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ABSTRACT
Optimal egg size theory assumes that changes in the egg and clutch are driven by
selection, resulting in adjustments for the largest possible production of offspring
with the highest fitness. Evidence supports the idea that large-bodied turtles tend to
produce larger clutches with small and round eggs, while smaller species produce
small clutches with large and elongated eggs. Our goals were to investigate whether
egg and clutch size follow the predictions of egg size theory, if there are convergent
reproductive strategies, and identify ecological factors that influence clutch and egg
traits across all clades of living turtles. Using phylogenetic methods, we tested the
covariance among reproductive traits, if they are convergent among different turtle
lineages, and which ecological factors influence these traits. We found that both
egg shape and size inversely correlate with clutch size, although with different
evolutionary rates, following the predictions of the egg size theory. We also present
compelling evidence for convergence among different turtle clades, over at least
two reproductive strategies. Furthermore, climatic zone is the only ecological
predictor to influence both egg size and fecundity, while diet only influences egg size.
We conclude that egg and clutch traits in Testudines evolved independently several
times across non-directly related clades that converged to similar reproductive
strategies. Egg and clutch characteristics follow the trade-offs predicted by egg size
theory and are influenced by ecological factors. Climatic zone and diet play an
important role in the distribution of reproductive characteristics among turtles.

Subjects Animal Behavior, Biodiversity, Evolutionary Studies, Zoology
Keywords Testudines, Egg size, Egg shape, Clutch size, Reproduction

INTRODUCTION
Macroevolutionary patterns in amniote reproduction (Battistella et al., 2019; Murray,
Crother & Doody, 2020; Starck, Stewart & Blackburn, 2021) can be investigated based on
the diversity of traits in egg and clutch (e.g., Kaplan & Salthe, 1979; Deeming & Birchard,
2007; Jetz, Sekercioglu & Böhning-Gaese, 2008; Deeming & Ruta, 2014). The idea of an
“optimal” correlation between egg and clutch size, based on trade-offs associated to K/r
strategies, has led to several discussions without a consensus about the distribution or
reasons of such correlations (Smith & Fretwell, 1974; Congdon & Gibbons, 1987;Wilbur &
Morin, 1988; Elgar & Heaphy, 1989; Godfray, Partridge & Harvey, 1991; Kuchling, 1999;
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Zhao, Chen & Liao, 2017; Yu & Deng, 2020). Optimal egg/clutch size theory assumes that
changes in the egg and clutch are driven by selection, resulting in adjustments for the
largest possible production of offspring with the highest fitness, at the lowest cost to their
progenitors (Brockelman, 1975; Congdon & Gibbons, 1987; Janzen & Warner, 2009).

Turtles offer a rich subject of investigation, given the ecological diversity of the group.
Studies focused on turtles have tested many correlations between egg size and both
morphological and ecological traits in an effort to explain the variation among species
(Elgar & Heaphy, 1989; Iverson, 1992; Iverson et al., 1993; Iverson, Lindeman & Lovich,
2019; Rowe, 1994; Rachmansah, Norris & Gibbs, 2020). Some authors have argued that the
“optimum” egg size is determined by adult body size (Gibbons, 1982), pelvic aperture
morphology (Congdon & Gibbons, 1987; Kuchling, 1999; Clark, Ewert & Nelson, 2001;
Hofmeyr, Henen & Loehr, 2005), environmental factors, such as resource availability and
temperature influenced by habitat and biogeography (Hofmeyr, Henen & Loehr, 2005;
Macip-Ríos et al., 2012; Macip-Ríos, Sustaita-Rodriguez & Casas-Andreu, 2013),
phylogenetic distribution and/or physiology (Bowden et al., 2004, Cordero, 2021).

Evidence supports the idea that large-bodied turtles tend to produce larger clutches with
relatively small and round eggs (Fig. 1A), while smaller species produce small clutches with
relatively large and elongated eggs (Fig. 1B). Elgar & Heaphy (1989) proposed that
spherical eggs are less susceptible to desiccation as the surface-volume ratio is smaller in
comparison to elongated eggs—therefore being more suitable for warmer areas.
In contrast, Pritchard (1979) suggested that small species tend to produce bigger, elongated
eggs because a small spherical egg would not be capable of producing a functional
hatchling due to a lack of space, and that adult body size is a constraint for egg width.Moll
(1979) argued that spherical eggs occupy space more efficiently than elongated eggs,
thereby allowing the fit of larger clutches in the abdominal cavity.

Many trends in egg and clutch characteristics also seem to be influenced by ecological
factors. Rachmansah, Norris & Gibbs (2020) suggested that the broad access to resources in
tropical areas, supports larger-bodied taxa to produce more eggs. Craven et al. (2008)

Figure 1 Egg and clutch strategies. Examples of different strategies: nest of the giant Arrau turtle
(Podocnemis expansa) with many small round eggs (A); small clutch with big and elongated eggs of the
South American wood turtle (Rhinoclemmys punctularia) (B). The adult carapace length of these two
species reaches over 1 m and 25 cm long, respectively. Full-size DOI: 10.7717/peerj.13014/fig-1
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proposed that resource availability and type of diet might play a role in egg nutrition
(Craven et al., 2008). Spencer & Janzen (2011), advocate that higher mean temperature of
tropical areas may influence embryo metabolism and favor earlier hatching—favoring the
production of more clutches per year.

Although general trends have been identified (e.g., Iverson, Lindeman & Lovich, 2019;
Rachmansah, Norris & Gibbs, 2020), a comprehensive analysis exploring egg and clutch
characteristics across all genera of living turtles is still missing. We present analyses based
on data from the literature for at least one representative of each extant turtle genus, in
order to identify trends in reproductive strategies and investigate potential factors that
influence clutch and egg traits. We addressed the following questions: (1) Are reproductive
traits (such as egg size, egg shape, and clutch size) correlated as predicted by egg size
theory? (2) Are turtle species from different clades converging in their reproductive
strategies? (3) Do ecological factors (such as distribution, and diet) influence egg/clutch
characteristics? We hypothesize that reproductive traits in turtles evolved independently
several times. Furthermore, we hypothesize that egg and clutch characteristics follow the
predictions of egg size theory. Such characteristics are influenced by several ecological
factors (e.g., carnivores tend to produce bigger eggs and tropical species tend to produce
bigger clutches).

