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Abstract 
 
Humans and other animals develop remarkable behavioral specializations for identifying, 
differentiating, and acting on classes of ecologically important signals. Ultimately, this 
expertise is flexible enough to support diverse perceptual judgments: a voice, for example, 
simultaneously conveys what a talker says as well as myriad cues about her identity and state. 
Mature perception across complex signals thus involves both discovering and learning 
regularities that best inform diverse perceptual judgments, and weighting this information 
flexibly as task demands change. Here, we test whether this flexibility may involve 
endogenous attentional gain to task-relevant dimensions. We use two prospective auditory 
category learning tasks to relate a complex, entirely novel soundscape to four classes of “alien 
identity” and two classes of “alien size.” Identity, but not size, categorization requires discovery 
and learning of patterned acoustic input situated in one of two simultaneous, frequency-
delimited bands. This allows us to capitalize on the coarsely segregated frequency-band-
specific channels of auditory tonotopic maps using fMRI to ask whether category-relevant 
perceptual information is prioritized relative to simultaneous, uninformative information. 
Among participants expert at alien identity categorization, we observe prioritization of the 
diagnostic frequency band that persists even when the diagnostic information becomes 
irrelevant in the size categorization task. Tellingly, the neural selectivity evoked implicitly in 
categorization aligns closely with activation driven by explicit, sustained selective attention to 
other sounds presented in the same frequency band. Additionally, we observe fingerprints of 
individual differences in the learning trajectories taken to achieve expert-level categorization 
in patterns of neural activity associated with the diagnostic dimension. In all, this indicates that 
acquiring categories can drive the emergence of acquired attentional salience to dimensions 
of acoustic input. 
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Systematic changes in neural selectivity 
reflect the acquired salience of category-diagnostic dimensions 

 
Learners of all ages discover structured perceptual input to achieve their goals, and even 
simple sights and sounds convey rich information that can flexibly support multiple behaviors. 
A single utterance simultaneously conveys a talker’s age (Lavan, 2022) and socioeconomic 
class (Kraus et al. 2019), whether she is a stranger or a loved one (Holmes et al., 2018), and 
if she is requesting her bill or her pill (Murphy et al. 2023). A glimpse of her face communicates 
her trustworthiness (Todorov et al. 2009), emotion (Krumhuber et al. 2023), and identity 
(Young et al. 2020) among other things. Successful perception thus requires that learners 
discover and learn distinct input patterns that best inform specific judgments. These underlying 
patterns are carried across multiple perceptual dimensions and – especially in the case of 
sound – often require integration of information across time. Flexibility in weighting the most 
diagnostic patterns of perceptual cues or dimensions for the task at hand is crucial for effective 
facial and vocal identification, object recognition and, at least in humans, speech 
comprehension. 
 
Some have suggested that learning may drive endogenous attention to be directed toward 
diagnostic perceptual dimensions in a task-dependent manner (e.g., Gao et al. 2024; 
Nosofsky, 1986). These learned attentional biases weight perceptual dimensions most 
relevant to oft-performed tasks or behaviors (van Gulick & Gauthier, 2014; De Baene et al. 
2008; O’Bryan et al. 2024) and may become so automatic that they influence neural activity 
even across passive exposure (Ley et al. 2012; Yin et al. 2020) or across an orthogonal task 
(Folstein et al. 2013). Dovetailing with results from studies of perceptual or cognitive expertise, 
particularly diagnostic perceptual dimensions may drive the character and intensity of neural 
activity to be similar across different stimulus domains due to common computational 
demands of the task at hand (Chua et al. 2015; McKeeff et al. 2010; Leech et al. 2009). In this 
way, dimensions that have historically been diagnostic may acquire salience across tasks. 
 
For complex skills like spoken language and object recognition, it can take years or even 
decades to learn which perceptual dimensions are informative for a given behavioral goal and 
to optimally weight or attend to them (e.g., Idemaru & Holt, 2013; McMurray et al. 2018; 
Yurovsky et al. 2013; Yurovsky & Frank, 2017). Learners also progress along different 
trajectories to reach equivalent performance outcomes (Roark et al. 2024; Reetzke et al. 
2018). Indeed, distinct perceptual and neural strategies are reflected in developmental 
neuroimaging studies demonstrating that there can be very different weightings of neural 
activation across brain regions even among children or adults who perform similarly on a task. 
These differences potentially reflect an individual’s position along a long, and distinct, learning 
trajectory across which diagnostic input dimensions are discovered and tuned through 
experience. 
 
