‍y‍ corresponds to the behavior, and the features correspond to the time bins in one case (‍zi = xi‍) 
and to the codewords in the other (‍zi =

∏
j∈Vi

xj‍), while ‍βi‍ are the coefficients of the model. The loss 
function used is the log-likelihood with the L2 penalty,

	﻿‍
L =

M∑
m=1

log p(y(m)|z(m),β) − λ

2
∑

i
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Figure 9. Prediction accuracy with uBIA dictionaries. We compare prediction of the behavior using logistic regression models that have as features 
(i) neural activity in all the time bins at 2ms resolution versus (ii) only the detected relevant codewords. (A) Scatter plot of accuracy of models of both 
types, evaluated using twofold cross-validation. Inset shows that the different between the prediction is significant with ‍p < 0.01‍ according to the paired 
t-test. (B) Scatter plots of the mean cross-entropy between the data and the models for the two model classes. Inset: Even though the models that use 
the codewords are simpler (have fewer terms), they are able to predict better (with lower cross-entropy) according to the paired t-test.
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where ‍M ‍ is the number of samples, and λ is the regularization strength. In our analysis, as different 
datasets have different number of samples, we show the results for the mean cross-entropy over the 
test data, which correspond to the normalized log-likelihood.

Tang et al., 2014 showed that individual neurons on average carry around 0.12 bits at a 2ms scale. 
So for both models, we expect the prediction accuracy to be barely above chance, especially since 
we are focusing on a particular prediction model (a logistic regression), and may be missing predictive 
features not easily incorporated in it. Figure 9a shows the scatter plot of accuracy in the 27 analyzed 
datasets, plotting the prediction using the time bins activity on the horizontal axis versus prediction 
using only the codewords activity on the vertical one. We observe that the models based on code-
words are consistently better than the ones using all the 20 time bins, and the difference is significant 
(inset). We additionally evaluate the quality of prediction using the mean cross-entropy between the 
model and the data. Figure 9b shows that the models with the codewords have lower mean cross-
entropies and thus generalize better (see Inset).
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