MATERIALS AND METHODS
We collected morphological (carapace size), ecological (climatic zone and diet) and
reproductive data (egg size, clutch size, and number of clutches per year) for at least one
species of each turtle genus (Table 1; Appendix S1) using available literature. We used
Google scholar to perform an electronic search using different combinations of the key
words “Egg size”, “turtle reproduction”, “breeding”, “nest”, “clutch size”, “egg width”.
Studies from all dates were considered, as evolutionary characteristics of species do not
usually change within the relevant time for a literature search. Only full-text reports in
English, Spanish and Portuguese were considered. Study eligibility was assessed by one
investigator. A secondary search was conducted on the reference list of these publications
as well as on the list of publications that have cited the previous accessed one. The search
continued until the limit of four articles containing information on the same ecological
data for each species. The search was conducted following PRISMA (Moher et al., 2011)
guidelines (Appendix S2).

Table 1 Hierarchical models of evolutionary correlation among reproductive traits in turtles.

Model σ2 1,1 σ2 1,2 σ2 1,3 σ2 2,1 σ2 2,2 σ2 2,3 R1 R2 R3 Log(L) AIC

Common rates, common correlation 0.002 – – 0.0001 – – 0.519 – – 199.12 −388.25

Different rates, common correlation 0.0043 0.0015 0.0007 0.0002 0.0001 0 0.567 – – 222.99 −427.99

Common rates, different correlation 0.0021 – – 0.0001 – – 0.356 0.599 0.958 209.02 −404.05

No common structure 0.004 0.0015 0.001 0.0002 0.0001 0 0.458 0.586 0.829 224.11 −426.22

Note:
Model description, rates of correlation between egg size and three different clutch size groups (σ2 1,x), rates of correlation between egg shape and three different clutch size
groups (σ2 2,x), correlation between egg size and egg shape, affected by different regimes of clutch size (R), log-likelihood (Log-L), and Akaike information criterion (AIC)
for four multivariate Brownian evolution model fits to egg and clutch data. The best-supported model is highlighted in bold.
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Data used was based on a combination of the information available (e.g., smallest
and biggest clutch sizes reported, even if from different sources) or based on the most
common attribution for each species (e.g., species that are found both in land and water
but most commonly in water were addressed with this kind of habitat). Data from captivity
was considered as the characteristics of interest are mostly supposed to be inheritable
and we considered possible bias to be irrelevant.

All statistical and exploratory analyses were conducted in the R statistical environment
(v.4.0.4) (R Core Team; scripts and input files available in Appendix S3). We pruned
the phylogeny proposed by Pereira et al. (2017) to match our dataset (Appendix S1) and
used it in all the following analyses. Although this is not the most recent phylogeny
available, it was the one with the biggest overlap with our dataset. Anyhow, we also ran the
analyses using the most recent published phylogeny (Thomson, Spinks & Shaffer, 2021),
and got the same results (Appendix S4).

Are reproductive traits correlated as predicted by egg size theory?
In order to explore the correlation among reproductive parameters (egg width, egg length,
and clutch size) commonly explored in previous works with smaller datasets (Elgar &
Heaphy, 1989; Iverson, 1992; Iverson et al., 1993; Rowe, 1994), we fitted a hierarchical
series of models to test for heterogeneity in the evolutionary rates and correlation of
quantitative traits assigned to the tree (Revell, Toyama & Mahler, 2021). We used the
function evolvcv.lite() from the R package Phytools (Revell, 2012).

We mapped the phylogeny through ancestral state reconstruction using traits based
on clutch size (Fig. 2A), and the function make.simmap() from phytools R package: A.
from 1 to 4 eggs, B. from 5 to 29 eggs, and C. 30 or more eggs. These groupings were
arbitrarily chosen, and represent discrete traits of maximal clutch size among turtles.
As continuously valued traits, we used egg length/carapace as a proxy for relative egg size

Figure 2 Distribution of egg and clutch traits in the turtle phylogeny. Different clutch sizes were assigned to three different regimes (small,
medium, and large) and mapped to the tree (A); turtle phylogeny was plotted in a morphospace based on egg size and shape (B).

Full-size DOI: 10.7717/peerj.13014/fig-2
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(ESI) and egg length/egg width as a proxy for egg “shape” (ESH). The choice for the model
that better explains our analysis was based on Akaike information criterion (AIC;
Akaike, 1974). We also plotted the data in a phylomorphospace, to support visualization
(Fig. 2B).

Do turtles have convergent reproductive strategies?
To test the hypothesis of convergence on reproductive traits among turtles, we calculated
the angle between tree terminals assigned with similar multivariate phenotypic data
(computed as the inverse cosine of the ratio product, and the product of vectors sizes),
which represents the correlation coefficient between the terminals (vectors of the
calculated angle), that represent a measure of phenotypic resemblance. we used the
function search.conv(), from the R package RRphylo (Castiglione et al., 2019).

Small angles between vectors imply similar phenotypes, while angles around 90� and
180� represent dissimilar and opposing phenotypes, respectively (Castiglione et al., 2019).
To verify convergence, we test if the differences between groups are smaller than expected
considering their phylogenetic distance. The function can be used to test convergence
either over entire clades or among species assigned to different states. Considering that our
hypothesis of convergence includes species scattered along the phylogeny in a complex
evolutionary history, a search without predetermined groups would have to compare the
angles of phenotypic divergency between all species combinations (oppositely to
comparisons among clades with higher taxonomic level such as families). Therefore, we
assigned states based on clutch size (Appendix S1) to ensure computational viability.
This decision also follows the methodology implemented in the previous question, and is
based on the observations that turtles with larger clutches tend to produce smaller and
rounder eggs, and possess large body size, while turtles that produce small clutches tend to
show larger, elongated eggs, and have a small body size.

