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A B S T R A C T

In this paper, a mathematical model of the COVID-19 pandemic with lockdown that provides
a more accurate representation of the infection rate has been analyzed. In this model, the
total population is divided into six compartments: the susceptible class, lockdown class,
exposed class, asymptomatic infected class, symptomatic infected class, and recovered class.
The basic reproduction number (𝑅0) is calculated using the next-generation matrix method
and presented graphically based on different progression rates and effective contact rates of
infective individuals. The COVID-19 epidemic model exhibits the disease-free equilibrium and
endemic equilibrium. The local and global stability analysis has been done at the disease-free
and endemic equilibrium based on 𝑅0. The stability analysis of the model shows that the
disease-free equilibrium is both locally and globally stable when 𝑅0 < 1, and the endemic
equilibrium is locally and globally stable when 𝑅0 > 1 under some conditions. A control strategy
including vaccination and treatment has been studied on this pandemic model with an objective
functional to minimize. Finally, numerical simulation of the COVID-19 outbreak in India is
carried out using MATLAB, highlighting the usefulness of the COVID-19 pandemic model and
its mathematical analysis.

1. Introduction

1.1. General statement

A new infectious disease known as coronavirus disease (COVID-19) was reported first time on 30 January 2020 in India as an
utbreak of severe acute respiratory syndrome (SARS) [1]. The virus that causes this transmittable disease is mainly transmitted
hrough dewdrops generated when an infected person coughs, sneezes, or exhales. There is a chance of infection of COVID-19 by
reathing in the virus if you are adjacent to someone who has COVID-19 infection or by touching a contaminated surface and then
our mouth, eyes, or nose. That is why it is essential to wear a mask in the mouth and sanitize the hands rigorously of every person
o rescue them from this infection. Most infected people pass through some mild to moderate symptoms of coronavirus and recover
ithout special treatment. There are two types of the infected population; one is an exposed infected population with some mild

o moderate symptoms of coronavirus, and another is an asymptotically infected population with no symptoms so that directly we
annot recognize them. Since this is the 21st century’s largest outbreak globally, most countries are perceiving a surge in their
aily COVID-19 disease tally. To avoid the continuous spread of the disease and break the chain, several lockdowns, announcing
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several guidelines, aggressive testing, vaccination, and timely provision of medicines are some ways governments are trying to
impose on the population. The current Scenario and impact of COVID-19 in India have been discussed by Kumar et al. [2], Jachak
et al. [3], Pradhan et al. [4], Asad et al. [5] and Sarkar et al. [6]. Impact of COVID-19 outbreak on extreme hot climate in India
has been studied by Sasikumar et al. [7]; and Bhadra et al. [8] investigated the effect of population density on COVID-19 infected
and mortality rate in India. According to MOHFW [9], Govt. of India, the first COVID-19 vaccine was launched on 16th January
2021 in India. The Serum Institute of India has locally manufactured the Oxford-Astra Zeneca vaccine to fight against COVID-19
in India. At the same time, Bharat Biotech, the vaccine’s manufacturer, has produced India’s Covaxin for the same purpose. After
launching the COVID-19 vaccine in India, healthcare and front-line workers are given the first preference, and then the persons over
60 years of age. Besides that, planning with the modern mathematical epidemiological model and the preventive control analysis
is very important to break the chain of the continuous spread of the disease. We have to study the mechanism of this viral disease
transmission and how to control the spread of the virus.

1.2. Different epidemiology models

Global analysis of an epidemiological model with varying populations and vaccination has been studied by Yang et al. [10] and
un et al. [11]. Zhou and Cui [12] investigated the stability and bifurcation analysis for an epidemic SEIR model with a saturated
ecovery rate. The persistence of the HIV disease model has been discussed by Busenberg et al. [13] and Samanta [14]. Cai et al. [15]
nalyzed the extended HIV disease model with treatment. The stability analysis of cholera epidemic models has been discussed by
ian and Wang [16]. Bai and Zhou [17] analyzed an epidemic SEIRS model with vaccination and seasonally contact rate. Lahrouz
t al. [18] explained the global stability for a SIRS epidemic model with vaccination. An SEIR epidemic system including media
mpact with relapse and nonlinear incidence rate has been explained by Wang et al. [19], and also by Khyar and Allali [20]. Then
simple mathematical model for fitting mild, severe, and known cases during the current COVID-19 epidemic has been considered
y Betti and Heffernan [21]. Nadim et al. [22] analyzed a compartmental epidemic model of COVID-19 to predict and control the
utbreak. Tian et al. [23] investigated the spread and control of COVID-19 using a data set. Li et al. [24] developed and analyzed
SEIQR difference-equation COVID-19 epidemic mode1. Sun et al. [25] explored the effects of lockdown and medical resources

n the COVID-19 transmission in Wuhan. The transmissibility of the COVID-19 mathematical model has been studied by Chen
t al. [26], Mumbu et al. [27], Rezapour et al. [28] and Wijaya et al. [29]. A critical analysis of the SIR epidemic model has been
xplained by Comunian et al. [30]. Engbert et al. [31] and Rihan et al. [32] studied the stochastic epidemic mathematical model for
ovel coronavirus infection. Carvalho and Pinto [33] studied the importance of quarantine in COVID-19 pandemic. The dynamical
ransmission of the coronavirus model has been analyzed by Memarbashi and Mahmoundi [34] and Farman et al. [35]. A state-
pace method is used by Koyama et al. [36] to find the time-varying reproduction number of COVID-19. A case study COVID-19
pidemic in Egypt using machine learning has been discussed by Amar et al. [37] and another case study with a mathematical
odel for the same pandemic in India has been explained by Biswas et al. [38]. Then network-based COVID-19 disease spreading

n Italy has been discussed by Pizzuti et al. [39]. The only effect of lockdown in the COVID-19 pandemic has been studied by many
cientists [40–42]. De Sousa et al. [43] discussed the Kinetic Monte Carlo COVID-19 epidemic model with the impact of mobility
estriction. A SEIAR COVID-19 epidemic model with confinement and quarantine has been proposed by De la Sen et al. [44] and
uan et al. [45]. Hikal et al. [46] analyzed the stability of the COVID-19 epidemic model with fractional-order derivatives whereas
he delay in implementing the quarantine policy. Mishra et al. [47] studied the three novel quarantine epidemic systems for the
pread of novel coronavirus worldwide. A SIHR epidemic model with population size dependent contact rate has been analyzed by
iao and Huang [48]. During the same pandemic, the bed allocation strategy in hospital-based on queuing theory has been studied
y Hu et al. [49]. Modeling of control strategy depending on test, trace and quarantine for the coronavirus disease in a state of
razil has been discussed by Amaku et al. [50]. Then different control strategies for the COVID-19 epidemic have been optimized by
any mathematician [51–62]. The impact of influenza vaccination in public health for the COVID-19 epidemic has been analyzed

y Li et al. [63]. Gonçalves et al. [64] considered the dynamical analysis on COVID-19 disease in non-human primates.

.3. Uniqueness of proposed COVID-19 model

Our study analyzed the stability analysis of the new COVID-19 epidemic model with lockdown effect and the same natural
eath rate in each class that provides a more accurate representation of the infection rate. The basic reproduction number is
alculated based on some parameter table values with different progression rates and effective contact rates of infective individuals;
nd presented graphically. After lockdown, we discussed this mathematical epidemiological model with three controls: vaccination
ontrol on exposed class, treatment control on asymptomatic infected class, and another treatment control on symptomatic infected
lass. First, optimal control represents the vaccination been applied on exposed population, second optimal control represents the
ecovery rate of the symptomatic infected individuals under treatment, and third optimal control represents the recovery rate of the
symptomatic infected individuals under treatment. Then, the objective function is defined for the three optimal control systems to
inimize the effect of infection on exposed, asymptotic, and symptomatic infected phases.

. Formulation of six-compartmental pandemic model

In this section, a six-compartmental model has been studied. To derive a realistic model, we divide the total population 𝑁(𝑡) in
o six different classes, namely, susceptible class 𝑆(𝑡), lockdown class 𝐿(𝑡), exposed class 𝐸(𝑡), infected but asymptomatic class 𝐼 (𝑡),
𝐴
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Fig. 1. Flow diagram of the mathematical pandemic model.

Table 1
Parameters of the COVID-19 pandemic mathematical model with meaning.

Parameter Description

𝛬 Recruitment rate of new individuals
𝛼1 The progression rate from the susceptible class to the lockdown class
𝛼2 The progression rate from the lockdown class to the susceptible class
𝛽 Effective contact rate of asymptomatic infective individuals
𝑑 Natural death rate in each class
𝛾1 Rate of exposed individuals gets infected and remain asymptotic to COVID-19
𝛾2 Rate of exposed individuals get recovered
𝛿1 Rate of asymptotic infected individuals become symptomatic to the disease
𝛿2 Rate of asymptomatic infected individuals gets recovered
𝜇1 Death rate of the asymptomatic infected individuals due to the COVID-19 disease
𝜇2 Death rate of symptomatic infected individuals due to the COVID-19 disease
𝜖 Recovery rate of the symptomatic infected individuals

infected but symptomatic class 𝐼𝑆 (𝑡) and recovered class 𝑅(𝑡). The transfer diagram of the proposed pandemic model is represented
in Fig. 1.

The COVID-19 pandemic model has the following assumptions (see Table 1):

(a) The susceptible population (𝑆) consists of humans who are not yet infected by COVID-19 disease. Still, it is assumed that
the humans of this class are infected when there is an effective contact with asymptomatic infected individuals (𝐼𝐴) and the
transmission rate of infection is given by 𝛽𝑆𝐼𝐴.

(b) The lockdown population (𝐿) consists of humans moving from susceptible class and confine due to lockdown, and the rate of
transmission from susceptible class is given by 𝛼1𝑆 and move out from the lockdown class (𝐿) to the susceptible class with
the transmission rate 𝛼2𝐿.

(c) The exposed population (𝐸) is composed of humans who are infected by COVID-19 disease and are not capable of spreading
the disease. After testing positive for COVID-19 disease, the humans are assumed to be asymptomatic and move to the
asymptomatic infected class (𝐼𝐴) with the rate of transmission given by 𝛾1𝐸. Some humans of this class naturally recover
from COVID-19 disease and move to the recovered class (𝑅) with the transmission rate 𝛾2𝐸.

(d) The asymptomatic infected individuals (𝐼𝐴) is composed of humans who are infected with COVID-19 disease without any
symptoms. The humans of this class, after symptoms, appear move to the symptomatic infected class (𝐼𝑆 ) with the rate of
transmission 𝛿1𝐼𝐴. Some humans of this class naturally recover from the disease and move to the recovered class (𝑅) with
the transmission rate 𝛿 𝐼 .
2 𝐴
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(e) The symptomatic infected individuals (𝐼𝑆 ) is composed of humans who are infected with COVID-19 disease with symptoms of
the disease. Some humans of this class recover from COVID-19 disease who are under treatment and move to the recovered
class (𝑅) with the rate of transmission given by 𝜖𝐼𝑆 .

