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Ventricular arrhythmias (VAs) and sudden cardiac death (SCD) are significant adverse events that
affect the morbidity and mortality of both the general population and patients with predisposing
cardiovascular risk factors. Currently, conventional disease-specific scores are used for risk
stratification purposes. However, these risk scores have several limitations, including variations
among validation cohorts, the inclusion of a limited number of predictors while omitting important
variables, as well as hidden relationships between predictors. Machine learning (ML) techniques
are based on algorithms that describe intervariable relationships. Recent studies have implemented
ML techniques to construct models for the prediction of fatal VVAs. However, the application of
ML study findings is limited by the absence of established frameworks for its implementation,

in addition to clinicians’ unfamiliarity with ML techniques. This review, therefore, aims to
provide an accessible and easy-to-understand summary of the existing evidence about the use

of ML techniques in the prediction of VAs. Our findings suggest that ML algorithms improve
arrhythmic prediction performance in different clinical settings. However, it should be emphasized
that prospective studies comparing ML algorithms to conventional risk models are needed while a
regulatory framework is required prior to their implementation in clinical practice.
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Introduction

Fatal ventricular arrhythmias (VAs) and sudden cardiac death (SCD) are some of the

most important study outcomes in the field of cardiology. Current efforts have focused

on the prediction of VAs in different diseases, including hypertrophic cardiomyopathy,
arrhythmogenic cardiomyopathy, heart failure (HF), congenital heart diseases, cardiac ion
channelopathies, in addition to the risk of VAs among the general public [1-6]. Conventional
risk scores are the most widely used tools for risk stratification purposes in clinical

practice [7]. However, these risk scores have several limitations, including variations among
validation cohorts, the inclusion of a limited number of predictors while omitting some
variables that might be important. As a result, clinical scores that can accurately predict
major outcomes and therefore can aid in personalized clinical management are needed.

Machine learning (ML) can integrate and interpret data from different domains in settings
where conventional statistical methods may not be able to perform [8]. Recently, the role

of ML techniques has been studied in different aspects of medicine, including electronic
health records, diagnosis, risk stratification, timely identification of abnormal heart rhythms
in the intensive care unit [9, 10], on prognosis and guidance of personalized management
[11, 12]. However, application of ML study findings has been limited due to the lack of

a regulatory framework for its implementation and the clinicians’ unfamiliarity in using as
well as trusting ML techniques [13]. This review aims to present existing data regarding the
role of ML techniques in the risk stratification of VAs in different clinical settings.
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Machine learning algorithms

ML algorithms can aid the interpretation of complex data, stratification of patient diagnosis
and delivery of personalized care and therefore are particularly useful in the management of
cardiovascular diseases [8]. Random forest, convolutional neural network (CNN) and long
short-term memory network (LTSM) models are three commonly used ML approaches in
cardiovascular medicine.

Random forest model

One common model ensemble method is known as the random forest model. The underlying
idea of random forest algorithms originates from the assumption that predictions derived
from a large ensemble of models are more accurate and robust compared to using a single
model. Within a random forest model, numerous decision trees form the basic building
blocks by performing either classification or regression tasks. To classify the data, it is
processed through a series of true or false questions, allowing information to be categorized
into the purest possible subgroups. Each decision tree will then classify a new object based
on specific attributes through voting, and the classification is based on the largest sum of
votes. In the case of regression, the average outputs from different trees are calculated [14].
With this algorithm, large data sets with higher dimensionality can be processed. When

a group of uncorrelated decision trees in collaboration can reduce the effect of individual
variability and errors, thus outperforming constituent trees [14]. There are two main ML
ensemble meta-algorithms to ensure the trees are uncorrelated: bagging and featuring
randomness. The former method separates the data into small subsets via random sampling
with replacement, improving the stability of ML; at the same time, the latter shuffles specific
features of the data set, increasing the diversity in trees. Due to the simplicity of individual
trees, this lowers the training time and can be applied to academia, e-commerce and banking
sectors. An illustration of one decision tree in a random forest model used to predict atrial
fibrillation can be shown in Fig. 1 [15]. The model was trained with a sample of 682,237
Chinese subjects. In each decision tree, there was a maximum depth of four nodes. Any
greater than four nodes in each tree were found to cause overfitting.