We first ran the analysis by testing if cryptodirans and pleurodirans converge in
their reproductive strategies. To do that, we assigned each species to one of six different
states: pleurodirans that produce clutches containing A. below five eggs, B. from five to
29 eggs, and C. 30 or more eggs; or cryptodirans that produce clutches containing C. below
5 eggs, D. from 5 to 29 eggs, and E. 30 or more eggs. We divided the same characters
into two different states based on suborder (A and D, B and E, and C and F) in order to
follow the analysis requirements. As it tests the convergence of groups distantly related,
character states must be considered different. We used the suborders Cryptodira and
Pleurodira to assign different characters as they are the most comprehensive taxonomic
levels among turtles. By doing this, we tested if species in between these suborders are
converging among three different states based on clutch size (small, medium and large).
The convergence test between different traits in different clades represent the null models
(they are not expected to converge).

Later, we ran a second analysis, without any separation among turtles, to test if species
with small clutches (up to four eggs) and large clutches (over 30 eggs) diverge in their
reproductive traits. The divergency test is nothing more than another convergence test, but
opposing the reproductive traits hypothesized to diverge, which also works as our null
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model (lack of convergence). Both tests were simulated 1,000 times and tips under the focal
states were randomly removed until clustering remained with only three tips.

Do ecological factors influence egg/clutch characteristics?
In order to estimate which ecological factors influence reproductive traits, we ran two
different phylogenetic generalized least square (PGLS) models (Grafen, 1989; Rohlf, 2001;
Martins & Housworth, 2002). In the first analysis, we tested how climatic zone, diet and the
log mean clutch predict egg size.

In the second analysis, we tested how independent variables (climatic zone, diet and egg
size) predicted the fecundity in turtles. We used the maximum number of eggs laid per
clutch times the mean number of clutches per year as a proxy for fecundity.

Model diagnosis was performed for both tests (Garamszegi, 2014). We log-transformed
the mean number of eggs per clutch (clutch mean) and fecundity to avoid skewed
distribution of the predictor and to achieve homoscedasticity and normality of residuals
(Mundry, 2014), respectively.

Multicollinearity between categorical predictors was tested using chi-squared tests
(Mundry, 2014; R Core Team, 2020). We used maximum likelihood and Pagel’s lambda
model (Pagel, 1997, 1999) to control for phylogenetic signal when fitting both PGLS.
We used the function gls() of the package nmle (Pinheiro et al., 2020).

We used P values to infer which predictors significatively influence the model (Symonds
& Blomberg, 2014; Mundry, 2014). We calculated each predictor’s coefficient and its 95%
confidence intervals using the PGLS scores table and the function confint(), respectively
(R Core Team, 2020).

RESULTS
The best fitting among all models used to test correlation among reproductive traits
(highest log-likelihood scores, Table 1) was the “different rates, common correlation”
model. Egg traits (ESH and ESI) coevolve and correlate in the same way with the regimes of
traits mapped in the tree (number of eggs per clutch; R = 0.567), although with different
evolutionary rates. Different regimes of clutch size occupy different regions of the
morphospace (Fig. 2B).

The first convergence analysis revealed significative results in tests performed against
same characters between different pleurodirans and cryptodirans (convergence test,
p = 0.001, Table 2, in green). Additionally, the analysis also indicated significative results
for convergence tests between medium sized clutches (B and E) and other size clutches
(A, C, D, and F), although only between different suborders (convergence test, p = 0.001,
Table 2, in bold). The divergency test failed to find any signs of convergence (convergence
test, p = 1.0) between turtles with small and large clutches (Appendix S5).

In our test of the influence of ecological factor over egg/clutch characteristics, all the
independent variables (climatic zone, diet and clutch mean) were significant in predicting
egg size in turtle species in the first PGLS analysis (Table 3; Fig. 3). Egg size and climatic
zone were significant predictors of fecundity in turtles (Table 4; Fig. 4).
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DISCUSSION
The evolutionary history of turtles is marked by a complex pattern of character evolution
regarding their reproductive strategies (e.g., changes in egg size, egg shape and clutch size).
Our analyses support the interpretation of repeated changes in these characters over
evolutionary history. The hypothesis that large-bodied turtles tend to produce larger
clutches with comparatively smaller and rounder eggs, while small-bodied species produce
small clutches with larger and more elongated eggs seems to be supported by general
patterns described in both the analyses here as well as those in previous literature (Elgar &

Table 2 Tests of convergence among different reproductive strategies in turtles.

State 1 State 2 P value

D E 1

D F 1

D A 0.001

D B 0.001

D C 0.482

E F 0.703

E A 0.001

E B 0.001

E C 0.001

F A 0.229

F B 0.001

F C 0.001

A B 0.195

A C 0.754

B C 0.133

Note:
Letters represent traits based in different clutch sizes: small (below five eggs), medium (from five to 29 eggs), and large (30
or more eggs), for pleurodirans (A, B, and C, respectively), and cryptodirans (D, E, and F, respectively). Tests that
presented significative results for convergence (P = 0.001) are in bold. Tests between same traits and between same
suborders are in green.

Table 3 Phylogenetic generalized least squares scores of variables predicting egg size in turtles.