Here, we prospectively introduce and explicitly manipulate a novel perceptual domain to 
establish whether acquired, endogenous attention directed toward diagnostic perceptual 
dimensions drives distinct patterns of auditory cortical activity, and how these patterns may 
differ among learners who take different trajectories to achieve equivalent expertise. 
Specifically, we train human adults in rapidly and accurately classifying sounds across a 
complex, multidimensional perceptual space composed of over 36,000 sounds varying in 
complex acoustic dimensions that are not readily verbalizable (Obasih et al., 2023). Both the 
sound exemplars and the categories we have defined across them are entirely novel to 
listeners, as are the 'space alien identity' and 'space craft size' to which they must map them 
according to spectrotemporal and perceived loudness cues, respectively.  
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All sounds possess acoustic patterns evolving in time across two simultaneous, non-
overlapping frequency bands. Patterns diagnostic of alien identity are conveyed by one of the 
two bands and successful learning demands discovery of the diagnostic frequency band and 
learning across acoustically variable patterns evolving within it in the context of simultaneous, 
unstructured information in the other band. This aligns task demands with acoustic frequency, 
the primary axis of auditory representation, and allows us to measure cortical activation across 
the coarsely segregated frequency-band-specific channels of auditory tonotopic maps using 
fMRI. All sound exemplars also vary continuously in perceived loudness, with lower amplitude 
sounds diagnostic of 'small aliens' and higher amplitude sounds diagnostic of 'big aliens.' One 
group of participants trained over five days to learn alien identity (spectrotemporal dimension) 
and trained, as well, to categorize the same sound inventory according to alien size (amplitude 
dimension). Another group trained only on alien size (amplitude) thereby gaining no expertise 
with alien identity. 
 
This allows us to answer several central questions. Are category-relevant perceptual 
dimensions prioritized relative to simultaneous uninformative dimensions? If so, does this 
selectivity persist when the diagnostic dimension is irrelevant to the task at hand? And do 
patterns of prioritization that emerge align closely with neural activity associated with explicit, 
sustained attention to the dimension across unrelated sounds? Finally, how do these patterns 
of neural activity relate to the distinct trajectories that learners take in reaching expert-level 
categorization? 
 
Results 
 
Category expertise develops across training, with generalization to novel exemplars 
 
A group of young adults (N=95, see Methods for demographics) trained for 5 days to develop 
expertise in rapidly and accurately categorizing complex, multidimensional sounds they had 
never previously encountered. In the main 'alien identity' training task, four sound categories 
were associated with the identity of four distinct 'space alien' images (Fig 1b). Each sound 
possessed acoustic energy in two non-overlapping frequency bands (~80-750 Hz and ~1000-
9000 Hz). Each band was populated with three 400-ms ‘chirps’ varying in frequency contour 
(Fig 1a). In the category-diagnostic band, these acoustically variable chirps possessed an 
underlying regularity that defined alien identity category membership. Simultaneous and 
temporally aligned chirps in the other, non-diagnostic frequency band were acoustically 
variable and possessed no coherent regularity. Category learning thus depended on 
discovering the diagnostic frequency band and learning the acoustically variable patterns 
within it. Two categories carried diagnostic information in the high-frequency band; two carried 
information in the low-frequency band (Fig 1b). This novel soundscape allowed us to capitalize 
on auditory cortical frequency sensitivity to establish cortical regions potentially relevant to the 
spectrally delimited category-diagnostic information signaling category identity.  
 
Alien identity categorization training involved a two-alternative forced-choice (2AFC) task, with 
trials blocked by categories with high- vs. low-frequency category-diagnostic information. Trial-
by-trial feedback indicated the correct alien category (see Methods; Fig 1c). After each 
training block, a four-alternative forced-choice (4AFC) task with no feedback assessed 
generalization of category learning across novel exemplars not experienced in training (Fig 
1c). A separate training task involved categorizing exemplars drawn from all four alien identity 
categories as “big” or “small” according to stimulus amplitude, without regard to the 
spectrotemporal dimensions associated with alien identity (Methods; Fig 1c). This permits us 
to test whether stable changes in cortical activation associated with the frequency band 
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carrying identity-diagnostic information persist when task demands are redirected to 
amplitude. 
 