(f) It is assumed that in every compartment, the natural death of humans occurs. In the compartments, 𝐼𝐴 and 𝐼𝑆 there exists
the death of humans related to the COVID-19 disease in addition to the natural death.

A mathematical model of COVID-19 that provides a more accurate representation of the infection rate, which is useful for
prevention and control, is given by the following system of nonlinear differential equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑆
𝑑𝑡

= 𝛬 + 𝛼2𝐿 −
(

𝛼1 + 𝑑
)

𝑆 − 𝛽𝑆𝐼𝐴
𝑑𝐿
𝑑𝑡

= 𝛼1𝑆 −
(

𝛼2 + 𝑑
)

𝐿

𝑑𝐸
𝑑𝑡

= 𝛽𝑆𝐼𝐴 −
(

𝛾1 + 𝛾2 + 𝑑
)

𝐸

𝑑𝐼𝐴
𝑑𝑡

= 𝛾1𝐸 −
(

𝛿1 + 𝛿2 + 𝜇1 + 𝑑
)

𝐼𝐴
𝑑𝐼𝑆
𝑑𝑡

= 𝛿1𝐼𝐴 −
(

𝑑 + 𝜇2 + 𝜖
)

𝐼𝑆
𝑑𝑅
𝑑𝑡

= 𝛾2𝐸 + 𝛿2𝐼𝐴 + 𝜖𝐼𝑆 − 𝑑𝑅

(1)

Here all coefficients are positive with their initial conditions :

𝑆(0) > 0;𝐿(0) > 0;𝐸(0) ≥ 0; 𝐼𝐴(0) ≥ 0; 𝐼𝑆 (0) ≥ 0;𝑅(0) ≥ 0 (2)

3. Basic properties of the model

3.1. Non-negativity solutions

Theorem 1. All solution of the system (1) with initial conditions (2) are non-negative for all 𝑡 ≥ 0.

Proof. The functions on the right-hand side of the system (1) are completely continuous and locally Lipschitzian on 𝐶1, and
hence the unique solution (𝑆(𝑡), 𝐿(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑅(𝑡)) of the system (1) with the initial conditions (2) exists on the interval
[0, 𝑢) where 0 < 𝑢 ≤ ∞. From the first equation of the system (1) with 𝑆(0) > 0, we get 𝑑𝑆

𝑑𝑡 > −
(

𝛼1 + 𝑑 + 𝛽𝐼𝐴
)

𝑆 and hence
𝑆(𝑡) > 𝑆(0)𝑒− ∫ 𝑡0 𝜓(𝐼𝐴(𝑥))𝑑𝑥 > 0, where 𝜓(𝐼𝐴) = 𝛼1 + 𝑑 + 𝛽𝐼𝐴(𝑥). Integrating the second equation of (1) with 𝐿(0) > 0, we get
𝑑𝐿
𝑑𝑡 > −(𝛼2+𝑑)𝐿, and hence 𝐿(𝑡) > 𝐿(0)𝑒−(𝛼2+𝑑)𝑡 > 0. From the remaining equations of the system (1) with 𝐸(0) ≥ 0, 𝐼𝐴(0) ≥ 0, 𝐼𝑆 (0) ≥ 0
nd 𝑅(0) ≥ 0, we get 𝑑𝐸

𝑑𝑡 ≥ −(𝛾1 + 𝛾2 + 𝑑)𝐸,
𝑑𝐼𝐴
𝑑𝑡 ≥ −(𝛿1 + 𝛿2 + 𝜇1 + 𝑑)𝐼𝐴,

𝑑𝐼𝑆
𝑑𝑡 ≥ −(𝑑 + 𝜇2 + 𝜖)𝐼𝑆 ,

𝑑𝑅
𝑑𝑡 ≥ −𝑑𝑅 and hence after integrating,

we get 𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝛾1+𝛾2+𝑑)𝑡 ≥ 0, 𝐼𝐴(𝑡) ≥ 𝐼𝐴(0)𝑒−(𝛿1+𝛿2+𝜇1+𝑑)𝑡 ≥ 0, 𝐼𝑆 (𝑡) ≥ 𝐼𝑆 (0)𝑒−(𝑑+𝜇2+𝜖)𝑡 ≥ 0 and 𝑅(𝑡) ≥ 𝑅(0)𝑒−𝑑𝑡 ≥ 0. Hence the
roof. □

.2. Invariant region of the system and boundedness

heorem 2. All solutions of the system (1) which lies in R6
+ are uniformly bounded and are restricted to the invariant region 𝐷 =

(𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 , 𝑅) ∈ R6
+ ∶ 0 < 𝑄(𝑡) ≤ 𝛬

ℎ } as t → ∞, where ℎ ≤ 𝑑 and 𝑄(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆 (𝑡) + 𝑅(𝑡).

roof. Let us assume that (𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 , 𝑅) be the solution of (1). Let 𝑄(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) + 𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆 (𝑡) + 𝑅(𝑡). The time
erivative of 𝑄(𝑡) is given by 𝑑𝑄

𝑑𝑡 = 𝛬 − 𝑑𝑄 − 𝜇1𝐼𝐴 − 𝜇2𝐼𝑆 . Hence for each ℎ > 0, we have 𝑑𝑄
𝑑𝑡 + ℎ𝑄 = 𝛬 − (𝑑 − ℎ)𝑄 − 𝜇1𝐼𝐴 − 𝜇2𝐼𝑆 .

For ℎ ≤ 𝑑, we get 𝑑𝑄
𝑑𝑡 + ℎ𝑄 ≤ 𝛬. Applying the theory of differential inequality [65], we get 0 < 𝑄(𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 , 𝑅) ≤

𝛬
ℎ (1 − 𝑒

−ℎ𝑡) +𝑄(𝑆(0), 𝐿(0), 𝐸(0), 𝐼𝐴(0), 𝐼𝑆 (0), 𝑅(0))𝑒−ℎ𝑡 which yields, 0 < 𝑄 ≤ 𝛬
ℎ as 𝑡 → ∞. Thus every solution of (1) which pledge in

R6
+ are uniformly bounded and restricted to the region 𝐷 = {(𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 , 𝑅) ∈ R6

+ ∶ 0 < 𝑄(𝑡) ≤ 𝛬
ℎ }. Hence the region 𝐷 with the

initial conditions (2) is a positively invariant region under the flow induced by the system (1) in R6
+. □

Remark 3. Since every solution of (1) have non-negative components with non-negative initial values in 𝐷 for t ≥ 0 and globally
ttracting in R6

+ based on the system (1), and further, the last equation of the system (1) does not depend on the other equations,
e confine our attention to the dynamics of the system (1) without involving the last compartment in 𝛤 = {(𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 ) ∈ R5

+ ∶
< 𝑆(𝑡) +𝐿(𝑡) +𝐸(𝑡) + 𝐼𝐴(𝑡) + 𝐼𝑆 (𝑡) ≤

𝛬
ℎ }. Thus the system (1) defined on 𝛤 is well-posed mathematically and epidemiologically. So,

it is sufficient to study the dynamics of the system (1) defined on 𝛤 .

4. Equilibrium points of the system and its existence

To find the equilibria of the system (1), we set the right hand side of the system to equal zero. Then we get two equilibria in
the coordinate (𝑆,𝐿,𝐸, 𝐼 , 𝐼 ): (i) Disease-free equilibrium (DFE) 𝑃 (𝑆 ,𝐿 , 0, 0, 0) where, 𝑆 = 𝛬(𝛼2+𝑑) and 𝐿 = 𝛬𝛼1 . It is
𝐴 𝑆 0 0 0 0 𝑑(𝛼1+𝛼2+𝑑) 0 𝑑(𝛼1+𝛼2+𝑑)

4
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observed that DFE 𝑃0 always exists. (ii) The endemic equilibrium (EE) 𝑃1(𝑆∗, 𝐿∗, 𝐸∗, 𝐼∗𝐴, 𝐼
∗
𝑆 ) with positive components: 𝑆∗ = 𝑐1𝑐2

𝛽𝛾1
,

𝐿∗ = 𝛼1𝑐1𝑐2
𝑐4𝛽𝛾1

, 𝐸∗ = 𝛾1𝛬𝛽𝑐4−𝑑𝑐3𝑐1𝑐2
𝛽𝛾1𝑐4𝑐1

, 𝐼∗𝐴 = 𝛬𝛾1𝛽𝑐4−𝑑𝑐1𝑐2𝑐3
𝑐1𝑐2𝑐4𝛽

, 𝐼∗𝑆 = 𝛿1(𝛾1𝛬𝛽𝑐4−𝑑𝑐3𝑐1𝑐2)
𝑐1𝑐2𝑐4𝑐5𝛽

, where 𝑐1 = 𝑑 + 𝛾1 + 𝛾2, 𝑐2 = 𝑑 + 𝛿1 + 𝛿2 +𝜇1, 𝑐3 = 𝑑 + 𝛼1 + 𝛼2,
𝑐4 = 𝑑 + 𝛼2, 𝑐5 = 𝑑 + 𝜖 + 𝜇2, 𝑐6 = 𝛼1 + 𝑑1. Clearly 𝑆∗ > 0, 𝐿∗ > 0 but 𝐸∗, 𝐼∗𝐴 and 𝐼∗𝑆 are positive if 𝛾1𝛬𝛽𝑐4 − 𝑑𝑐3𝑐1𝑐2 > 0. If we set
𝑅0 = 𝛾1𝛽𝛬𝑐4

𝑑(𝑐1𝑐2𝑐3)
, then 𝛾1𝛬𝛽𝑐4 − 𝑑𝑐3𝑐1𝑐2 > 0 if 𝑅0 > 1 and hence 𝐸∗ = 𝑑𝑐2𝑐3(𝑅0−1)

𝛽𝛾1𝑐4
, 𝐼∗𝐴 = 𝑑𝑐3(𝑅0−1)

𝛽𝑐4
and 𝐼∗𝑆 = 𝛿1𝑑𝑐3(𝑅0−1)

𝑐4𝑐5𝛽
which are positive

. Hence the EE point 𝑃1 exists if 𝑅0 > 1.