Predictor Coefficient SE Lower CI Upper CI p value

Climatic zone 0.002

– Temperate 0.296 0.019 0.259 0.333

– Tropical 0.288 0.028 0.234 0.342

Diet <0.001

– Carnivore 0.296 0.019 0.259 0.333

– Herbivore 0.278 0.031 0.217 0.340

– Omnivore 0.306 0.031 0.245 0.367

Clutch mean −0.056 0.004 −0.064 −0.049 <0.001

Note:
Climatic zone, diet and clutch mean predict the size of the egg in turtle species. SE, standard errors. CI,
confidence intervals.
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Figure 3 Phylogenetic generalized least squares model of variables predicting egg size in turtles. The
model predicts the relationship of relative egg size (egg length/carapace length) to log mean clutch size
(mean number of eggs laid per clutch) for turtle species that occupy different climatic zones (temperate or
tropical) and have different diet types (carnivory, herbivory, or omnivory).

Full-size DOI: 10.7717/peerj.13014/fig-3

Table 4 Phylogenetic generalized least squares scores of variables predicting fecundity in turtles.

Predictor Coefficient SE Lower CI Upper CI p value

Climatic zone 0.005

– Temperate 5.104 0.353 4.413 5.796

– Tropical 5.247 0.503 4.263 6.232

Diet 0.378

– Carnivore 5.104 0.353 4.413 5.796

– Herbivore 4.970 0.569 3.856 6.085

– Omnivore 5.255 0.564 4.150 6.360

Egg size −11.426 0.907 −13.203 −9.649 <0.001

Note:
Climatic zone and egg size predict fecundity in turtle species. SE, standard errors. CI, confidence intervals.
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Heaphy, 1989; Iverson, 1992; Iverson et al., 1993; Iverson, Lindeman & Lovich, 2019; Rowe,
1994; Rachmansah, Norris & Gibbs, 2020).

The results of our analysis are consistent with the predictions of the egg size theory.
The selected model reflects a tendency for the traits “egg size” and “egg shape” to positively
coevolve, while both are inversely correlated to “clutch size”. Moreover, based on the
distribution of characters along the tree and in the phylomorphospace, these patterns
evolved independently and recurrently along the diversification of turtles. During their
evolutionary history, turtles explored different reproductive strategies with several
instances of convergent evolution.

However, correlation does not imply causation and the interpretation of observed
patterns as an example of evolutionary convergence is not straightforward (Kluge, 2005;

Temperate Tropical
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Figure 4 Phylogenetic generalized least squares model of variables predicting fecundity in turtles.
The model predicts the relationship of log fecundity (maximum number of eggs laid per clutch times
the mean number of eggs laid per clutch) to relative egg size (egg length/carapace length) for turtle species
that occupy different climatic zones (temperate or tropical).

Full-size DOI: 10.7717/peerj.13014/fig-4
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Stayton, 2015). To be able to make inferences about evolutionary patterns, we used
quantitative measures and falsified our hypotheses with null models (Popper, 1982;
Stayton, 2015) through the function search.conv() (Castiglione et al., 2019). Turtles of the
Pleurodira and Cryptodira converge in all three different reproductive strategies tested.

Because all traits used in the convergence tests are continuous, without any clear break
in the patterns, we also recovered significative results among medium size clutches and
small or big size clutches between different “suborders”. The fact that the same results were
not recovered within suborders, is an indication that this result is a type I error. Because
“suborder” is a highly inclusive taxonomic rank, the phenotypic differences between
groups are considered smaller than expected considering their evolutionary distance.
When the same traits are tested within the same “suborder”, their differences are not less
than expected and, therefore, are not pointed as convergent.

The divergence test between small and large clutches among all turtles indicated these
traits are indeed divergent, independently of the taxonomic rank. Therefore, evidence
indicates that turtles are converging to at least two—most probably three—different egg
and clutch strategies, with continuous traits that prevent a clear differentiation among
them. Nevertheless, these traits follow the egg/clutch size theory.

Although our analyses provided evidence for convergence among different turtle clades,
they do not explain the reasons for such convergence. With the PGLS analyses, we were
able to specify some of the ecological pressures affecting egg and clutch characteristics.
Climatic zone is the only factor to partially explain the correlations in both analyses.
Egg size is also influenced by diet with herbivores producing relatively smaller eggs.
Tropical species have smaller eggs and a higher mean number of eggs per clutch compared
to species from temperate areas (similar results have been reported for specific turtle clades
in previous works, see Macip-Ríos et al. (2017) for an example in Kinosternidae).
Additionally, high protein intake seems to stimulate egg production in turtles and other
animals (Watanabe et al., 1984; Bjorndal, 1985). These results might be influenced by the
broad availability of resources in tropical areas, enabling larger-bodied taxa that can
produce more eggs (Rachmansah, Norris & Gibbs, 2020). It might also play a role in egg
nutrition (Craven et al., 2008) and in favoring earlier hatching, as tropical areas have
higher mean temperatures throughout the year, which increases metabolism in embryos
(Spencer & Janzen, 2011).

Since many turtle families are spread across different geographic areas, in different
climatic zones and with specific available resources (e.g., Emydidae across the Americas;
Bour, 2007), closely related species are subjected to extremely different ecological
pressures. Sympatric distant related species, however, suffer similar ecological pressures
and, therefore, tend to occupy similar ecological niches despite their intrinsic phylogenetic
distance (Kim, 2016).

Aside from the importance of ecological factors in egg and clutch characteristics, the
PGLS analyses also support our first analysis on egg and clutch correlations. There is a
negative correlation between relative egg size and clutch size, demonstrating that
reproductive traits are correlated as predicted by egg size theory. Based on these results, we
conclude that there are major trends in reproductive strategies to which turtles converge.
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In addition to the traits tested in the present study, other factors may play important
roles in egg and clutch strategies of turtles, and could contribute to shaping the patterns
found in our analyses. Adaptations within specific niches are worth mentioning and
should not be forgotten when interpreting this complex scenario (see Kluge, 2005 and
Losos, 2011 for a review of the role of convergent evolution in inferring adaptations).
For instance, little is known about many of the aspects that influence the reproductive
characteristics within Testudines. These include specific environmental pressures (as
suggested by Hofmeyr, Henen & Loehr (2005) for Homophus signatus; and by Hedrick
et al. (2018) for Chelydra serpentina, the last case within annual changes over the
same population), patterns of reproductive allocation within and among species
(Wilkinson & Gibbons, 2005), morphological constraints (Lovich et al., 2012), conflicts in
parent-offspring size (Janzen & Warner, 2009), anti-predatory strategies (Santos et al.,
2016), maternal effects and parental care (Hughes & Brooks, 2006; Warner, Jorgensen &
Janzen, 2010).