Convolutional neural networks

Convolutional neural networks (CNNs) are used to detect patterns and to classify images
with a high level of precision using filters. Different types of filters detect various forms of
patterns depending on their level of sophistication. Pattern detection can range from simple
geometric shapes to complex objects such as eyes and dogs. The main purpose of a CNN

is to receive and transform an input through a convolutional operation. In a convolutional
operation, the process requires an input image, feature detector and feature map [14]. A
feature detector consists of a matrix. The matrix can contain any digits corresponding to a
specific color or feature that is being measured. This detector is placed over the input image,
and the number of cells that match between the feature detector and the image is counted
pixel by pixel. Often, CNN analysis may break down an image into smaller parts for higher
precision during matching. After a series of calculations, this generates a feature map that
indicates where a specific feature occurs. This process of convolving and filtering an image
to generate a stack of filtered images is known as a convolution layer [14]. Realistically,
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for CNN to generate practical data, this would require multiple feature detectors to develop
multiple feature maps. Following on, the output is passed onto an adjoining layer. This
process is repeated until it reaches the final layer known as a fully connected layer, where
a list of featured values converts into a list of votes for a category. Through training, CNN
can prioritize the detection of features in chronological order with higher accuracy. An
example of an optimal architecture of a CNN model used to predict atrial fibrillation can
be demonstrated in Fig. 2 [16]. A one-dimensional convolution was used in the convolution
layer as electrocardiographic (ECG) signals are also a one-dimensional time series. Other
functions including dropout, batch normalization and a rectified linear unit were also
included to prevent divergence.

Long short-term memory network

Long short-term memory network (LTSM) is a type of gated recurrent neural network that
regulates the flow of information. Hence, this allows the algorithm to learn to differentiate
between unnecessary and relevant information for making predictions. The process begins
with transforming a sequence of words into machine-readable vectors. These vectors are
processed by transferring the previous hidden state into the next cell, which includes learned
information from the previous network. Within an LSTM unit cell, there are three gates:
The input gate controls whether the memory cell is updated, the output gate controls the
visibility of the current cell state, and the forget gate ensures the memory cell is reset to 0.
The previous and current inputs are combined to form a vector, which then goes through
Tanh activation. Through a series of complex calculations and processing, LSTM can learn
long-term dependencies. An example of an LTSM recurrent network architecture with focal
loss, used to detect arrhythmia, is shows in Fig. 3 [17]. The four-layered LTSM network
was designed to decipher the timing features in complex ECG signals, which is coupled
with the focal loss to fix category imbalance. Epochs were set to 350 to achieve stability in
classification accuracy.

Specific patient populations

ML algorithms have been used for arrhythmic risk stratification purposes and can provide an
incremental value for the risk stratification of cardiomyopathies (Table 1).

Hypertrophic cardiomyopathy

A simple clinical score is recommended according to the current guidelines for the VA
risk stratification of patients with hypertrophic cardiomyopathy (HCM) [18]. However, the
analysis and implementation of more variables for VA risk stratification purposes seem

to improve the predictive accuracy in this population. Specifically, the application of ML
methods to electronic health data has identified new predictors of VAs in this population,
while the ML-derived model performed better compared to current prediction algorithms
[19]. In another study, the ensemble of logistic regression and naive Bayes classifiers was
most effective in separating patients with and without Vas [19]. A recent study proposed a
novel ML risk stratification tool for the prediction of five-year risk in HCM, which showed
a better performance compared to conventional risk stratification tools regarding SCD,
cardiac and all-cause mortality, while the best performance was achieved using boosted

Int J Arrhythmia. Author manuscript; available in PMC 2022 April 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Chung et al.

Page 5

trees [20]; specifically, the authors used demographic characteristics, genetic data, clinical
investigations, medications and disease-related events for risk stratification purposes.

Cardiac magnetic resonance (CMR) has been found to provide important data for risk
stratification purposes in HCM patients [21]. Of the studied CMR indices, late gadolinium
enhancement (LGE) has a major role in the risk stratification of this population [22]. The
extent of LGE has been found to outperform current guideline-recommended criteria in
the identification of HCM patients at risk of Vas [23]. In this context, ML techniques can
improve the accuracy in the identification of high-risk patients. Specifically, ML-based
texture analysis of LGE-positive areas has been proposed as a promising tool for the
classification of HCM patients with and without ventricular tachycardia (VT) [24]. In

this study, of eight ML models investigated, k-nearest-neighbors with synthetic minority
oversampling technique depicted the best diagnostic accuracy for the presence or absence of
VT [24].

12-lead Holter ECGs have also been analyzed using mathematical modeling and
computational clustering to identify phenotypic subgroups of HCM patients [25].
Specifically, using these methads, it has been found that HCM can be classified into patients
with T-wave inversion with and without secondary to QRS abnormalities. HCM patients
with T-wave inversion not secondary to QRS abnormalities have been associated with an
increased risk of SCD [25].