5. Basic reproduction number 𝑹𝟎

This section represents the basic reproduction number, denoted by 𝑅0, that is ‘‘the number of secondary cases which one case
would produce in a completely susceptible population’’ [66]. Using the method of next generation matrix [67], we determine the
expression for 𝑅0 at 𝑃0(𝑆0, 𝐿0, 0, 0, 0). Let 𝑥 = (𝐸, 𝐼𝐴, 𝐼𝑆 , 𝑆, 𝐿)𝑇 , then the system (1) can be written as

𝑑𝑥
𝑑𝑡

=  (𝑥) − (𝑥)

here  (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝛽𝑆𝐼𝐴
0
0
0
0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, and (𝑥) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐1𝐸
−𝛾1𝐸 + 𝑐2𝐼𝐴
−𝛿1𝐼𝐴 + 𝑐5𝐼𝑆

−𝛬 − 𝛼2𝐿 + (𝛼1 + 𝛽𝐼𝐴 + 𝑑)𝑆
−𝛼1𝑆 + 𝑐4𝐿

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

The Jacobian matrices of  (𝑥) and (𝑥) at the DFE 𝑃0 are given by

𝐷 (𝑃0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 𝛽𝛬𝑐4
𝑑𝑐3

0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, and 𝐷(𝑃0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑐1 0 0 0 0
−𝛾1 𝑐2 0 0 0
0 −𝛿1 𝑐5 0 0
0 𝛽𝛬𝑐4

𝑑𝑐3
0 𝑐6 −𝛼2

0 0 0 −𝛼1 𝑐4

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Then the matrices 𝐹 and 𝑉 can be written as

𝐹 =

⎛

⎜

⎜

⎜

⎝

0 𝛽𝛬𝑐4
𝑑𝑐3

0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

, 𝑉 =
⎛

⎜

⎜

⎝

𝑐1 0 0
−𝛾1 𝑐2 0
0 −𝛿1 𝑐5

⎞

⎟

⎟

⎠

, and 𝐹𝑉 −1 =

⎛

⎜

⎜

⎜

⎝

𝛽𝛬𝑐4𝛾1
𝑑𝑐1𝑐2𝑐3

𝛽𝛬𝑐4
𝑑𝑐2𝑐3

0
0 0 0
0 0 0

⎞

⎟

⎟

⎟

⎠

.

The spectral radius of 𝐹𝑉 −1 is 𝜌(𝐹𝑉 −1) which is the basic reproduction number 𝑅0 = 𝜌(𝐹𝑉 −1) = 𝛽𝛬𝑐4𝛾1
𝑑𝑐1𝑐2𝑐3

.

6. Local stability analysis

6.1. Local stability of DFE

Theorem 4. The DFE 𝑃0 of (1) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Proof. The Jacobian matrix of (1) at 𝑃0 is given by

𝐽 (𝑃0) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝑐6 𝛼2 0 − 𝛽𝛬𝑐4
𝑑𝑐3

0
𝛼1 −𝑐4 0 0 0
0 0 −𝑐1

𝛽𝛬𝑐4
𝑑𝑐3

0
0 0 𝛾1 −𝑐2 0
0 0 0 𝛿1 −𝑐5

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Eigenvalues of the above matrix are 𝜆1 = −𝑐5 < 0, 𝜆2 = −𝑐3 < 0, 𝜆3 = −𝑑 < 0, 𝜆4 = −
𝑐1+𝑐2+

√

(𝑐1−𝑐2)2+
4𝑐4𝛽𝛾1𝛬
𝑑𝑐3

2 <0 and

𝜆5 =
−(𝑐1+𝑐2)+

√

(𝑐1−𝑐2)2+
4𝑐4𝛽𝛾1𝛬
𝑑𝑐3

2 . But 𝜆5 < 0 if and only if 4𝑐4𝛽𝛾1𝛬
𝑑𝑐3

< 4𝑐1𝑐2. But 4𝑐4𝛽𝛾1𝛬
𝑑𝑐3

< 4𝑐1𝑐2 if and only if 𝑅0 < 1. Hence 𝑃0 is
stable if 𝑅0 < 1 and unstable if 𝑅0 > 1. □

.2. Local stability of EE

The local stability of the endemic equilibrium 𝑃1 is proved using the Routh–Hurwitz criterion [68,69].

heorem 5. If 𝑅0 > 1, then the EE 𝑃1 of (1) exists and is locally asymptotically stable if it satisfies the condition 𝐴1𝐴2𝐴3−𝐴2
3−𝐴

2
1𝐴4 > 0,

here 𝑐1 = 𝑑 + 𝛾1 + 𝛾2, 𝑐2 = 𝑑 + 𝛿1 + 𝛿2 + 𝜇1, 𝑐3 = 𝑑 + 𝛼1 + 𝛼2, 𝑐4 = 𝑑 + 𝛼2, 𝑐5 = 𝑑 + 𝜖 + 𝜇2, 𝑐6 = 𝛼1 + 𝑑1, 𝑘1 = 𝛼1 + 𝛽𝐼∗𝐴 + 𝑑, 𝑘2 = 𝛽𝑆∗,
𝑘 = 𝛽𝐼∗ , 𝐴 = 𝑐 + 𝑐 + 𝑐 + 𝑘 , 𝐴 = (𝑐 𝑘 − 𝛼 𝛼 ) + (𝑐 + 𝑐 )(𝑐 + 𝑘 ), 𝐴 = (𝑐 + 𝑐 )(𝑐 𝑘 − 𝛼 𝛼 ) + 𝑘 𝑘 𝛾 , 𝐴 = 𝑐 (𝑐 𝑐 𝑘 + 𝑐 𝑘 𝛾 ).
3 𝐴 1 1 2 4 1 2 4 1 1 2 1 2 4 1 3 1 2 4 1 1 2 2 3 1 4 4 1 2 1 6 2 1

5
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Proof. The Jacobian matrix of (1) at 𝑃1 is given by

𝐽 (𝑃1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−𝑘1 𝛼2 0 −𝑘2 0
𝛼1 −𝑐4 0 0 0
𝑘3 0 −𝑐1 𝑘2 0
0 0 𝛾1 −𝑐2 0
0 0 0 𝛿1 −𝑐5

⎞

⎟

⎟

⎟

⎟

⎟

⎠

The characteristic equation of the above jacobian matrix is given by (𝜆+𝑐5)(𝜆4+𝐴1𝜆3+𝐴2𝜆2+𝐴3𝜆+𝐴4) = 0, where 𝑘1 = 𝛼1+𝛽𝐼∗𝐴+𝑑,
𝑘2 = 𝛽𝑆∗, 𝑘3 = 𝛽𝐼∗𝐴, 𝐴1 = 𝑐1+𝑐2+𝑐4+𝑘1 > 0, 𝐴2 = (𝑐4𝑘1−𝛼1𝛼2)+(𝑐1+𝑐2)(𝑐4+𝑘1), 𝐴3 = (𝑐1+𝑐2)(𝑐4𝑘1−𝛼1𝛼2)+𝑘2𝑘3𝛾1, 𝐴4 = 𝑘2𝑘3𝑐4𝛾1 >0.
Clearly one of the roots of the characteristic equation of 𝐽 (𝑃1) is -𝑐5 < 0. The remaining roots can be determined from the following
equation 𝜆4 +𝐴1𝜆3 +𝐴2𝜆2 +𝐴3𝜆+𝐴4 = 0. Analyzing the polynomial by using the Routh–Hurwitz criterion [69], we get that the EE
𝑃1 is locally asymptotically stable if 𝐴𝑖 > 0 for 𝑖 = 1, 3, 4 and 𝐴1𝐴2𝐴3 −𝐴2

3 −𝐴
2
1𝐴4 > 0. Since 𝑐4𝑘1 − 𝛼1𝛼2 > 0 and 𝑐1𝑐2 − 𝑘2𝛾1 = 0, we

get 𝐴𝑖 > 0 for 𝑖 = 1, 2, 3, 4. The equilibrium point 𝑃1 exists iff 𝑅0 > 1 and is locally asymptotically stable if it satisfies the condition
𝐴1𝐴2𝐴3 − 𝐴2

3 − 𝐴
2
1𝐴4 > 0. □

7. Global stability analysis of the model

7.1. Global stability of DFE

Theorem 6. The DFE 𝑃0 of the system (1) is globally asymptotically stable if 𝑅0 < 1.

Proof. Since 𝑃0 is locally asymptotically stable when 𝑅0 < 1, it is sufficient to show that 𝑃0 is globally attractive. In Section 3, it has
been proved that every solution of (1) is non-negative and bounded. For a bounded and continuous real valued function 𝑔(𝑡) (say)
defined on R+, let 𝑔 = lim sup𝑡→∞ 𝑔(𝑡) and 𝑔 = lim inf 𝑡→∞ 𝑔(𝑡). Hence by the Fluctuation lemma [70] (using the following notations
in [70]), there is a sequence 𝜎𝑛 → ∞ such that 𝑆(𝜎𝑛) → 𝑆 and 𝑆′(𝜎𝑛) → 0 whenever 𝑛→ ∞. From the first equation of (1), we get

𝑆′(𝜎𝑛) + 𝑐6𝑆(𝜎𝑛) + 𝛽𝑆(𝜎𝑛)𝐼𝐴(𝜎𝑛) = 𝛬 + 𝛼2𝐿(𝜎𝑛). (3)

etting 𝑛→ ∞, we get

𝑐6𝑆 ≤ (𝑐6 + 𝛽𝐼𝐴)𝑆 ≤ 𝛬 + 𝛼2𝐿 (4)

nd using the remaining equations of (1), we get the following

𝑐4𝐿 ≤ 𝛼1𝑆 (5)

𝑐1𝐸 ≤ 𝛽𝑆 𝐼𝐴 (6)

𝑐2𝐼𝐴 ≤ 𝛾1𝐸 (7)

𝑐5𝐼𝑆 ≤ 𝛿1𝐼𝐴 (8)

𝑑𝑅 ≤ 𝛾2𝐸 + 𝜖𝐼𝑆 + 𝛿2𝐼𝐴 (9)

Next, we shall show that 𝐸 = 0. Suppose that 𝐸 > 0, using (6) and (7), we get 𝑐1𝐸 ≤ 𝛽𝑆 𝐼𝐴 ≤ 𝛾1𝛽
𝑐2
𝑆 𝐸. Since 𝐸 > 0, we get

𝑆 ≥ 𝑐1𝑐2
𝛽𝛾1

= 𝛬𝑐4
𝑑𝑐3

. 1
𝑅0

. Since 𝑅0 < 1, we get 𝑆 > 𝛬𝑐4
𝑑𝑐3

. From (3) and (4), we get 𝑐6𝑆 ≤ 𝛬 + 𝛼2𝐿 ≤ 𝛬 + 𝛼1𝛼2
𝑐4
𝑆 and hence 𝑆 ≤ 𝛬𝑐4

𝑑𝑐3
.