As mentioned by Nussbaum (1987), the safe harbor hypothesis suggests that parental
care makes the embryonic stage the safest harbor, favoring egg size to increase in species
with parental care, and consequently decreasing the duration of sequential stages with
higher risk. Testudinidae is the turtle clade with the largest number of species known to
care for their eggs (Agha et al., 2013). Although still an uncommon behavior within
Testudinidae, it makes the safe harbor hypothesis a possible explanation for the
comparatively larger eggs and, consequently, smaller clutches in most species of this clade.

Although other turtle clades have historically been considered to lack any form of
parental care, there is now evidence to the contrary (Ferrara, Vogt & Sousa-Lima, 2013).
The Arrau turtle (Podocnemis expansa) is the biggest South American freshwater turtle,
and produces many small round eggs in a clutch. In this case, the only described
parental care behavior starts after the eggs hatch, providing the safe harbor hypothesis
with only weak explanatory power. Other factors probably have a bigger influence in this
case, such as the proposition that round eggs suffer less from desiccation (Elgar & Heaphy,
1989; Hofmeyr, Henen & Loehr, 2005).

As noticed by Elgar & Heaphy (1989), terrestrial species lay larger eggs in
smaller clutches compared to freshwater or marine species, but this is a statistically
confounded association because of the fact that turtle families represent ecological groups.
The convergent distribution of reproductive traits and the different modifications of these
traits across families that occupy unique niches—such as Testudinidae that live on land
and Cheloniidae/Dermochelyidae that live in the ocean—could be considered evidence for
the adaptation of specific clades to an “optimal” reproductive strategy in a specific
environment or under a specific constraint.

The fact that the distribution of these strategies is associated with groups that colonized
new environments provides strong support for a heuristic assumption of adaptive value
(Kluge, 2005; Losos, 2011; Thomson, Spinks & Shaffer, 2021). At the same time, asserting
the adaptive value of some of these traits can be difficult (see Kluge, 2005), and the
correlation between specific traits and families that form ecological groups prevents the
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postulation of statistically supported tests, which makes hypotheses based on niche
adaptations greatly speculative (Popper, 1982; Stayton, 2015).

CONCLUSIONS
We conclude that egg and clutch traits in Testudines evolved independently several
times across non-directly related clades that converged to similar reproductive strategies.

Egg and clutch characteristics follow the trade-offs predicted by egg size theory and
are influenced by ecological factors. Climatic zone plays an important role in the
distribution of reproductive characteristics among turtles, and diet influences egg size.

ACKNOWLEDGEMENTS
We thank Dr. Richard Vogt for providing important literature on egg/clutch diversity,
Anne-Claire Fabre, Julien Clavel, Danilo Muniz and Diogo Melo, for helping with
exploratory analyses, and Ana Balcarcel for revising the manuscript. We also thank the
anonymous reviewers and the editor, Diogo Provete, for all the work done on improving
this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) supported
Pedro Henrique Dias (Proc. 88887.364687/2019e00). Swiss Government Excellence
Scholarship (ESKAS) supported Gabriel Jorgewich-Cohen (Grant number: 2020.0190).
This work was supported by SNF Grant No. 31003A‑169395 to Marcelo R Sanchez-
Villagra and by the Federal Commission for Scholarships for Foreign Students (FCS,
Switzerland) to Gabriel Jorgewich-Cohen. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES): 88887.364687/
2019e00.
Swiss Government Excellence Scholarship (ESKAS): 2020.0190.
SNF Grant: 31003A‑169395.
Federal Commission for Scholarships for Foreign Students (FCS, Switzerland).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Gabriel Jorgewich-Cohen conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

Jorgewich-Cohen et al. (2022), PeerJ, DOI 10.7717/peerj.13014 12/16

http://dx.doi.org/10.7717/peerj.13014
https://peerj.com/


� Rafael S. Henrique conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Pedro Henrique Dias analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� Marcelo R. Sanchez-Villagra conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data from literature and treated data for model analysis and codes are available
in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.13014#supplemental-information.

REFERENCES
Agha M, Lovich JE, Ennen JR, Wilcox E. 2013. Nest-guarding by female Agassiz’s desert tortoise

(Gopherus agassizii) at a wind-energy facility near Palm Springs, California. The Southwestern
Naturalist 58(2):254–257 DOI 10.1894/0038-4909-58.2.254.

Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic
Control 19(6):716–723 DOI 10.1109/TAC.1974.1100705.

Battistella T, Cerezer F, Bubadué J, Melo G, Graipel M, Cáceres N. 2019. Litter size variation in
didelphid marsupials: evidence of phylogenetic constraints and adaptation. Biological Journal of
the Linnean Society 126(1):40–54 DOI 10.1093/biolinnean/bly157.

Bjorndal KA. 1985. Nutritional ecology of sea turtles. Copeia 1985(3):736–751
DOI 10.2307/1444767.

Bour R. 2007. Global diversity of turtles (Chelonii; Reptilia) in freshwater. Hydrobiologia
595(1):593–598 DOI 10.1007/978-1-4020-8259-7_57.

Bowden RM, Harms HK, Paitz RT, Janzen FJ. 2004. Does optimal egg size vary with
demographic stage because of a physiological constraint? Functional Ecology 18(4):522–529
DOI 10.1111/j.0269-8463.2004.00861.x.