 

 
Figure 1. Stimuli. (A) Nonspeech Chirps. We extracted the fundamental frequency (F0) contour from 
natural speech recordings of single-syllable words varying in Mandarin lexical tone contour across four 
(2 female) native Mandarin speakers. This yielded 80 acoustically unique chirps from each of the four 
classes of Mandarin lexical tone contour (see Obasih et al. 2023). Spectrograms show one 
representative from each class (indicated by a different color). (B) Alien Identity Categories. We next 
shifted each nonspeech chirp into low- (~80-750 Hz) and high-frequency (~1000-9000 Hz) non-
overlapping spectral bands. These spectrally shifted chirps served as building blocks for creating novel 
auditory category exemplars. Exemplars possessed simultaneous acoustic energy in each of the two 
spectral bands ((indicated by rectangles, color-coded by chirp class). For each category, one band 
conveyed category-diagnostic information (filled rectangles); the other, simultaneous, band (open 
dotted-line rectangles) did not. The category-diagnostic band was composed of a sequence of three 
unique chirps drawn from the same class of chirp such that chirps shared a common underlying 
structure (roughly: level, rising, dipping or falling; see A). For Categories A and B, the high-frequency 
band was diagnostic; for Categories C and D the low-frequency band was diagnostic. The non-
diagnostic band was populated by three chirps drawn from different classes and thus conveyed no 
consistent structure. Chirps in the diagnostic and non-diagnostic bands were presented simultaneously. 
The insets on the right show a detailed example from Category B (high-frequency diagnostic, Chirp 2 
structure) and Category D (low-frequency diagnostic, Chirp 4 structure). (C) Categorization Training. 
Across Days 1-5, one group of participants (N=49) learned to associate diverse exemplars drawn from 
the alien identity categories with one of four distinct “space aliens” via explicit feedback (see B, left). 
Two-alternative forced choice (2AFC) trials (blocked by high versus low diagnostic band, with feedback) 
were interleaved with four-alternative forced choice trials (no feedback) to assess generalization of 
learning. On Day 1 and Day 5, these participants learned to categorize exemplars drawn from all four 
alien identity categories as “big” or “small” aliens, according to exemplar amplitude (independent of 
alien identity). A separate group (N=20) trained only on this size judgment without training on alien 
identity. 
 
A subset of expert participants (N=49) who achieved at least 75% 2AFC accuracy across both 
high- and low-frequency alien identity diagnostic bands by Day 5 returned an average of 9 
days later for a single functional magnetic resonance imaging (fMRI) session. Overall, these 
experts exhibited above-chance 2AFC alien identity training performance on Day 1, 
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t(48)=15.7, p = 7.35 x 10-21, with improvements from Day 1 to Day 5, t(48) = 7.82, p = 2.03 x 
10-10, to reach near-ceiling identity categorization (95.5%; SE=0.7%, Fig 2a). Among alien 
identity experts, generalization to novel exemplars exceeded chance on Day 1, t(48)=5.64, p 
= 4.41 x 10-7; M=68.5%, SE=3.3%), and improved significantly from Day 1 to Day 5 (M=87.7%, 
SE=1.9%, t(48) = 6.56, p = 1.73 x 10-8; Fig 2b). The trajectories across which learners reached 
criterion expertise was heterogeneous, variability that we used to subgroup learners for further 
analysis (SI Fig S1). This group of participants also trained on the alien size task on Days 1 
and 5, with high performance (M=87.5%, SE=1.2%; Fig 2c). 
 
In addition to the main group of participants expert in alien identity categorization, we also 
recruited, trained, and scanned a different set of listeners on only the alien size task (Fig 1c), 
with group size (N=20) matched to the highest-performing subgroup of the main identity-expert 
group (SI Fig S1a). These listeners achieved 87.1% (SE=1.7%) accuracy at the end of one 
session of alien size training (Fig 2c).    
 