Therefore, 𝛬𝑐4
𝑑𝑐3

< 𝑆 ≤ 𝛬𝑐4
𝑑𝑐3

< 𝛬
𝑑 , a contradiction. Hence 𝐸 = 0 and hence lim

𝑡→0
𝐸(𝑡) = 0. Suppose 𝐼𝐴 > 0, then using (6) and (7), we

et 𝛽𝑆 𝐼𝐴 ≥ 𝑐1𝐸 ≥ 𝑐2𝑐1
𝛾1
𝐼𝐴. Since 𝐼𝐴 > 0, we get 𝑆 ≥ 𝑐1𝑐2

𝛽𝛾1
= 𝑑𝑐1𝑐2𝑐3

𝛽𝛾1𝛬𝑐4

(

𝛬𝑐4
𝑑𝑐3

)

= 1
𝑅0

𝛬𝑐4
𝑑𝑐3

> 𝛬𝑐4
𝑑𝑐3

. Further from (3) and (4), we get 𝑆 ≤ 𝛬𝑐4
𝑑𝑐3

.
Therefore, 𝛬𝑐4

𝑑𝑐3
< 𝑆 ≤ 𝛬𝑐4

𝑑𝑐3
< 𝛬

𝑑 , a contradiction. Hence 𝐼𝐴 = 0 which implies lim
𝑡→0
𝐼𝐴(𝑡) = 0. Since 𝐼𝐴 = 0, 𝐸 = 0 from (8) and (9), we

get 𝑑𝑅 ≤ 𝜖𝐼𝑆 ≤ 𝜖𝛿1
𝑐5
𝐼𝐴 = 0. Therefore, 𝑅 = 0 and 𝐼𝑆 = 0 which implies lim

𝑡→0
𝑅(𝑡) = 0 and lim

𝑡→0
𝐼𝑆 (𝑡) = 0. Using Fluctuation lemma [70],

e get a sequence 𝜌𝑛 → ∞ such that 𝑆(𝜌𝑛) → 𝑆, 𝑆′(𝜌𝑛) → 0, as 𝑛 → ∞. From (4), we get 𝑆′(𝜌𝑛) + 𝑐6𝑆(𝜌𝑛) = 𝛬 + 𝛼2𝐿(𝜌𝑛). Letting
𝑛 → ∞, we get 𝑐6𝑆 = 𝛬 + 𝛼2𝐿 and from (5), we get 𝐿′(𝜌𝑛) + 𝑐4𝐿(𝜌𝑛) = 𝛼1𝑆(𝜌𝑛) and then 𝑐4𝐿 = 𝛼1𝑆. Therefore, 𝑐6𝑆 = 𝛬 + 𝛼1𝛼2

𝑐4
𝑆

which implies 𝑆 = 𝛬𝑐4
𝑑𝑐3

. But, 𝑆 ≤ 𝛬𝑐4
𝑑𝑐3

= 𝑆. Hence, lim
𝑡→0
𝑆(𝑡) = 𝛬𝑐4

𝑑𝑐3
. Using 𝑐6𝑆 = 𝛬 + 𝛼2𝐿 and 𝑐4𝐿 = 𝛼1𝑆, we get 𝐿 = 𝛬𝛼1

𝑑𝑐3
. Further

sing (4) and (5), we get 𝑐6𝑐4𝐿
𝛼1

≤ 𝑐6𝑆 ≤ 𝛬 + 𝛼2𝐿 which implies 𝐿 ≤ 𝛬𝛼1
𝑑𝑐3

. So, 𝐿 ≤ 𝛬𝛼1
𝑑𝑐3

= 𝐿 and hence lim
𝑡→0
𝐿(𝑡) = 𝛬𝛼1

𝑑𝑐3
. Therefore,

im
𝑡→0

(𝑆(𝑡), 𝐿(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑅(𝑡)) = 𝑃0. □

.2. Global stability of the EE

We now analyze the global stability of the endemic equilibrium (EE) of the system (1) using Lyapunov functional method [71].

heorem 7. The system (1) is globally asymptotically stable around the EE point 𝑃1(𝑆∗, 𝐿∗, 𝐸∗, 𝐼∗𝐴, 𝐼
∗
𝑆 ), if 𝑅0 > 1 and the following

onditions are satisfied
6
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I

(i) 𝐿2𝐿∗𝑆𝑆∗2(𝐿∗𝑆(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) < 0

(ii) 𝐸𝐸∗𝐼𝐴𝐿2𝐿∗𝑆∗2𝛽(𝐿∗𝑆(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) < 0

(iii) 𝐸2𝐼2𝐴𝐿
2𝐸∗𝐿∗𝑆𝑆∗2(−2𝐸𝐼𝐴𝑆𝐸∗𝛽)𝛾1(𝑆𝐿∗(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) + 𝐸2𝐸∗𝛾21 (𝑆𝐿

∗(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) + 𝐼2𝐴𝑆
2𝛽2(𝑆𝐸∗𝐿∗(𝑆∗𝛼1 + 𝐿𝛼2)2 −

4𝐿𝑆∗2𝛼1(𝐿𝐸∗𝛼2 + 𝐸𝐼∗𝐴𝑆
∗𝛽 + 𝐸∗𝛬)) > 0

(iv) 𝐸2𝐼2𝐴𝐼
2
𝑆𝐿

2𝑆𝐸∗𝐼∗𝐴𝐼
∗
𝑆𝐿

∗𝑆2𝛿1(−2𝐸𝐼𝐴𝐼𝑆𝑆𝐸∗𝛽𝛾1(𝑆𝐿∗(𝑆∗𝛼1 +𝐿𝛼2)2 −4𝐿𝑆∗2𝛼1(𝐿𝛼2 +𝛬))+𝐸2𝐼𝑆𝐸∗𝛾21 (𝑆𝐿
∗(𝑆∗𝛼1 +𝐿𝛼2)2 −4𝐿𝑆∗2𝛼1(𝐿𝛼2 +𝛬))+𝐼2𝐴𝑆𝛽(𝐸𝐼

∗
𝑆 𝛿1(𝑆𝐿

∗(𝑆∗𝛼1 +
𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) + 𝐼𝑆𝑆𝛽(𝑆𝐸∗𝐿∗(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝐸∗𝛼2 + 𝐸𝐼∗𝐴𝑆

∗𝛽 + 𝐸∗𝛬)))) > 0.

roof. Let us consider the Lyapunov functional 𝐿 : 𝛤 → R+ as follows:

𝐿(𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 ) = 𝑎1 ∫

𝑆

𝑆∗

(

𝑚 − 𝑆∗

𝑚

)

𝑑𝑚 + 𝑎2 ∫

𝐿

𝐿∗

(

𝑚 − 𝐿∗

𝑚

)

𝑑𝑚 + 𝑎3 ∫

𝐸

𝐸∗

(

𝑚 − 𝐸∗

𝑚

)

𝑑𝑚

+ 𝑎4 ∫

𝐼𝐴

𝐼∗𝐴

(𝑚 − 𝐼∗𝐴
𝑚

)

𝑑𝑚 + 𝑎5 ∫

𝐼𝑆

𝐼∗𝑆

(𝑚 − 𝐼∗𝑆
𝑚

)

𝑑𝑚
(10)

where 𝑎𝑖 ∈ R+(𝑖 = 1, 2, 3, 4, 5) and their values are assumed in the following steps. Clearly 𝐿(𝑆,𝐿,𝐸, 𝐼𝐴, 𝐼𝑆 ) > 0 on 𝛤 −
(𝑆∗, 𝐿∗, 𝐸∗, 𝐼∗𝐴, 𝐼

∗
𝑆 ) and 𝐿(𝑆∗, 𝐿∗, 𝐸∗, 𝐼∗𝐴, 𝐼

∗
𝑆 ) = 0. Differentiating (10) with respect to time t, we get

𝑑𝐿
𝑑𝑡

= 𝑎1

(

𝑆 − 𝑆∗

𝑆

)

𝑑𝑆
𝑑𝑡

+ 𝑎2

(

𝐿 − 𝐿∗

𝐿

)

𝑑𝐿
𝑑𝑡

+ 𝑎3

(

𝐸 − 𝐸∗

𝐸

)

𝑑𝐸
𝑑𝑡

+ 𝑎4

( 𝐼𝐴 − 𝐼∗𝐴
𝐼𝐴

)

𝑑𝐼𝐴
𝑑𝑡

+ 𝑎5

( 𝐼𝑆 − 𝐼∗𝑆
𝐼𝑆

)

𝑑𝐼𝑆
𝑑𝑡

(11)

We get the following result after some mathematical computations

𝑑𝐿
𝑑𝑡

= 𝑎1(𝑆 − 𝑆∗)
(

−
(𝛬 + 𝛼2𝐿)(𝑆 − 𝑆∗)

𝑆𝑆∗ +
𝛼2(𝐿 − 𝐿∗)

𝑆∗ − 𝛽(𝐼𝐴 − 𝐼∗𝐴)
)

+ 𝑎2𝛼1(𝐿 − 𝐿∗)
(

(𝑆 − 𝑆∗)
𝐿

−
𝑆∗(𝐿 − 𝐿∗)

𝐿𝐿∗

)

+ 𝑎3𝛽(𝐸 − 𝐸∗)
(𝑆(𝐼𝐴 − 𝐼∗𝐴)

𝐸
−
𝑆𝐼∗𝐴(𝐸 − 𝐸∗)

𝐸𝐸∗

)

+ 𝑎4𝛾1(𝐼𝐴 − 𝐼∗𝐴)
(

(𝐸 − 𝐸∗)
𝐼𝐴

−
𝐸∗(𝐼𝐴 − 𝐼∗𝐴)

𝐼𝐴𝐼∗𝐴

)

+ 𝑎5𝛿1(𝐼𝑆 − 𝐼∗𝑆 )
( (𝐼𝐴 − 𝐼∗𝐴)

𝐼𝑆
−
𝐼∗𝐴(𝐼𝑆 − 𝐼∗𝑆 )

𝐼𝑆𝐼∗𝑆

)

(12)

𝑑𝐿
𝑑𝑡

= −
(

𝑎1(𝛬 + 𝛼2𝐿)
𝑆𝑆∗

)

(𝑆 − 𝑆∗)2 −
(

𝑎2𝛼1𝑆∗

𝐿𝐿∗

)

(𝐿 − 𝐿∗)2 −
(𝑎3𝛽𝑆𝐼∗𝐴

𝐸𝐸∗

)

(𝐸 − 𝐸∗)2

−
(

𝑎4𝛾1𝐸∗

𝐼𝐴𝐼∗𝐴

)

(𝐼𝐴 − 𝐼∗𝐴)
2 −

(𝑎5𝛿1𝐼∗𝐴
𝐼𝑆𝐼∗𝑆

)

(𝐼𝑆 − 𝐼∗𝑆 )
2 +

(𝑎1𝛼2
𝑆∗ +

𝑎2𝛼1
𝐿

)

(𝑆 − 𝑆∗)(𝐿 − 𝐿∗)

− 𝑎1𝛽(𝑆 − 𝑆∗)(𝐼𝐴 − 𝐼∗𝐴) +
(

𝑎3𝛽𝑆
𝐸

+
𝑎4𝛾1
𝐼𝐴

)

(𝐸 − 𝐸∗)(𝐼𝐴 − 𝐼∗𝐴) +
(

𝑎5𝛿1
𝐼𝑆

)

(𝐼𝐴 − 𝐼∗𝐴)(𝐼𝑆 − 𝐼∗𝑆 ).