Brockelman WY. 1975. Competition, the fitness of offspring, and optimal clutch size. The
American Naturalist 109(970):677–699 DOI 10.1086/283037.

Castiglione S, Serio C, Tamagnini D, Melchionna M, Mondanaro A, Di Febbraro M, Profico A,
Piras P, Barattolo F, Raia P. 2019. A new, fast method to search for morphological convergence
with shape data. PLOS ONE 14(12):e0226949 DOI 10.1371/journal.pone.0226949.

Cordero GA. 2021. Disentangling the correlated evolution of body size, life history, and ontogeny
in miniaturized chelydroid turtles. Evolution & Development 23(5):439–458
DOI 10.1111/ede.12386.

Clark PJ, Ewert MA, Nelson CE. 2001. Physical apertures as constraints on egg size and shape in
the common musk turtle, Sternotherus odoratus. Functional Ecology 15(1):70–77
DOI 10.1046/j.1365-2435.2001.00494.x.

Jorgewich-Cohen et al. (2022), PeerJ, DOI 10.7717/peerj.13014 13/16

http://dx.doi.org/10.7717/peerj.13014#supplemental-information
http://dx.doi.org/10.7717/peerj.13014#supplemental-information
http://dx.doi.org/10.7717/peerj.13014#supplemental-information
http://dx.doi.org/10.1894/0038-4909-58.2.254
http://dx.doi.org/10.1109/TAC.1974.1100705
http://dx.doi.org/10.1093/biolinnean/bly157
http://dx.doi.org/10.2307/1444767
http://dx.doi.org/10.1007/978-1-4020-8259-7_57
http://dx.doi.org/10.1111/j.0269-8463.2004.00861.x
http://dx.doi.org/10.1086/283037
http://dx.doi.org/10.1371/journal.pone.0226949
http://dx.doi.org/10.1111/ede.12386
http://dx.doi.org/10.1046/j.1365-2435.2001.00494.x
http://dx.doi.org/10.7717/peerj.13014
https://peerj.com/


Congdon JD, Gibbons JW. 1987.Morphological constraint on egg size: a challenge to optimal egg
size theory? Proceedings of The National Academy of Sciences of The United States of America
84(12):4145–4147 DOI 10.1073/pnas.84.12.4145.

Craven KS, Parsons J, Taylor SA, Belcher CN, Owens DW. 2008. The influence of diet on fatty
acids in the egg yolk of green sea turtles, Chelonia mydas. Journal of Comparative Physiology B
178(4):495–500 DOI 10.1007/s00360-007-0242-8.

Deeming DC, Birchard GF. 2007. Allometry of egg and hatchling mass in birds and reptiles: roles
of developmental maturity, eggshell structure and phylogeny. Journal of Zoology 271(1):78–87
DOI 10.1111/j.1469-7998.2006.00219.x.

Deeming DC, Ruta M. 2014. Egg shape changes at the theropod-bird transition, and a
morphometric study of amniote eggs. Royal Society Open Science 1(3):140311
DOI 10.1098/rsos.140311.

Elgar M, Heaphy LJ. 1989. Covariation between clutch size, egg weight and egg shape: comparative
evidence for chelonians. Journal of Zoology 219(1):137–152
DOI 10.1111/j.1469-7998.1989.tb02572.x.

Ferrara CR, Vogt RC, Sousa-Lima RS. 2013. Turtle vocalizations as the first evidence of
posthatching parental care in chelonians. Journal of Comparative Psychology 127(1):24–32
DOI 10.1037/a0029656.

Garamszegi LZ. 2014. Modern phylogenetic comparative methods and their application in
evolutionary biology: concepts and practice. Berlin: Springer.

Gibbons JW. 1982. Reproductive patterns in freshwater turtles. Herpetologica 38(1):222–227.

Godfray HCJ, Partridge L, Harvey PH. 1991. Clutch size. Annual Review of Ecology and
Systematics 22(1):409–429 DOI 10.1146/annurev.es.22.110191.002205.

Grafen A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society B
326:119–157 DOI 10.1098/rstb.1989.0106.

Hedrick AR, Klondaris HM, Corichi LC, Dreslik MJ, Iverson JB. 2018. The effects of climate on
annual variation in reproductive output in Snapping Turtles (Chelydra serpentina). Canadian
Journal of zoology 96(3):221–228 DOI 10.1139/cjz-2016-0321.

Hofmeyr MD, Henen BT, Loehr VJ. 2005. Overcoming environmental and morphological
constraints: egg size and pelvic kinesis in the smallest tortoise, Homopus signatus. Canadian
Journal of Zoology 83(10):1343–1352 DOI 10.1139/z05-132.

Hughes EJ, Brooks RJ. 2006. The good mother: does nest-site selection constitute parental
investment in turtles? Canadian Journal of Zoology 84(11):1545–1554 DOI 10.1139/z06-148.

Iverson JB. 1992. Correlates of reproductive output in turtles (Order Testudines). Herpetological
Monographs 6(1992):25–42 DOI 10.2307/1466960.

Iverson JB, Balgooyen CP, Byrd KK, Lyddan KK. 1993. Latitudinal variation in egg and clutch
size in turtles. Canadian Journal of Zoology 71(12):2448–2461 DOI 10.1139/z93-341.

Iverson JB, Lindeman PV, Lovich JE. 2019. Understanding reproductive allometry in turtles: a
slippery slope. Ecology and Evolution 9(20):11891–11903 DOI 10.1002/ece3.5697.

Janzen FJ, Warner DA. 2009. Parent-offspring conflict and selection on egg size in turtles. Journal
of Evolutionary Biology 22(11):2222–2230 DOI 10.1111/j.1420-9101.2009.01838.x.

Jetz W, Sekercioglu CH, Böhning-Gaese K. 2008. The worldwide variation in avian clutch size
across species and space. PLoS Biology 6(12):e303 DOI 10.1371/journal.pbio.0060303.