Both groups took part in a single fMRI session following training. In-scanner behavior echoed 
their patterns of training performance. Those who trained on both alien identity and alien size 
successfully categorized alien identity according to patterns evolving in the diagnostic 
frequency bands (2AFC task, M=95.8%, SE=0.7%; Fig 2a) and according to stimulus 
amplitude in the size task (M=86.2%, SE=1.1%; Fig 2c). Participants trained only on alien size 
performed equally well in training and during scanning (M = 84.2%, SE = 1.8%; Fig 2c).     
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Figure 2. Behavioral Data. A. Alien Identity Training (2AFC with feedback). Proportion correct 
2AFC categorization across Day 1-5 (and in the fMRI scanner, no feedback) among the 49 expert 
participants who achieved 75% accuracy across all alien identity categories by Day 5. B. Alien Identity 
Generalization (4AFC no feedback). The same 49 participants’ 4AFC categorization of exemplars on 
which they were never trained to categorize according to alien identity improved across Days 1 to 5. 
Confusion matrices comparing category ground truth with response for Day 1 versus Day 5; Day 1 
errors were predominantly within-frequency-band confusions. C. Alien Size Training (2AFC with 
feedback). A separate training task involved categorizing exemplars drawn from all four alien identity 
categories as “big” or “small” according to stimulus amplitude. The participants who trained on alien 
identity (N=49) trained on alien size on Day 1 and Day 5 of training, and in the scanner without feedback. 
An additional group of participants (N=20) trained only on alien size, never alien identity, for one day 
and performed the same task in the scanner with no feedback. 
 
Cortical activation is greater for spectrally-selective category- regions, compared to 
non-diagnostic regions 
 
We first present functional MRI data from the participant group trained on both the alien identity 
and size tasks. We characterize each participant's unique tonotopic organization on a voxel-
wise basis across bilateral auditory-responsive cortex. This allows us to identify regions 
associated with category-diagnostic frequency bands, and to test differences in neural 
responses as a function of categorization task demands. Here, participants listened to 
concatenated series of 4-tone mini-sequences that stepped periodically over a 60-semitone 
range (175 to 5286 Hz, one run ascending and one descending, see Dick et al. 2017, and 
Methods). Participants performed a 1-back task on the mini-sequences, reporting infrequent 
repeats (in-scanner d': M=3.55, SE=0.08). From these data we compute voxel-wise activation 
to tone sequences grouped into the low and high frequency bands that conveyed alien identity 
information with the high-minus-low band difference in beta coefficients as a measure of 
spectral selectivity.    
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Figure 3. (A) To quantify the similarity in activation patterns across tasks, we defined a set of regions 
of interest (ROIs) and conducted cross-task concordance analyses within each ROI. First, we took a 
set of cortical surface ROIs that had been defined for a previous study (shown in orange; Dick et al., 
2017); for the current work, we only considered ROIs that fell within tonotopically organized auditory 
cortex (purple outlines). Every ROI was then warped to each participant’s native volumetric space. 
Within each volumetric ROI, we extracted voxel-by-voxel beta coefficients for the high-low contrast in 
each task. (For the two categorization tasks, we always examined the contrast between the high-band-
diagnostic and the low-band-diagnostic categories; we used this contrast even when the task was to 
categorize stimuli based on overall amplitude, as we were always interested in testing for frequency-
selective recruitment of auditory cortex. For the tonotopy task, we used the contrast between listening 
to high vs. low frequencies, and for the attention-o-tonotopy task, we used the contrast between 
attending to high vs. low frequencies.) To assess the similarity of activation across tasks, voxelwise 
betas were submitted to a regression analysis for each ROI separately; the goal in each regression 
analysis was to predict the beta coefficients from one task using the betas from another. Regressions 
also included by-subject random intercepts. The resultant ROI statistic, which indicates the strength 
and direction of the relationship between the two sets of beta coefficients, was painted on the cortical 
surface. (B-D) In this way, we assessed the concordance among the tonotopy, frequency-diagnostic 
categorization and amplitude-diagnostic categorization tasks. In general, there was a strong positive 
relationship among betas, indicated by warm-colored ROIs. ROIs outlined in white are statistically 
significant (p < 0.05 after applying a false discovery rate correction). Results indicate that during 
frequency-diagnostic categorization, there was greater cortical activation for category-diagnostic, 
compared to non-diagnostic, regions; strikingly, this pattern of activation persisted even when experts 
categorized stimuli along an orthogonal dimension (stimulus amplitude). 
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We observe coarse alignment of tonotopic organization across individuals (SI Fig S2), with 
cross-individual heterogeneity in the mosaic arrangement of fine-grained spectral selectivity, 
as expected from prior work (Moerel, de Martino, & Formisano, 2014). To capture consistent 
regional differences in responses across participants while retaining sensitivity at a voxel-wise 
level we adopt a region-of-interest (ROI) approach (see Dick et al. 2017). Each individual’s 
auditory-responsive cortices are parcellated into a set of small ROIs defined over the cortical 
surface (Fig 3). Each ROI exhibiting spectral selectivity at the group level (as shown in the 
group-average tonotopic map) is warped and sampled into cortex to the individual’s native 
volumetric EPI space. Voxel-by-voxel beta coefficients relating to activation during alien 
identity categorization (involving the high- and low-frequency category-diagnostic bands) are 
computed and a high-minus-low frequency-band difference in beta coefficients is calculated 
for each voxel, analogous to the high-minus-low spectral selectivity contrast from the tonotopy 
runs. These parallel difference scores permit us to fit a regression model across all participants 
within each ROI (with participant as a random factor) revealing the ROI-wise concordance 
between the voxelwise spectral selectivity evoked by tonotopy stimuli, and the hypothesized, 
category-specific frequency-band selectivity driven by the alien identity learning task (Fig 3; 
see Dick et al. 2017). In other words, this approach allows us to ask whether categorization 
decisions guided by chirp patterns embedded in high versus low frequency bands yield 
activation in corresponding spectrally selective cortical regions (Fig 3). Since each category 
exemplar possesses rich acoustic energy in each frequency band as well as amplitude 
variation (signaling size), an exaggerated neural response in the diagnostic versus non-
diagnostic band is evidence of expertise-driven changes in cortical activation to the category 
exemplars. 
 