(13)

Eq. (13) is written as

�̇� = 𝑋𝑇 𝜉𝑋 (14)

where

𝜉 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜉11 𝜉12 𝜉13 𝜉14 𝜉15
𝜉21 𝜉22 𝜉23 𝜉24 𝜉25
𝜉31 𝜉32 𝜉33 𝜉34 𝜉35
𝜉41 𝜉42 𝜉43 𝜉44 𝜉45
𝜉51 𝜉52 𝜉53 𝜉54 𝜉55

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, and 𝑋 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑆 − 𝑆∗

𝐿 − 𝐿∗

𝐸 − 𝐸∗

𝐼𝐴 − 𝐼∗𝐴
𝐼𝑆 − 𝐼∗𝑆

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Here, 𝜉 = (𝜉𝑖𝑗 )1≤𝑖,𝑗≤5 is a real symmetric matrix with 𝜉11 = − 𝑎1(𝛬+𝛼2𝐿)
𝑆𝑆∗ , 𝜉12 = 1

2

(

𝑎1𝛼2
𝑆∗ + 𝑎2𝛼1

𝐿

)

, 𝜉13 = 0, 𝜉14 = − 𝑎1𝛽
2 , 𝜉15 = 0, 𝜉21 =

1
2

(

𝑎1𝛼2
𝑆∗ + 𝑎2𝛼1

𝐿

)

, 𝜉22 = − 𝑎2𝛼1𝑆∗

𝐿𝐿∗ , 𝜉23 = 0, 𝜉24 = 0, 𝜉25 = 0, 𝜉31 = 0, 𝜉32 = 0, 𝜉33 =
−𝑎3𝛽𝑆𝐼∗𝐴
𝐸𝐸∗ , 𝜉34 = 1

2

(

𝑎3𝛽𝑆
𝐸 + 𝑎4𝛾1

𝐼𝐴

)

, 𝜉35 = 0, 𝜉41 =

− 𝑎1𝛽
2 , 𝜉42 = 0, 𝜉43 =

1
2

(

𝑎3𝛽𝑆
𝐸 + 𝑎4𝛾1

𝐼𝐴

)

, 𝜉44 = − 𝑎4𝛾1𝐸∗

𝐼𝐴𝐼∗𝐴
, 𝜉45 =

1
2

(

𝑎5𝛿1
𝐼𝑆

)

, 𝜉51 = 0, 𝜉52 = 0, 𝜉53 = 0, 𝜉54 =
1
2

(

𝑎5𝛿1
𝐼𝑆

)

, 𝜉55 = −
𝑎5𝛿1𝐼∗𝐴
𝐼𝑆𝐼∗𝑆

.
The endemic equilibrium point 𝑃1 would be globally asymptotically stable if �̇� < 0, i.e., if the real quadratic form 𝑋𝑇 𝜉𝑋 is

negative definite. From Frobenius theorem [71], the real symmetric matrix 𝜉 must be negative definite for the negativity of the
quadratic form 𝑋𝑇 𝜉𝑋 and hence must satisfy (−1)𝑛𝐷𝑛 > 0, 𝑛 = 1, 2, 3, 4, 5, where

𝐷1 = 𝜉11, 𝐷2 =
|

|

|

|

|

𝜉11 𝜉12
𝜉21 𝜉22

|

|

|

|

|

, 𝐷3 =
|

|

|

|

|

|

|

𝜉11 𝜉12 𝜉13
𝜉21 𝜉22 𝜉23
𝜉31 𝜉32 𝜉33

|

|

|

|

|

|

|

, 𝐷4 =

|

|

|

|

|

|

|

|

|

𝜉11 𝜉12 𝜉13 𝜉14
𝜉21 𝜉22 𝜉23 𝜉24
𝜉31 𝜉32 𝜉33 𝜉34
𝜉41 𝜉42 𝜉43 𝜉44

|

|

|

|

|

|

|

|

|

, 𝐷5 = |𝜉|.

f we choose 𝑎𝑖 = 1, 𝑖 = 1, 2, 3, 4, 5, then we have the following conditions,

(i) 𝐿2𝐿∗𝑆𝑆∗2(𝐿∗𝑆(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) < 0

(ii) 𝐸𝐸∗𝐼𝐴𝐿2𝐿∗𝑆∗2𝛽(𝐿∗𝑆(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) < 0

(iii) 𝐸2𝐼2𝐴𝐿
2𝐸∗𝐿∗𝑆𝑆∗2(−2𝐸𝐼𝐴𝑆𝐸∗𝛽)𝛾1(𝑆𝐿∗(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) + 𝐸2𝐸∗𝛾21 (𝑆𝐿

∗(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) + 𝐼2𝐴𝑆
2𝛽2(𝑆𝐸∗𝐿∗(𝑆∗𝛼1 + 𝐿𝛼2)2 −

∗2 ∗ ∗ ∗ ∗
4𝐿𝑆 𝛼1(𝐿𝐸 𝛼2 + 𝐸𝐼𝐴𝑆 𝛽 + 𝐸 𝛬)) > 0

7
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(iv) 𝐸2𝐼2𝐴𝐼
2
𝑆𝐿

2𝑆𝐸∗𝐼∗𝐴𝐼
∗
𝑆𝐿

∗𝑆2𝛿1(−2𝐸𝐼𝐴𝐼𝑆𝑆𝐸∗𝛽𝛾1(𝑆𝐿∗(𝑆∗𝛼1 +𝐿𝛼2)2 −4𝐿𝑆∗2𝛼1(𝐿𝛼2 +𝛬))+𝐸2𝐼𝑆𝐸∗𝛾21 (𝑆𝐿
∗(𝑆∗𝛼1 +𝐿𝛼2)2 −4𝐿𝑆∗2𝛼1(𝐿𝛼2 +𝛬))+𝐼2𝐴𝑆𝛽(𝐸𝐼

∗
𝑆 𝛿1(𝑆𝐿

∗(𝑆∗𝛼1 +
𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝛼2 + 𝛬)) + 𝐼𝑆𝑆𝛽(𝑆𝐸∗𝐿∗(𝑆∗𝛼1 + 𝐿𝛼2)2 − 4𝐿𝑆∗2𝛼1(𝐿𝐸∗𝛼2 + 𝐸𝐼∗𝐴𝑆

∗𝛽 + 𝐸∗𝛬)))) > 0 □

8. Dynamics of the system with control after lockdown

In this section, an optimal control system based on the CoV SARS-2 pandemic model (1) has been set up so that this vulnerable
situation can be normalized. Here, we introduce three optimal control variables 𝑣1(𝑡), 𝑣2(𝑡) and 𝑣3(𝑡). The optimal control 𝑣1(𝑡)
represents the vaccination on exposed population per unit time at 𝑡, the control 𝑣2(𝑡) represents the recovery rate of the asymptomatic
nfected individuals under treatment per unit time at 𝑡, and the control 𝑣3(𝑡) represents the recovery rate of the symptomatic infected
ndividual under treatment per unit time at 𝑡. Then, the pandemic model with vaccine and treatments after lockdown becomes:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑆
𝑑𝑡

= 𝛬 − 𝛽𝑆𝐼𝐴 − 𝑑𝑆

𝑑𝐸
𝑑𝑡

= 𝛽𝑆𝐼𝐴 −
(

𝛾1 + 𝛾2 + 𝑑 + 𝑣1(𝑡)
)

𝐸

𝑑𝐼𝐴
𝑑𝑡

= 𝛾1𝐸 −
(

𝛿1 + 𝛿2 + 𝜇1 + 𝑑 + 𝑣2(𝑡)
)

𝐼𝐴
𝑑𝐼𝑆
𝑑𝑡

= 𝛿1𝐼𝐴 −
(

𝑑 + 𝜇2 + 𝜖 + 𝑣3(𝑡)
)

𝐼𝑆
𝑑𝑅
𝑑𝑡

= (𝛾2 + 𝑣1(𝑡))𝐸 + (𝛿2 + 𝑣2(𝑡))𝐼𝐴 + (𝜖 + 𝑣3(𝑡))𝐼𝑆 − 𝑑𝑅

(15)

satisfying the initial conditions

𝑆(0) = 𝑆0, 𝐸(0) = 𝐸0, 𝐼𝐴(0) = 𝐼𝐴0
, 𝐼𝑆 (0) = 𝐼𝑆0 , 𝑅(0) = 𝑅0 ≥ 0 (16)

The effect of infection on exposed, asymptomatic and symptomatic infected phases are negative for recovered individuals around
them. Thus it is essential to minimize them.

The objective functional [72–76] is defined as

𝐽 (𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡)) = ∫

𝑡𝑒

0

[

𝑊1𝐸(𝑡) +𝑊2𝐼𝐴(𝑡) +𝑊3𝐼𝑆 (𝑡) +
𝑊4
2
𝑣21(𝑡) +

𝑊5
2
𝑣22(𝑡) +

𝑊6
2
𝑣23(𝑡)

]

𝑑𝑡 (17)

here 𝑊𝑖 (𝑖 = 1, 2, 3, 4, 5, 6) are positive weight factors that balance the size of the terms in the integrand. The weights 𝑊4,𝑊5,𝑊6
epresents the human’s level of acceptance of the vaccination, treatments on asymptotic and symptomatic infected population
espectively. Here, 𝐸(𝑡), 𝐼𝐴(𝑡) and 𝐼𝑆 (𝑡) are the state variables with the admissible control set 𝑉 = {(𝑣1, 𝑣2, 𝑣3) ∶ 𝑣𝑖 is measurable, 0 ≤
𝑖 ≤ 1, 𝑡 ∈ [0, 𝑡𝑒], for 𝑖 = 1, 2, 3} and we have to seek the optimal control (𝑣∗1 , 𝑣

∗
2 , 𝑣

∗
3) such that the objective functional is to be

inimized, i.e., 𝐽 (𝑣∗1 , 𝑣
∗
2 , 𝑣

∗
3) = min{ 𝐽 (𝑣1, 𝑣2, 𝑣3) ∶ (𝑣1, 𝑣2, 𝑣3) ∈ 𝑉 }.