Kaplan RH, Salthe SN. 1979. The allometry of reproduction: an empirical view in salamanders.
The American Naturalist 113(5):671–689 DOI 10.1086/283425.

Jorgewich-Cohen et al. (2022), PeerJ, DOI 10.7717/peerj.13014 14/16

http://dx.doi.org/10.1073/pnas.84.12.4145
http://dx.doi.org/10.1007/s00360-007-0242-8
http://dx.doi.org/10.1111/j.1469-7998.2006.00219.x
http://dx.doi.org/10.1098/rsos.140311
http://dx.doi.org/10.1111/j.1469-7998.1989.tb02572.x
http://dx.doi.org/10.1037/a0029656
http://dx.doi.org/10.1146/annurev.es.22.110191.002205
http://dx.doi.org/10.1098/rstb.1989.0106
http://dx.doi.org/10.1139/cjz-2016-0321
http://dx.doi.org/10.1139/z05-132
http://dx.doi.org/10.1139/z06-148
http://dx.doi.org/10.2307/1466960
http://dx.doi.org/10.1139/z93-341
http://dx.doi.org/10.1002/ece3.5697
http://dx.doi.org/10.1111/j.1420-9101.2009.01838.x
http://dx.doi.org/10.1371/journal.pbio.0060303
http://dx.doi.org/10.1086/283425
http://dx.doi.org/10.7717/peerj.13014
https://peerj.com/


Kim SS. 2016. The effects of sympatry on patterns of bill morphology between closely related
species of birds, worldwide. Doctoral dissertation.

Kluge AG. 2005. Testing lineage and comparative methods for inferring adaptation. Zoologica
Scripta 34:653–663 DOI 10.1111/j.1463-6409.2005.00207.x.

Kuchling G. 1999. The reproductive biology of the Chelonia. Berlin: Springer Science & Business
Media.

Losos JB. 2011. Convergence, adaptation, and constraint. Evolution 65:1827–1840
DOI 10.1111/j.1558-5646.2011.01289.x.

Lovich JE, Madrak SV, Drost CA, Monatesti AJ, Casper D, Znari M. 2012. Optimal egg size in a
suboptimal environment: reproductive ecology of female Sonora mud turtles (Kinosternon
sonoriense) in central Arizona, USA. Amphibia-Reptilia 33(2):161–170
DOI 10.1163/156853812X634035.

Macip-Ríos R, Brauer-Robleda P, Casas-Andreu G, de Lourdes Arias-Cisneros M,
Sustaita-Rodríguez VH. 2012. Evidence for the morphological constraint hypothesis and
optimal offspring size theory in the Mexican mud turtle (Kinosternon integrum). Zoological
Science 29(1):60–65 DOI 10.2108/zsj.29.60.

Macip-Ríos R, Sustaita-Rodriguez VH, Casas-Andreu G. 2013. Evidence of pelvic and nonpelvic
constraint on egg size in two species of Kinosternon from Mexico. Chelonian Conservation and
Biology 12(2):218–226 DOI 10.2744/CCB-1038.1.

Macip-Ríos R, Ontiveros RN, Sánchez-León AT, Casas-Andreu G. 2017. Evolution of
reproductive effort in mud turtles (Kinosternidae): the role of environmental predictability.
Evolutionary Ecology Research 18(5):539–554.

Martins EP, Housworth EA. 2002. Phylogeny shape and the phylogenetic comparative method.
Systematic Biology 51:873–880 DOI 10.1080/10635150290102573.

Moher D, Altman DG, Liberati A, Tetzlaff J. 2011. PRISMA statement. Epidemiology 22(1):128
DOI 10.1097/EDE.0b013e3181fe7825.

Moll EO. 1979. Reproductive cycles and adaptations. In: Turtles: perspectives and research,
Hoboken: Wiley, 305–331.

Mundry R. 2014. Statistical issues and assumptions of phylogenetic generalized least squares.
In: Garamszegi LZ, ed. Modern Phylogenetic Comparative Methods and Their Application in
Evolutionary Biology. Berlin: Springer, 131–153.

Murray CM, Crother BI, Doody JS. 2020. The evolution of crocodilian nesting ecology and
behavior. Ecology and Evolution 10(1):131–149 DOI 10.1002/ece3.5859.

Nussbaum RA. 1987. Parental care and egg size in salamanders: an examination of the safe harbor
hypothesis. Population Ecology 29(1):27–44 DOI 10.1007/BF02515423.

Pagel M. 1997. Inferring evolutionary processes from phylogenies. Zoologica Scripta 26(4):331–348
DOI 10.1111/j.1463-6409.1997.tb00423.x.

Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401(6756):877–884
DOI 10.1038/44766.

Pereira AG, Sterli J, Moreira FR, Schrago CG. 2017. Multilocus phylogeny and statistical
biogeography clarify the evolutionary history of major lineages of turtles. Molecular
Phylogenetics and Evolution 113:59–66 DOI 10.1016/j.ympev.2017.05.008.

Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. 2020. nlme: linear and nonlinear mixed
effects models. R package version 3. Available at https://cran.r-project.org/package=nlme.

Popper KR. 1982. Science: conjecture and refutations. New York: Basic Books, 104–111.

Pritchard PCH. 1979. Encyclopedia of turtles. Neptune City: TFH.

Jorgewich-Cohen et al. (2022), PeerJ, DOI 10.7717/peerj.13014 15/16

http://dx.doi.org/10.1111/j.1463-6409.2005.00207.x
http://dx.doi.org/10.1111/j.1558-5646.2011.01289.x
http://dx.doi.org/10.1163/156853812X634035
http://dx.doi.org/10.2108/zsj.29.60
http://dx.doi.org/10.2744/CCB-1038.1
http://dx.doi.org/10.1080/10635150290102573
http://dx.doi.org/10.1097/EDE.0b013e3181fe7825
http://dx.doi.org/10.1002/ece3.5859
http://dx.doi.org/10.1007/BF02515423
http://dx.doi.org/10.1111/j.1463-6409.1997.tb00423.x
http://dx.doi.org/10.1038/44766
http://dx.doi.org/10.1016/j.ympev.2017.05.008
https://cran.r-project.org/package=nlme
http://dx.doi.org/10.7717/peerj.13014
https://peerj.com/


R Core Team. 2020. Stats. R package, version 4.0.3. Available at https://stat.ethz.ch/pipermail/r-
announce/2020/000662.html.