We first established that these novel sounds evoked broad activation across much of auditory 
and auditory-related cortex bilaterally, as well as across a number of brain networks evident 
in the cortical-surface-based group average as well as for individual participants (SI Fig S2). 
We then turned to the ROI-based regression approach and found that, indeed, categorization 
decisions requiring high- versus low-frequency bands recruit regions that exhibit preferential 
responses to these frequencies. This pattern is especially strong in left anterior regions of 
auditory cortex, although there is also significant cross-task concordance in the right auditory 
cortex. The few ROIs with negative relationships across tasks tended to be situated in regions 
exhibiting relatively weak group-level tonotopic selectivity, suggesting that negative 
relationships may reflect cross-participant variability in tonotopic organization. Thus, we 
observed greater cortical activation within tonotopically mapped regions associated with the 
category-diagnostic frequency band, compared to the simultaneous non-diagnostic band, in 
the context of categorization.  
 
Cortical activation reflects individuals’ trajectories of alien identity category learning  
 
The expert participants who completed the fMRI scan (N=49) had all achieved high levels of 
expertise in a novel domain. Their paths to expertise varied (SI Fig S1). To understand how 
these differences in learning trajectories might affect neural representations, we created 
subgroups of participants based on the speed and depth of learning over behavioral training. 
Early Experts (N=17) achieved at least 90% accuracy for both high- and low-band-diagnostic 
2AFC training stimuli on Day 1 (SI Fig S1c). Late Experts (N=16) started at lower accuracy 
rates, but showed an accuracy increase of at least 20% over the course of 2AFC training (SI 
Fig S1d). We also estimated ultimate depth and generalizability of learning by separately 
creating groups based on generalization performance in the 4AFC task, with the Highest 
Achievers (N=16; SI Fig S1a) and Lowest Achievers (N=16; SI Fig S1b) defined across the 
top and bottom generalization terciles. These pairs of subgroups capture (partially 
overlapping) sets of participants with distinct learning trajectories. 
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We observe the fingerprints of these trajectories on subsequent cortical response to category 
exemplars. Compared to Late Experts, Early Experts exhibit stronger concordance of cortical 
activation within voxels showing a stimulus-evoked preference for the category-diagnostic 
frequency band, compared to the simultaneous non-diagnostic band, in the context of alien 
identity categorization (Fig 4). Similarly, the Highest Achievers exhibited greater concordance 
than the Lowest Achievers (Fig 4). These differences were especially pronounced in anterior 
left auditory cortex. This indicates that preferential activation for category-relevant frequency 
bands interacts with the degree of category expertise, and particularly with the rate of learning 
across training. 
 

 
Figure 4. (A) Sub-group analyses tested for differences in cross-task concordance as a function of 
frequency-diagnostic categorization performance during the course of training. One set of analyses 
considered differences as a function of how quickly participants mastered the 2AFC categorization task: 
Early experts demonstrated mastery for both high-band-diagnostic and low-band-diagnostic 
categorization on day 1, whereas late experts demonstrated substantial improvement over the course 
of training. A second set of analyses considered differences as a function of generalization ability, 
separately analyzing data from the top tercile (highest achievers) and bottom tercile (lowest achievers) 
on the 4AFC generalization task. Behavioral performance and Venn diagrams for these sub-groups are 
shown. Light dots indicate individual participants, solid points indicate mean performance for each day, 
and error bars indicate standard error. (B-C). We assessed cross-task concordance between the 
tonotopy task and each of the two auditory categorization tasks. In each panel, the leftmost and center 
sets of images show concordance for each group separately. The rightmost set of images illustrates 
the difference in concordance between groups; warm colors indicate ROIs where stronger cross-task 
concordance was seen in early experts / highest achievers, and cool colors indicate ROIs where 
stronger cross-task concordance was seen in late experts / lowest achievers. 
 