.1. Existence of an optimal control

Here, we shall show that there exists an optimal control (𝑣∗1 , 𝑣
∗
2 , 𝑣

∗
3) for the control system (15) with initial condition (16). Let

(𝑡), 𝐼𝐴(𝑡) and 𝐼𝑆 (𝑡) be the state variables with controls 𝑣1(𝑡), 𝑣2(𝑡) and 𝑣3(𝑡) respectively.

heorem 8. For the control system (15) with initial condition (16), there exists an optimal control (𝑣∗1 , 𝑣
∗
2 , 𝑣

∗
3) such that 𝐽 (𝑣

∗
1 , 𝑣

∗
2 , 𝑣

∗
3)

min{𝐽 (𝑣1, 𝑣2, 𝑣3) ∶ (𝑣1, 𝑣2, 𝑣3) ∈ 𝑉 }.

roof. The optimal control system (16) can be expressed as the following form:

𝐺(𝜙) = 𝐶𝜙 + 𝐹 (𝜙) (18)

here

𝐺(𝜙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

�̇�(𝑡)
�̇�(𝑡)
̇𝐼𝐴(𝑡)
̇𝐼𝑆 (𝑡)
�̇�(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝜙 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑆(𝑡)
𝐸(𝑡)
𝐼𝐴(𝑡)
𝐼𝑆 (𝑡)
𝑅(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐹 (𝜙) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝛬 − 𝛽𝑆(𝑡)𝐼𝐴(𝑡)
𝛽𝑆(𝑡)𝐼𝐴(𝑡)

0
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

nd

𝐶 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−𝑑 0 0 0 0
0 −(𝛾1 + 𝛾2 + 𝑑 + 𝑣1) 0 0 0
0 𝛾1 −(𝛿1 + 𝛿2 + 𝜇1 + 𝑑 + 𝑣2) 0 0
0 0 𝛿1 −(𝑑 + 𝜇2 + 𝜖 + 𝑣3) 0
0 (𝛾2 + 𝑣1) (𝛿2 + 𝑣2) (𝜖 + 𝑣3) −𝑑

⎤

⎥

⎥

⎥

⎥

⎥

⎦

ow,
|

|

|

𝐹 (𝜙1) − 𝐹 (𝜙2)
|

|

|

≤ 𝑝1
|

|

|

𝑆1(𝑡) − 𝑆2(𝑡)
|

|

|

+ 𝑝2
|

|

|

𝐼𝐴1
(𝑡) − 𝐼𝐴2

(𝑡)||
|

,

here the constants 𝑝1 > 0 and 𝑝2 > 0 are independent of the variables 𝑆(𝑡) and 𝐼𝐴(𝑡).

8
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Hence,
|

|

|

𝐺(𝜙1) − 𝐺(𝜙2)
|

|

|

≤ 𝐶 |

|

|

𝜙1 − 𝜙2
|

|

|

+ |

|

|

𝐹 (𝜙1) − 𝐹 (𝜙2)
|

|

|

≤ 𝑝 ||
|

𝜙1 − 𝜙2
|

|

|

<∞

where 𝑝 = 𝑝1 + 𝑝2 + ‖𝐶‖ < ∞. Therefore, 𝐺(𝜙) is said to be uniformly Lipschitz continuous function. From the definition of 𝑉
and restriction on 𝑆(𝑡), 𝐸(𝑡), 𝐼𝐴(𝑡), 𝐼𝑆 (𝑡), 𝑅(𝑡) ≥ 0, we can say that a solution of the system (18) exist [65]. In this case, all the state
variables and control variables are non-negative. The convexity [76] of 𝐽 (𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡)) (in Equ. (17)) is satisfied in the minimizing
optimal control problem (15). As the set of control variable (𝑣1, 𝑣2, 𝑣3) ∈ 𝑉 is closed and convex, the system of optimal control is
ounded [77] which determines the compactness required for the existence of the optimal control (𝑣∗1 , 𝑣

∗
2 , 𝑣

∗
3). Again, we observed

hat the integrand of (17) i.e., 𝑊1𝐸(𝑡)+𝑊2𝐼𝐴(𝑡)+𝑊3𝐼𝑆 (𝑡)+
𝑊4
2 𝑣

2
1(𝑡)+

𝑊5
2 𝑣

2
2(𝑡)+

𝑊6
2 𝑣

2
3(𝑡) is convex on the control set 𝑉 . Since the state

ariables are bounded, ∃ 𝑛 > 1 and positive real numbers 𝑘1 and 𝑘2 such than 𝐽 (𝑣1, 𝑣2, 𝑣3) ≥ 𝑘1 + 𝑘2(|𝑣1|
2 + |𝑣2|

2 + |𝑣3|
2)

𝑛
2 , which

shows the existence of an optimal control. □

8.2. Depiction of the optimal controls

To describe the necessary conditions for the optimal control variables, the Pontryagin’s maximum principle [78] is applied and
it follows the Hamiltonian (𝐻) as the form:

𝐻 =
(

𝑊1𝐸 +𝑊2𝐼𝐴 +𝑊3𝐼𝑆 +
𝑊4
2
𝑣21 +

𝑊5
2
𝑣22 +

𝑊6
2
𝑣23
)

+ 𝜏1[𝛬 − 𝛽𝑆𝐼𝐴 − 𝑑𝑆] (19)

+ 𝜏2[𝛽𝑆𝐼𝐴 − (𝛾1 + 𝛾2 + 𝑑 + 𝑣1)𝐸] + 𝜏3[𝛾1𝐸 − (𝛿1 + 𝛿2 + 𝜇1 + 𝑑 + 𝑣2)𝐼𝐴]

+ 𝜏4[𝛿1𝐼𝐴 − (𝑑 + 𝜇2 + 𝜖 + 𝑣3)𝐼𝑆 ] + 𝜏5[(𝛾2 + 𝑣1)𝐸 + (𝛿2 + 𝑣2)𝐼𝐴 + (𝜖 + 𝑣3)𝐼𝑆 − 𝑑𝑅]

here 𝜏𝑖(𝑡), 𝑖 = 1, 2, 3, 4, 5, are the adjoint functions to be determined duly.

heorem 9. Let 𝑆∗(𝑡), 𝐸∗(𝑡), 𝐼∗𝐴(𝑡), 𝐼
∗
𝑆 (𝑡) and 𝑅

∗(𝑡) are optimal solutions for the optimal control problem (15) with initial conditions (16)
ssociated with the optimal control variables 𝑣∗1(𝑡), 𝑣

∗
2(𝑡) and 𝑣

∗
3(𝑡). Then there exist five ad-joint variables 𝜏1, 𝜏2, 𝜏3, 𝜏4 and 𝜏5 which satisfy

𝜏′1 = (𝜏1 − 𝜏2)𝛽𝐼∗𝐴(𝑡) + 𝜏1𝑑

𝜏′2 = −𝑊1 + (𝜏2 − 𝜏3)𝛾1 + (𝜏2 − 𝜏5)(𝛾2 + 𝑣1) + 𝑑𝜏2
𝜏′3 = −𝑊2 + (𝜏1 − 𝜏2)𝛽𝑆∗(𝑡) + (𝜏3 − 𝜏4)𝛿1 + (𝜏3 − 𝜏5)(𝛿2 + 𝑣2) − 𝜏3(𝑑 + 𝜇1)

𝜏′4 = −𝑊3 + (𝜏4 − 𝜏5)(𝜖 + 𝑣3) + 𝜏4(𝑑 + 𝜇2)

𝜏′5 = 𝜏5𝑑

(20)

with the transversality conditions

𝜏𝑖(𝑡𝑒) = 0 for all 𝑖 = 1 𝑡𝑜 5. (21)

Furthermore, the solutions of optimal control variables are given as follows:

𝑣∗1 = 𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏2 − 𝜏5)𝐸∗(𝑡)

𝑊4

}

, 1
}

(22)

𝑣∗2 = 𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏3 − 𝜏5)𝐼∗𝐴(𝑡)

𝑊5

}

, 1
}

(23)

𝑣∗3 = 𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏4 − 𝜏5)𝐼∗𝑆 (𝑡)

𝑊6

}

, 1
}

(24)

Proof. To determine the all five ad-joint functions and the transversality conditions, Hamiltonian (19) has been used. After setting
𝑆(𝑡) = 𝑆∗(𝑡), 𝐸(𝑡) = 𝐸∗(𝑡), 𝐼𝐴 = 𝐼∗𝐴(𝑡), 𝐼𝑆 = 𝐼∗𝑆 (𝑡) and 𝑅(𝑡) = 𝑅∗(𝑡) and differentiating the Hamiltonian (19) with respect to 𝑆,𝐸, 𝐼𝐴, 𝐼𝑆
and 𝑅, we obtain Eqs. (20). From the Pontryagin’s Maximum Principle [78], we obtained the following optimality condition:

𝜕𝐻
𝜕𝑣𝑖

= 𝑊(𝑖+3)𝑣
∗
𝑖 − (𝜏(𝑖+1) − 𝜏5)𝑂𝑖 = 0 at 𝑣𝑖 = 𝑣∗𝑖 for 𝑖 = 1, 2, 3.

here 𝑂1 = 𝐸∗(𝑡), 𝑂2 = 𝐼∗𝐴(𝑡), 𝑂3 = 𝐼∗𝑆 (𝑡).
Using the bounds for the controls 𝑣𝑖 (𝑖 = 1, 2, 3), it is obtained that

𝑣∗𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(𝜏(𝑖+1)−𝜏5)𝑂𝑖
𝑊(𝑖+3)

, if 0 ≤ (𝜏(𝑖+1)−𝜏5)𝑂𝑖
𝑊(𝑖+3)

≤ 1

0 , if (𝜏(𝑖+1)−𝜏5)𝑂𝑖
𝑊(𝑖+3)

≤ 0

1 , if (𝜏(𝑖+1)−𝜏5)𝑂𝑖
𝑊(𝑖+3)

≥ 1

or, 𝑣∗𝑖 = 𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏(𝑖+1) − 𝜏5)𝑂𝑖

𝑊(𝑖+3)

}

, 1
}

, for 𝑖 = 1, 2, 3,

hich represents the ultimate result of (22)–(24). □
9
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The solution of the optimal control variables (𝑣∗1 , 𝑣
∗
2 , 𝑣