Rachmansah A, Norris D, Gibbs JP. 2020. Population dynamics and biological feasibility of
sustainable harvesting as a conservation strategy for tropical and temperate freshwater turtles.
PLOS ONE 15(2):e0229689 DOI 10.1371/journal.pone.0229689.

Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things).
Methods in Ecology and Evolution 3(2):217–223 DOI 10.1111/j.2041-210X.2011.00169.x.

Revell LJ, Toyama KS, Mahler DL. 2021. A simple hierarchical model for heterogeneity in the
evolutionary correlation on a phylogenetic tree. bioRxiv DOI 10.1101/2021.05.06.442968.

Rohlf FJ. 2001. Comparative methods for the analysis of continuous variables: geometric
interpretations. Evolution 55:2143–2160 DOI 10.1111/j.0014-3820.2001.tb00731.x.

Rowe JW. 1994. Egg size and shape variation within and among Nebraskan painted turtle
(Chrysemys picta bellii) populations: relationships to clutch and maternal body size. Copeia
1994(4):1034–1040 DOI 10.2307/1446729.

Santos RG, Pinheiro HT, Martins AS, Riul P, Bruno SC, Janzen FJ, Ioannou CC. 2016. The
anti-predator role of within-nest emergence synchrony in sea turtle hatchlings. Proceedings of
the Royal Society B: Biological Sciences 283(1834):20160697 DOI 10.1098/rspb.2016.0697.

Symonds MRE, Blomberg SP. 2014. A primer on phylogenetic generalised least squares.
In: Garamszegi LZ, ed. Modern Phylogenetic Comparative Methods and Their Application in
Evolutionary Biology. Berlin: Springer, 105–130.

Smith CC, Fretwell SD. 1974. The optimal balance between size and number of offspring. The
American Naturalist 108(962):499–506 DOI 10.1086/282929.

Spencer RJ, Janzen FJ. 2011. Hatching behavior in turtles. Integrative and Comparative Biology
51(1):100–110 DOI 10.1093/icb/icr045.

Starck JM, Stewart JR, Blackburn DG. 2021. Phylogeny and evolutionary history of the amniote
egg. Journal of Morphology 282(7):1080–1122 DOI 10.1002/jmor.21380.

Stayton CT. 2015. The definition, recognition, and interpretation of convergent evolution, and two
new measures for quantifying and assessing the significance of convergence. Evolution
69(8):2140–2153 DOI 10.1111/evo.12729.

Thomson RC, Spinks PQ, Shaffer HB. 2021. A global phylogeny of turtles reveals a burst of
climate-associated diversification on continental margins. Proceedings of the National Academy
of Sciences 118(7):e2012215118.

Warner DA, Jorgensen CF, Janzen FJ. 2010. Maternal and abiotic effects on egg mortality and
hatchling size of turtles: temporal variation in selection over seven years. Functional Ecology
24(4):857–866 DOI 10.1111/j.1365-2435.2010.01714.x.

Watanabe T, Takeuchi T, Saito M, Nishimura K. 1984. Effect of low protein-high calory or
essential fatty acid deficiency diet on reproduction of rainbow trout [Salmo gairdnerii]. Bulletin
of the Japanese Society of Scientific Fisheries 50(7):1207–1215 DOI 10.2331/suisan.50.1207.

Wilbur HM, Morin PJ. 1988. Life history evolution in turtles. Biology of the Reptilia 16:387–439.

Wilkinson LR, Gibbons JW. 2005. Patterns of reproductive allocation: clutch and egg size
variation in three freshwater turtles. Copeia 2005(4):868–879
DOI 10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2.

Yu TL, Deng YH. 2020. Geographic variation in maternal investment and trade-offs between egg
size and clutch size in an endemic toad of the Qinghai-Tibet plateau. Scientific Reports 10(1):1–8
DOI 10.1038/s41598-020-63635-y.

Zhao L, Chen C, Liao WB. 2017. No evidence for trade-off between clutch size and egg size in the
spot-legged treefrog (Polypedates megacephalus).North-Western Journal of Zoology 13(1):58–62.

Jorgewich-Cohen et al. (2022), PeerJ, DOI 10.7717/peerj.13014 16/16

https://stat.ethz.ch/pipermail/r-announce/2020/000662.html
https://stat.ethz.ch/pipermail/r-announce/2020/000662.html
http://dx.doi.org/10.1371/journal.pone.0229689
http://dx.doi.org/10.1111/j.2041-210X.2011.00169.x
http://dx.doi.org/10.1101/2021.05.06.442968
http://dx.doi.org/10.1111/j.0014-3820.2001.tb00731.x
http://dx.doi.org/10.2307/1446729
http://dx.doi.org/10.1098/rspb.2016.0697
http://dx.doi.org/10.1086/282929
http://dx.doi.org/10.1093/icb/icr045
http://dx.doi.org/10.1002/jmor.21380
http://dx.doi.org/10.1111/evo.12729
http://dx.doi.org/10.1111/j.1365-2435.2010.01714.x
http://dx.doi.org/10.2331/suisan.50.1207
http://dx.doi.org/10.1643/0045-8511(2005)005[0868:PORACA]2.0.CO;2
http://dx.doi.org/10.1038/s41598-020-63635-y
http://dx.doi.org/10.7717/peerj.13014
https://peerj.com/

	The evolution of reproductive strategies in turtles
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