Other cardiomyopathies

The risk stratification of fatal arrhythmias is also significant in myocardial infarction
patients. CMR has also been found to provide incremental data for risk stratification
purposes in this population [26]. Quantitative discriminative features extracted from LGE in
post-myocardial infarction patients have been studied for the discrimination of high- versus
low-risk patients. In a study, the leave-one-out cross-validation scheme was implemented

to classify high- and low-risk groups with a high classification accuracy for a feature
combination that captures the size, location and heterogeneity of the scar [27]. Furthermore,
nested cross-validation was performed with k-neural network, support vector machine,
adjusting decision tree and random forest classifiers to differentiate high-risk and low-risk
patients. In this context, the support vector machine classifier provided average accuracy of
92.6% and area under the receiver operating curve (AUC) of 0.921 for a feature combination
capturing location and heterogeneity of the scar [27].

Recently, a novel ML approach was studied for quantifying the three-dimensional spatial
complexity of grayscale patterns on LGE-CMR images to predict VAs in patients with
ischemic cardiomyopathy [28]. Specifically, in this study, a substrate spatial complexity
profile was created for each patient. The ML algorithm was classified with 81% overall
accuracy, while the overall negative predictive value was estimated at 91% [28]. The clinical
importance of these findings is mainly attributed to the high negative predictive value of the
method that can identify ischemic cardiomyopathy patients who will not be benefited from
an implantable cardioverter-defibrillator (ICD).
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Except for clinical and imaging variables, cellular electrophysiological characteristics have
also been studied using ML algorithms to identify ischemic cardiomyopathy patients at risk
of SCD [29]. ML of monophasic action potential recordings in ischemic cardiomyopathy
patients revealed novel phenotypes for predicting sustained VVT/fventricular fibrillation (VF)
[29].

Another clinical entity that needs a better risk stratification tool is HF with reduced ejection
fraction (HFrEF) due to non-ischemic dilated cardiomyopathy. While previous studies had
proved the benefit of ICDs in the primary prevention of SCD in this setting [30], the Danish
Study to Assess the Efficacy of ICDs in Patients with Non-ischemic Systolic Heart Failure
on Mortality (DANISH) trial showed that prophylactic ICD implantation in patients with
symptomatic systolic HF that not caused by coronary artery disease was not associated with
a significantly lower rate of all-cause mortality [31]. It is of great clinical importance to
identify those patients with HFrEF due to non-ischemic etiology, who will benefit from an
ICD. ML techniques can play a crucial role in better stratifying this group of patients [32].

In a recent study, ML techniques were used to identify cardiac imaging and time-varying
risk predictors of appropriate ICD therapy in HFrEF patients [33]. It was found that baseline
CMR imaging metrics (specifically, left ventricle heterogeneous gray and total scar, left
ventricle and left atrial volumes, and left atrial total emptying fraction) and interleukin-6
levels were the strongest predictors of subsequent appropriate ICD therapies [33]. It is well
known that ICD shocks have been associated with adverse events in patients with ICDs
[34]. ML techniques and specifically random forest have been used for the prediction of
short-term risk of electrical storm in patients with an ICD using daily summaries of ICD
measurements [35]. The clinical importance of these methods can be mainly attributed to
the preventive measures that can be adopted to avoid an imminent arrhythmic event. ML
algorithms can further improve the existing risk stratification tools, and the ML-derived
models can help clinicians to optimize the management of HFrEF patients.

Non-compaction cardiomyopathy is another clinical setting that needs further research for
better characterization and risk stratification. In a recent study, the presence of significant
compacted myocardial thinning, an elevated B-type natriuretic peptide or increased left
ventricular dimensions were significantly associated with adverse events in non-compaction
cardiomyopathy patients [36]. ML techniques have been implemented for improving

risk stratification in these patients. Specifically, echocardiographic and CMR data were
analyzed using ML algorithms to identify predictors of adverse events in non-compaction
cardiomyopathy patients [37]. The combination of CMR-derived left ventricular ejection
fraction, CMR-derived right ventricular end systolic volume, echocardiogram-derived right
ventricular systolic dysfunction and CMR-derived right ventricular lower diameter was
found to achieve the better performance in predicting major adverse events in these patients
[37].

Cardiac sarcoidosis is another clinical condition that mandates a better arrhythmic risk
stratification model given the increased risk of complete heart block, VA and SCD.
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Currently, an ICD should be considered in patients with atrioventricular block requiring
pacemaker implantation independently of the left ventricular ejection fraction [38].