∗
3) is given by Eqs. (22)–(24). The optimal control and the state variables

re obtained after solving the optimality system consisting of the state system (15)), the adjoint system (20), initial condition (16),
he transversality condition (21) and the characterization of the optimal control (22)–(24). Further it is noticed that the second
erivative of the integrand of 𝐽 from ((17) with respect to the control variables 𝑣1, 𝑣2 and 𝑣2 is positive, which guarantees that the

optimal problem is minimum at the controls 𝑣∗1, 𝑣
∗
2, 𝑣

∗
2. Substituting the optimal control values 𝑣∗1, 𝑣

∗
2, 𝑣

∗
2 in the control system (15),

we find the system as follows
𝑑𝑆∗

𝑑𝑡
= 𝛬 − 𝛽𝑆∗𝐼∗𝐴 − 𝑑𝑆∗

𝑑𝐸∗

𝑑𝑡
= 𝛽𝑆∗𝐼∗𝐴 − (𝛾1 + 𝛾2 + 𝑑)𝐸∗ −

[

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏2 − 𝜏5)𝐸∗

𝑊4

}

, 1
}]

𝐸∗

𝑑𝐼∗𝐴
𝑑𝑡

= 𝛾1𝐸
∗ − (𝛿1 + 𝛿2 + 𝜇1 + 𝑑)𝐼∗𝐴 −

[

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏3 − 𝜏5)𝐼∗𝐴

𝑊5

}

, 1
}]

𝐼∗𝐴

𝑑𝐼∗𝑆
𝑑𝑡

= 𝛿1𝐼
∗
𝐴 − (𝑑 + 𝜇2 + 𝜖)𝐼∗𝑆 −

[

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏4 − 𝜏5)𝐼∗𝑆

𝑊6

}

, 1
}]

𝐼∗𝑆

𝑑𝑅∗

𝑑𝑡
= (𝛾2𝐸∗ + 𝛿2𝐼∗𝐴 + 𝜖𝐼∗𝑆 ) − 𝑑𝑅

∗ +
[

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏2 − 𝜏5)𝐸∗

𝑊4

}

, 1
}]

𝐸∗

+
[

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏3 − 𝜏5)𝐼∗𝐴

𝑊5

}

, 1
}]

𝐼∗𝐴 +
[

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏4 − 𝜏5)𝐼∗𝑆

𝑊6

}

, 1
}]

𝐼∗𝑆

(25)

and the Hamiltonian (19) can be rewritten as follows

𝐻∗ = 𝑊1𝐸
∗ +𝑊2𝐼

∗
𝐴 +𝑊3𝐼

∗
𝑆 + 1

2

[

𝑊4

(

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏2 − 𝜏5)𝐸∗

𝑊4

}

, 1
})2

(26)

+𝑊5

(

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏3 − 𝜏5)𝐼∗𝐴

𝑊5

}

, 1
})2

+𝑊6

(

𝑚𝑖𝑛
{

𝑚𝑎𝑥
{

0,
(𝜏4 − 𝜏5)𝐼∗𝑆

𝑊6

}

, 1
})2]

+ 𝜏1(𝑡)
𝑑𝑆∗

𝑑𝑡
+ 𝜏2(𝑡)

𝑑𝐸∗

𝑑𝑡
+ 𝜏3(𝑡)

𝑑𝐼∗𝐴
𝑑𝑡

+ 𝜏4(𝑡)
𝑑𝐼∗𝑆
𝑑𝑡

+ 𝜏5(𝑡)
𝑑𝑅∗

𝑑𝑡
.

o determine the optimal control and state variables, it is required to solve the system (25) and (26) numerically.

. Numerical simulation

Parameter estimations: This part presents the estimation procedure of various parameters in the proposed model. The well-
nown non-linear least square curve fitting technique is used for this purpose. The confirmed infected cases in India from 23rd March
o 31st December 2020 is taken in the estimation process. The Parameter estimation and fixing the initial values for each population
lass are difficult due to lack of information. We assume that the total population of India is approximately 135 crores. We divide
his total Indian population into different classes following the COVID-19 situation of India. The number of susceptible population
𝑆) and lockdown population (𝐿) are not known precisely. Fixing the initial value for the exposed (𝐸) class and asymptomatic

infected (𝐼𝐴) class is challenging in epidemic models. Only the information of symptomatic infected (𝐼𝑆 ) class is available, and
hence except for the symptomatic infected (𝐼𝑆 ) class, the initial values of all other classes are assumed hypothetically based on
the COVID-19 situation of India. The total population of India is approximately 135 crores, and the number of human births per
day is approximately 70,000. The Life expectancy in India is approximately 68 years. Therefore it is assumed that 𝛬 = 70000 and
= 1

68×356 = 0.00004. The values of the parameters 𝛼1, 𝛼2, 𝛽, 𝜇1, 𝜇2 are best fitted due to the unavailability of accurate information.
he parameter values are chosen based on the characteristics of COVID-19 disease in India. In the proposed model, it is assumed
hat some percentage of the exposed population are recovered from the infection with in 10 days due to low virus load, which is
onsidered as the observation period of some individuals in the exposed population and hence it is assumed that 𝛾2 = 1

10 = 0.1.
For best fitting, we assume that 𝛾2 = 0.101. The incubation period for the coronavirus is between two and fourteen days after an
effective contact with the asymptomatic infected individuals of this COVID-19 disease. A report published earlier in the pandemic
period states that more than 97% of people who contract SARS-CoV-2 show symptoms within 12 days after having effective contact
with the asymptomatic infected individuals. It appears that transmission can occur between one to three days before any symptoms
appear. So, we assume some individuals move from exposed class (𝐸) to asymptomatic infected (𝐼𝐴) class within eight days. Therefore
𝛾1 = 1

8 = 0.125. Those with a mild case of COVID-19 infection usually recover between one to two weeks. Recovery can take six
weeks or more for severe cases where the vital organs like the heart, kidneys, lungs and brain are damaged. So, we assume that
some individuals of the asymptomatic infected (𝐼𝐴) class move to the recovered class within twelve days and hence it is assumed
that 𝛿2 =

1
12 = 0.08. In our model, the symptomatic case means the confirmed infected cases tested and declared by the Government.

he COVID-19 testing process takes between two to three days, and not all infected people are tested due to a lack of infrastructure
nd hence considering all these factors, we assume that some percentage of individuals move from asymptomatic infected (𝐼𝐴) class

to symptomatic infected (𝐼𝑆 ) class within six days. Therefore 𝛿1 = 1
6 = 0.17. We assume that the recovery time for symptomatic

infected (𝐼𝑆 ) class is 13 days and hence 𝜖 = 1
13 = 0.077.

Analytical works can never be completed without numerical simulation results. Here, firstly we consider the cases when 𝑅0
value is less than unity using the parameter values 𝛬 = 6 × 104, 𝛼1 = 5 × 10−3, 𝛼2 = 10 × 10−4, 𝛽 = 7 × 10−10, 𝛾1 = 8 × 10−2, 𝛾2 =
5 × 10−2, 𝛿 = 7.5 × 10−2, 𝛿 = 5 × 10−2, 𝜇 = 10 × 10−5, 𝜇 = 10 × 10−4, 𝑑 = 4 × 10−5, 𝜖 = 7 × 10−2. Using these values for various
1 2 1 2
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Fig. 2. The time series plot of (A) susceptible phase, (B) lockdown phase, (C) exposed phase, (D) asymptomatic infected phase and (E) symptomatic
infected phase with various initial conditions when 𝑅0 = 0.89 < 1.

initial conditions, the model’s dynamics are analyzed and presented in Figs. 2(A)-2(E). These figures clearly shows that when
𝑅0 = 0.89 < 1, the susceptible population(𝑆) and lockdown population(𝐿) persists but the exposed population(𝐸), asymptomatic
infected population(𝐼𝐴) and symptomatic infected population(𝐼𝑆 ) tends to zero as t → ∞, i.e., the system approaches the disease
free equilibrium 𝑃0(2.58278 × 108, 1.24172 × 109, 0, 0, 0) in long run. These numerical results supports the results of Theorem 4.

Next, we consider the case when 𝑅0 = 1.75 > 1, using the parameter values 𝛬 = 6 × 104, 𝛼1 = 5 × 10−3, 𝛼2 = 10 × 10−4, 𝛽 =
×10−10, 𝛾1 = 8×10−2, 𝛾2 = 5×10−2, 𝛿1 = 7.5×10−2, 𝛿2 = 5×10−2, 𝜇1 = 10×10−5, 𝜇2 = 10×10−4, 𝑑 = 2×10−5, 𝜖 = 7×10−2 for various initial
onditions, the dynamics of the model is presented in Figs. 3(A)-3(E). These figures clearly shows that the susceptible population(𝑆),

lockdown population(𝐿), exposed population(𝐸), asymptomatic infected population(𝐼𝐴) and symptomatic infected population(𝐼𝑆 )
ersists as t → ∞, i.e., the system approaches the endemic equilibrium 𝑃1(2.91 × 108, 1.42 × 109, 1.98 × 105, 1.26 × 105, 1.34 × 105) in
ong run.

The behavior of the parameters 𝛼1, 𝛼2 and 𝛽 with respect to 𝑅0 is presented through Figs. 4(A)-4(C). From Fig. 4(A), it is clear that
hen the progression rate from the susceptible class to the lockdown class increases, the basic reproduction number (𝑅0) decreases
nd goes below one. So, the system approaches the DFE 𝑃0, which is globally stable. Hence, the more the population is in lockdown,
he more likely it is that the disease will become extinct.

From Fig. 4(B), it is clear that as the progression rate from lockdown class to susceptible class increases, the basic reproduction
umber (𝑅0) increases steadily and goes over unity and, as a result, endemic equilibrium is stable. Hence, if lockdown is not strictly
nforced, the disease persists in society for a long time.

From Fig. 4(C), it is obvious that as the effective contact rate of asymptomatic infective individuals increases the basic
eproduction number (𝑅0) increases steadily and goes over-unity hence the endemic equilibrium is stable and the disease persists
n society for a long period.
11
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Fig. 3. The time series plot of (A) susceptible phase, (B) lockdown phase, (C) exposed phase, (D) asymptomatic infected phase and (E) symptomatic
infected phase with various initial conditions when 𝑅0 = 1.75 > 1.

