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Acute liver steatosis signals the chromatin for regeneration via MIER1  
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A B S T R A C T   

During liver regeneration, especially after a hepatectomy, hepatocytes experience significant lipid accumulation. 
These transiently accumulated lipids are generally believed to provide substrates for energy supply or membrane 
biomaterials for newly generated hepatocytes. Remarkably, a recent study found that acute lipid accumulation 
during regeneration can act as a signal for chromatin remodeling to regulate regeneration. Chen, Y.H., et al. 
identified MIER1 (mesoderm induction early response protein 1) as a crucial inhibitor of liver regeneration 
through in vivo CRISPR screening. MIER1 binds to and restrains cell cycle genes’ expression. During liver 
regeneration, acute lipid accumulation suppresses MIER1 translation via the EIF2S pathway, resulting in tran
sient down-regulation of MIER1 protein, which promotes cell cycle gene expression and liver regeneration. 
Interestingly, the researchers also found that the dynamic regulation of MIER1 was impaired in fatty and aging 
livers with chronic steatosis, while of knockout of MIER1 in these animals improved their regenerative capacity. 
In conclusion, this study provides valuable insights into the complex mechanisms underlying liver regeneration 
and highlights the potential therapeutic applications of targeting MIER1 for improving liver regeneration in 
disease states associated with impaired lipid homeostasis.   

Healthy mammalian liver tissue possesses remarkable regenerative 
capacity following injury. After hepatectomy or acute toxic injury, liver 
cells (mainly hepatocytes) in the resting phase will re-enter the cell cycle 
to proliferate, generating new liver cells, which is able to restore full 
liver quality and function in less than two weeks [1]. However, the 
regenerative capacity of liver is significantly weakened in tissues with 
lipid metabolism disorders, such as alcoholic or non-alcoholic fatty liver 
and aging liver [2–7]. As a result, the liver is unable to fully restore the 
number of cells and normal function after liver injury. This promotes the 
development of end-stage liver diseases like fibrosis and cirrhosis [8]. In 
addition, in clinical liver transplantation, donor livers with abnormal 
lipid metabolism (such as fatty liver) sometimes cannot proliferate 
adequately in the recipient, resulting in “small-for-size syndrome” and 
transplantation failure [9–11]. 

It is widely acknowledged that maintaining hepatic lipid homeostasis 
is critical for preserving the liver’s regenerative capacity. During liver 
regeneration, hepatic lipid accumulation peaks 12–24 hours after 70% 
partial hepatectomy [12–14]. Triglyceride content can reach up to three 
to four times the pre-surgery level, gradually decreasing to basal levels 
by 72 hours post-surgery. Several studies have demonstrated that 
impaired liver regenerative capacity can result from disruptions in lipid 
accumulation [2,15–19]. However, the mechanisms through which lipid 
homeostasis regulates liver regeneration and the reasons behind the 
decreased regenerative potential in livers with lipid metabolism disor
ders remain unclear. 

In a recent study published in Nature Communications, Chen et al. 
discovered that the transient accumulation of liver lipids during liver 
regeneration serves as a signal for regeneration and repair, promoting 

liver cell proliferation [20]. The researchers constructed an in vivo 
large-scale CRISPR screening platform for liver regeneration to identify 
potential key regulators. They found that Mier1 is a key regulator during 
liver regeneration. Mier1 encodes the mesoderm induction early 
response protein 1, which was previously identified as a transcriptional 
repressor via the recruitment of histone deacetylase 1 and 2 [21,22]. 
However, there have been limited functional studies of MIER1 in the 
liver or liver regeneration. Through 70% partial hepatectomy experi
ments, researchers found that MIER1, as an epigenetic regulator, plays 
an epigenetic “brake” role during liver regeneration. MIER1 binds to a 
large number of transcriptional initiation regions of genes related to cell 
proliferation and inhibits their expression. Knocking out MIER1 can 
significantly promote chromatin remodeling, increase the expression of 
cell proliferation-related genes, and enhance liver regeneration. 

The researchers also discovered a transient downregulation of 
MIER1 protein levels after hepatectomy, suggesting a dynamic regula
tory mechanism of MIER1 during liver regeneration. Further studies 
revealed that MIER1 responds to acute lipid accumulation during liver 
regeneration, performing an important epigenetic regulatory function 
by modulating the protein levels of MIER1. Acute liver lipid accumu
lation induces a transient stress response in hepatocytes, resulting in the 
acute inhibition of the ribosomal translation process, thereby affecting 
MIER1 translation and causing dynamic downregulation of MIER1. This 
downregulation of MIER1 further promotes chromatin opening, cell 
cycle gene expression and liver regeneration. Interestingly, this physi
ological regulatory process is significantly impaired in aging and high- 
fat diet-induced fatty livers, resulting in a consistently high expression 
status of MIER1, which continuously suppresses cell cycle gene 
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expression. Knocking out MIER1 can recover the regeneration capacity 
of aging and fatty livers. 

In summary, this study introduced a novel in vivo screening strategy, 
revealed an interesting underlying mechanism by which lipid homeo
stasis regulates liver regeneration, and identified the epigenetic factor 
MIER1 as a key “bridge” factor in mediating the transition from lipid 
signals to repair and regeneration capacity (Fig. 1). 
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Fig. 1. Lipid acute accumulation after hepatectomy promotes cell cycle gene 
expression and liver regeneration via regulating the epigenetic factor MIER1. 
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