ML techniques have been used for diagnosing and optimizing the arrhythmic risk
stratification of these patients. While the 18F-fluorodeoxyglucose (18F-FDG) positron
emission tomography (PET) plays a critical role in the diagnosis of cardiac sarcoidosis, there
are significant interobserver differences that warrant more objective quantitative evaluation
methods, which can be achieved by ML approaches [39].

It has been reported that deep CNN analysis can achieve superior diagnostic performance

of sarcoidosis in comparison with the conventional quantitative analysis [40]. Moreover, it

is known that myocardial scarring on CMR has a prognostic value in cardiac sarcoidosis
patients [41]. A ML approach using regional CMR analysis predicted the combined endpoint
of death, heart transplantation or arrhythmic events with reasonable accuracy in cardiac
sarcoidosis patients [42].

lon channelopathies

Specific clinical and electrocardiographic markers have been associated with VT/VF
occurrence in patients with Brugada syndrome. ML techniques can further improve the

risk stratification performance of existing prediction models. Specifically, the combination
of nonnegative matrix factorization and random forest models showed the best predictive
performance compared with the random forest model alone and Cox regression models in
this clinical setting [43]. Similarly, the random forest can better predict the occurrence of
VT/VF post-diagnosis in congenital long QT syndrome in comparison with the conventional
multivariate Cox regression model [44].

Furthermore, ML approaches can be used to explore the associations between genetic
mutations and the occurrences of VAs triggered by ion channelopathies. As mutations of the
SCNB5A gene are known to be associated with Brugada syndrome and long QT syndrome, a
study has applied ML methods to a list of missense SCN5A mutations and found mutations
causing changes to the sodium current increase the risk of Vas [45]. However, the location,
rather than the physicochemical properties of the mutation, is predictive, which highlights
that functional studies remain important in this area of research [45]. As with Brugada and
long QT syndromes, random forest analysis has been applied to identify important factors of
ventricular arrhythmogenesis in catecholaminergic polymorphic VT [46].

Drug-induced arrhythmias

Another interesting area pertinent to the implementation of ML techniques involves the
prediction of drug-induced VAs. Specifically, using a support vector machine classifier,
clustering by gene expression profile similarities showed that certain drugs prolong the
QT interval in a limited number of patient groups [47]. As a result, ML methods may
provide additional benefit in the current process of testing ion channel activities in the
preclinical setting of cardiac safety assessment of drugs. Support vector machine has also
been used for the prediction of Torsade des pointes of the different pharmacological agents
[48]. It should be mentioned that ML methods have not only been implemented to identify
a potential association between drugs and arrhythmic risk but also to identify moderators
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of the arrhythmic potential of specific medications [49]. Specifically, a study previously
constructed a surrogate model for QT interval using multi-fidelity Gaussian regression and
found that compounds blocking the rapid delayed rectifier potassium channels have the
greatest QT-prolonging effect [50].

Congenital structural heart disease

An integrated approach should be implemented in patients with complex congenital
structural heart disease for the early prediction of adverse outcomes. For example, patients
with Tetralogy of Fallot require risk stratification for the early identification of high-risk
patients who require advanced healthcare management. ML techniques and specifically deep
learning imaging analysis have been proposed to improve the risk stratification of Tetralogy
of Fallot patients [51]. Using CMR data, a composite score of the enlarged right atrial area
and depressed right ventricular longitudinal function identified a tetralogy of Fallot subgroup
at increased risk of adverse outcome [51].

Furthermore, ML techniques have also studied in the prediction of postoperative arrhythmias
following atrial septal defect closure. In this setting, a prediction model based on synthetic
minority oversampling technique algorithm and the random forest was found to predict
arrhythmias with excellent accuracy in a pediatric population [52]. This is further supported
by Guo et al., which used a combination of ML techniques including support vector
machine (SVM), random forest, naive Bayes and adaptive boost to predict postoperative
blood coagulation function for children with congenital heart disease [53]. The results offer
promising evidence that ML models are more robust and accurate relative to traditional
statistical methods.