Table 2
The actual field value of all parameters.
Parameter Value per day

𝛬 7 × 104

𝛼1 53 × 10−4

𝛼2 10 × 10−4

𝛽 121 × 10−11

𝛾1 125 × 10−3

𝛾2 101 × 10−3

𝛿1 17 × 10−2

𝛿2 8 × 10−2

𝜇1 10 × 10−5

𝜇2 11 × 10−4

𝑑 4 × 10−5

𝜖 77 × 10−3

In Figs. 5 and 6, the analysis is made on the change of 𝑅0 with respect to 𝛼1 and 𝛼2, 𝛼1 and 𝛽, 𝛼2 and 𝛽 respectively, fixing other
ll parameter values as in Table 2. It is seen in Figs. 5(A) and 6(A) that as 𝛼2 increases, 𝑅0 increases sharply, exceeding unity, thus
tabilizing endemic equilibrium. As a result, the disease persists in society for a long time. With Figs. 5(B) and 6(B), it is apparent
hat as 𝛽, the effective contact rate of infected individuals, rises, 𝑅0 value rises in proportion exceeding unity, thereby maintaining
he stability of endemic equilibrium, which ensures that the disease persists in society. From Fig. 5(C) and Fig. 6(C), it is obvious
hat as 𝛼 which is the progression rate from lockdown class to susceptible class, increases, there is a high chance of individuals in
2

12
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Fig. 4. Sensitivity analysis of 𝑅0: (A) based on 𝛼1, (B) based on 𝛼2 and (C) based on 𝛽1.

Fig. 5. (A) Change of 𝑅0 based on 𝛼1 and 𝛼2; (B) Change of 𝑅0 based on 𝛼1 and 𝛽; and (C) Change of 𝑅0 based on 𝛼2 and 𝛽.

usceptible compartment getting in contact with asymptomatic infective individuals, which is represented by the effective contact
ate 𝛽 also increases and as a result, the 𝑅0 value exceeds unity. Hence there is a wide spread of the disease in the society.

Figs. 7–8 shows the time-series graph (based on days) of the symptomatic infected population and the total death within a time
eriod. In Figs. 9(A)–9(D), we studied the long-run history of the susceptible, exposed, locked down and asymptomatic infected
lasses of the model for different degrees of lockdown. In Figs. 10(A)–10(D), we studied the long-run history of the susceptible,
xposed, locked down and asymptomatic infected classes of the model for various values of the effective contact rate of asymptomatic
nfected individuals 𝛽. In Figs. 11–13, we illustrate the optimal control strategies.

Fig. 7 shows the time history of the symptomatic infected population and the total death population for 𝛼1 = 0.0052; 𝛼1 = 0.0053;
nd 𝛼 = 0.0054 with parameter values and initial population size as given in Table 2 and Table 3 respectively, for the period 23rd
1

13
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Fig. 6. Contour plots of (A) 𝑅0 based on 𝛼1 and 𝛼2, (B) 𝑅0 based on 𝛼1 and 𝛽, (C) 𝑅0 based on 𝛼2 and 𝛽.

Fig. 7. Time history of the symptomatic infected population (𝐼𝑆 ) and the total death for different values of 𝛼1.

March to 31st December, 2020. In Fig. 7, it is depicted that the real data of the total infected almost coincide with our proposed
model curve from 23rd March to 31st December, 2020. It is seen that, the proposed epidemic model is best fitted to the current
situation of India. Fig. 7 clearly show that lockdown parameter 𝛼1 has an apparent effect in controlling the spread of the disease in
society.

Fig. 8 shows the time history of the total infected and the total death for 𝛽 = 0.00000000120; 𝛽 = 0.00000000121; and
𝛽 = 0.00000000122 with parameter values and initial conditions are given in Table 2 and Table 3 respectively, for the period 23rd
March to 31st December, 2020. It is seen that, the proposed epidemic model fits well according the present situation in India.
14
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Table 3
Initial population size.
𝑆(0) 𝐿(0) 𝐸(0) 𝐼𝐴 (0) 𝐼𝑆 (0) 𝑅 (0)
650000000 700000000 6000 2000 455 2000

Fig. 8. Time history of the symptomatic infected population (𝐼𝑆 ) and the total death for different value of 𝛽.

Fig. 9. Long time history of each compartment for different value of 𝛼1.

It can be seen from Fig. 8(A) that the number of symptomatic infected individuals increases as the effective contact rate of the
asymptomatic infected individuals (𝛽) increases.

Figs. 9(A)-9(D) shows the long-run history of the susceptible, exposed, lockdown, and asymptotic infected classes of the proposed
epidemic model for different values of the lockdown parameter 𝛼 . Figs. 9(C) and 9(D) show that as the value of 𝛼 increases, the
1 1
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Fig. 10. Long time history of each compartment for different value of 𝛽.

Fig. 11. The optimal control diagrams for the three controls, namely (A) vaccination control 𝑣1(𝑡) on 𝐸, (B) the treatment control 𝑣2(𝑡) on 𝐼𝐴 and (C) the
treatment control 𝑣3(𝑡) on 𝐼𝑆 .

umber of exposed and therefore asymptomatic infected populations is reduced. Therefore, the spread of the disease in society is
lso reduced. These figures clearly demonstrated the importance of the lockdown in controlling the spread of the disease.

Figs. 10(A)-10(D) shows the long-run history of the susceptible, exposed, lockdown, and asymptotic infected classes of the
roposed epidemic model for different values of the effective contact rate of asymptomatic infected individuals (𝛽). Figs. 10(C) and
0(D) show that as the value of 𝛽 increases, the number of exposed and therefore asymptomatic infected populations is increased.
his paves way for the rapid spread of the disease in society. These figures clearly demonstrated the importance of the avoiding
irect contact with asymptomatic infected individuals and hence the rapid spread of the disease in society is drastically reduced.

For numerical analysis of the optimal problem (15), the positive weights are taken as 𝑊1 = 10 × 103;𝑊2 = 10 × 103;𝑊3 =
0 × 103;𝑊4 = 5 × 108;𝑊5 = 5 × 1010;𝑊6 = 5 × 1010; and initial population as 𝑆(0) = 1.3446 × 109;𝐸(0) = 30 × 105; 𝐼𝐴(0) =
0 × 105; 𝐼 (0) = 2.55525 × 105;𝑅(0) = 10 × 105 and remaining parameters values are taken from Table 2.
𝑆
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Fig. 12. Optimal Control diagrams for the each compartment.

Fig. 13. Control diagrams for the each compartment (Close-up view).

The optimal control graph for the controls 𝑣1(𝑡), 𝑣2(𝑡) and 𝑣3(𝑡) are presented in Figs. 11(A)-11(C). It is obvious from these
igures that more effort must be given to the controls, namely, vaccination control 𝑣1(𝑡) on the exposed class, treatment control on
symptomatic infected class 𝑣2(𝑡) and treatment control on symptomatic infected class 𝑣3(𝑡) at the beginning of the disease outbreak.
herefore, it is so important that these controls are applied to the respective compartments at the start of the COVID-19 pandemic

n India so that the rapid spread of the disease is controlled.
From Figs. 12(A)-12(E), it is obvious that the populations of the infected compartments are reduced when the optimal control

trategies 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡) are applied in the compartments 𝐸, 𝐼𝐴, 𝐼𝑆 respectively. This shows the importance of the implementation
f vaccination and treatment controls simultaneously to control the spread of this COVID-19 epidemic in India. From Fig. 13, it is
bvious that the populations of the infected compartments, namely, 𝐼𝐴 and 𝐼𝑆 are reduced drastically when the optimal control
trategies 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡) are applied simultaneously in the compartments 𝐸, 𝐼𝐴, 𝐼𝑆 respectively. Further, it is noticed from Fig. 13(E)
hat the population of the recovered compartment 𝑅 also increases gradually when the optimal control strategies are applied
imultaneously in the respective compartments.
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Fig. 14. Time history of the various populations for 𝛼1 = 0 with parameters and initial values from Tables 2 and 3 respectively.

From Fig. 14, it is noticed that the single strain COVID-19 waves are formed in our epidemic model when 𝛼1 = 0. The study
showed that if the lockdown was completely relaxed, a single strain COVID-19 wave was observed.

10. Conclusion

In this paper, we have considered a COVID-19 epidemic model consisting of six population classes, namely, susceptible population
(𝑆), lockdown population (𝐿), exposed population (𝐸), asymptomatic infected population (𝐼𝐴), symptomatic infected population
(𝐼𝑆 ), recovered population (𝑅) and analyzed the dynamic behavior of the system. The system has two equilibrium points, namely
disease-free equilibrium 𝑃0 and endemic equilibrium 𝑃1. The basic reproduction number 𝑅0, which is an important threshold
parameter used to study the dynamical behavior of the system, has been calculated and is given by

𝑅0 =
𝛽𝛬(𝑑 + 𝛼2)𝛾1

𝑑(𝑑 + 𝛾1 + 𝛾2)(𝑑 + 𝛿1 + 𝛿2 + 𝜇1)(𝑑 + 𝛼1 + 𝛼2)

It is found that the DFE 𝑃0 is globally asymptotically stable when 𝑅0 < 1 and the EE 𝑃1 is globally asymptotically stable under
some conditions when 𝑅0 > 1. From the sensitivity analysis of 𝑅0 with respect to the parameters 𝛼1, it is noticed that increase in the
progression rate from susceptible class to lockdown class makes 𝑅0 decrease and hence the spread of infection in society is drastically
reduced. If 𝛼2 increases, i.e., relaxation in lockdown is announced by the Government, then the value of 𝑅0 start increasing steadily
and hence there is a rapid spread of the disease in society. Furthermore, the rise of the effective contact rate of infective individuals
also increases the value of 𝑅0 which in turn increases the number of infected individuals in the society.

The main aim of this paper is to establish an optimal control problem related to the COVID-19 epidemic model such as to
minimize the spread of infection and the cost of treatment. We have used three controls, namely, vaccination control 𝑣1(𝑡), treatment
control 𝑣2(𝑡) on asymptomatic infected compartment and treatment control 𝑣3(𝑡) on symptomatic infected compartment.

Theoretical analysis of the dynamics of the COVID-19 model must be supported with numerical analysis, which is achieved
by using MATLAB. Figures are created for analyzing the dynamical behavior of the COVID-19 system and comparative figures
are presented related to the optimal control problem, which highlights the importance of the controls on the proposed epidemic
model. The figures related to the dynamical analysis of the COVID-19 model support the theoretical results. The diagrams related
to the optimal control problem indicate that the optimal controls, namely, vaccination and treatment controls are very vital in
controlling this epidemic. The graphical analysis of the proposed epidemic model using the values as in Table 2 is presented
and the optimal control are obtained theoretically and finally presented graphically. Controlling the spread of the epidemic is a
very important task, and it is a vital issue to make detailed studies on control strategies. Predicting and identifying cost-effective
control strategies to control the epidemic and minimize the cost of implementing control strategies are important tasks of health
administrators and researchers. Many research articles analyzed the dynamics of the COVID-19 models without control strategies
with real data belonging to various other countries and the results from our proposed COVID-19 pandemic model considered the data
sets from Indian population during the pandemic and it suggested that the COVID-19 epidemic is well controlled by implementing
the lockdown, and after analyzing the optimal control problem without lockdown relative to our basic model, we see that control
strategies like vaccination and treatment are very effective in controlling the spread of COVID-19 disease in India.
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