Arterial hypertension

Hypertension is a common condition that has been associated with adverse outcomes in
the long-term setting. However, a prediction model is difficult to be constructed in young
hypertensive patients mainly due to the lack of sufficient data in this population. Wu et

al. used two ML methods, recursive feature elimination and extreme gradient boosting, to
predict outcomes in young patients with hypertension [54]. The outcome was the composite
of all-cause mortality, acute myocardial infarction, coronary artery revascularization, new-
onset HF, new-onset atrial fibrillation/atrial flutter, sustained VT/VF, peripheral artery
revascularization, new-onset stroke and end-stage renal disease [54]. While the proposed
ML model was comparable with Cox regression for the measured outcome in the young
patients with hypertension, it performed better than that of the recalibrated Framingham
Risk Score model [54].

Discussion

The role of ML algorithms for the risk stratification of VAs has been studied in

different clinical settings. ML algorithms can provide an incremental value for the risk
stratification of cardiomyopathies (HCM, ischemic and non-ischemic cardiomyopathy),
cardiac sarcoidosis, channelopathies, congenital heart disease, arterial hypertension, as well
as in predicting pharmacologically induced life-threatening arrhythmias.
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The management and especially the prediction of life-threatening arrhythmias are paramount
in clinical cardiology. A prediction model for VT one hour before its occurrence, using

an artificial neural network, has been generated using 14 parameters obtained from heart
rate variability and respiratory rate variability analysis [55]. ML techniques have been used
to predict the occurrence of VAs using heartbeat interval time series. In this setting, the
random forest model showed better performance using a length of heartbeat interval time
series of 800 heartbeats, 108 s before the occurrence of arrhythmias [56]. These results

can be implemented mainly in the prevention of cardiac arrest identifying high-risk patients
prior to the occurrence of life-threatening VVAs. Another study proposed a CNN algorithm

to predict the onset of a VT using heart rate variability data [57]. The authors found that
compared to other ML algorithms, the proposed one showed the highest prediction accuracy.
Furthermore, ML algorithms have also been used for the prediction of VF. In this setting,
QRS complex shape features were analyzed using artificial neural network classifiers [58].
This proposed model was found to achieve a better performance compared to the prediction
accuracy using heart rate variability features [58].

Another area of ML implementation is in in-hospital monitoring. Timely and accurate
discrimination of shockable versus non-shockable rhythms from external detectors and
ICDs is of great clinical importance. Recently, the fixed frequency range empirical wavelet
transform filter bank and deep CNN were used to analyze electrocardiographic signals [59].
The results showed excellent accuracy rates in classifying shockable versus non-shockable
rhythms, VF versus non-VF and VT versus VF [59]. A deep learning architecture based on
one-dimensional CNN layers and an LSTM network was found to be timely and accurate
for the detection of VVF in automated external defibrillators [60]. Furthermore, ML-based
intensive care unit alarm systems have been found to achieve higher positive predictive
values for the identification of asystole, extreme bradycardia, VT and VF compared to the
bedside monitors used in the PhysioNet 2015 competition [9, 10, 61].

Except for life-threatening arrhythmias, ML algorithms have been used for the management
of atrial fibrillation. Artificial intelligence-enabled electrocardiography was used to predict
the incident atrial fibrillation [62]. In the same setting, ML algorithms have been
implemented and outperformed conventional tools for the prediction of atrial fibrillation

in critically ill patients who were hospitalized with sepsis [63]. In the field of invasive
management of atrial fibrillation, ML-based classification of 12-lead ECG has been
proposed as a useful tool for guiding atrial fibrillation ablation procedures and specifically in
identifying patients suitable for pulmonary vein isolation alone vs. those needing additional
ablation to pulmonary vein isolation [64]. Moreover, an ensemble classifier that used
clinical and heart rate variability features were found to predict atrial fibrillation catheter
ablation outcomes [65]. As a result, ML algorithms can have a role in the prevention and
management of patients at risk or with documented atrial fibrillation, respectively.

However, ML algorithms present a series of limitations. Not only does ML require large
sets of data during training, a considerable amount of time and resources is also necessary.
Moreover, ML algorithms are susceptible to errors, such as mislabeled data, overfitting
information and unavoidable bias [66]. Furthermore, ML techniques can only be trained to
analyze a specific type of data; for example, although the random forest is highly effective
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in performing classification tasks, it is less effective when performing regression tasks as the
algorithm cannot demonstrate precise, continuous nature predictions. Similarly, CNN is only
effective in analyzing spatial patterns in images. Resultantly, different ML algorithms should
be used for different purposes. Finally, ML algorithms shine a light on the debate regarding
transparency, authority and other ethical ramifications. Therefore, an established framework
that regulated the implementation of ML in clinical practice needs to be implemented [13].

Conclusions
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Fig. 1.
First decision tree of the random forest model predicting risk of atrial fibrillation [15]
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