 
Greater cortical activation for category-diagnostic regions persists even in contexts 
that do not demand this information 
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We hypothesize that training caused identity-diagnostic dimensions to acquire salience, such 
that frequency-selective recruitment persists even when task demands shift to categorization 
across an orthogonal dimension. To test this, participants also categorized exemplars from all 
four alien categories in different blocks according to whether they were “big” or “small” aliens 
according to perceived loudness, not frequency. As noted above, in-scanner categorization 
was accurate (but well below ceiling performance), indicating that participants successfully 
relied upon the amplitude dimension for categorization, and also that the task was non-trivial. 
Although task demands directed participants' overt attention to an orthogonal acoustic 
dimension (amplitude), concordance between voxels' stimulus-evoked frequency preference 
and exemplars’ frequency-diagnostic band for the over-practiced and more challenging 
identity task persisted.  
 
Moreover, there was strong concordance between the differences in activation evoked by 
high- and low-diagnostic band exemplars during identity (frequency-diagnostic) categorization 
task blocks and size (amplitude-diagnostic) categorization blocks (Fig 3d). The differential 
cortical activation across high- and low-frequency bands cannot easily be attributed to 'bottom-
up' acoustic salience, as all stimuli possessed information in each band in addition to 
amplitude variation. Rather, this is consistent with an ‘acquired salience’ for category-
diagnostic dimensions that reflect stable changes in cortical activation elicited by category 
exemplars persistent across changing task demands; prioritization of category-diagnostic 
dimensions in auditory areas is present even in contexts that do not demand reliance on them. 
 
The degree of acquired salience of diagnostic dimension depends on learning 
trajectory and categorization expertise 
 
As described above, expert-level categorization drove activation of auditory areas tuned to 
acoustic frequencies that were diagnostic of alien identity, even when experts were 
successfully categorizing stimuli based on stimulus amplitude.  To make a critical test of the 
importance of learning to weight or attend to the identity-diagnostic spectrally spectral band in 
driving these results, we compared activation in our Early Expert group to a that of a group of 
participants (N=20) trained only on the alien size task (based on stimulus amplitude). These 
participants remained naïve to alien identity and never trained to learn categories based on 
frequency-band-delimited acoustic information.  
 
Alien-size-trained participants exhibited a roughly equivalent degree of spectral selectivity and 
tonotopic organization in auditory cortex as the group that trained on both alien identity and 
size (Fig 5), with high behavioral accuracy on the tonotopic mapping task (in-scanner d': 
M=2.68, SE=0.13). This allowed us to test whether, like alien-identity-trained participants, 
alien-size-only-trained participants' auditory cortex would show differential activation for 
stimuli with identity-disambiguating information in high and low spectral bands when they were 
performing the amplitude-based alien size task. Though they demonstrated high behavioral 
accuracy on amplitude-based categorization (M: 84.2%, SE: 1.8%) they exhibited little sign of 
activation for the identity-diagnostic frequency band that matched underlying frequency 
preferences (Fig 5). By comparison, the Early Experts trained on both identity and size tasks 
showed strong concordance across ROIs between the difference in activation to high- versus 
low-diagnostic frequency band stimuli, and high- versus low-frequency tone mapping during 
alien-size categorization blocks. Most ROIs showed significantly greater spectrally-selective 
modulation among participants trained on both alien identity and size, compared to those 
trained on alien size only (Fig 5). This shows that learning categories dependent upon patterns 
of information evolving in frequency-selective bands drove the acquired salience of the 
perceptual dimension, such that experts in identity categorization (but not identity-naïve 
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participants) exhibited frequency-specific recruitment of auditory cortex, even when 
categorizing stimuli along an orthogonal dimension (stimulus amplitude). 
 

 
 
Figure 5. A group of Alien Size trained participants (n=20) were trained to categorize stimuli based on 
overall amplitude but critically never learned to use spectrally-delimited information for determining 
category identity. (A) These participants showed high in-scanner accuracy on amplitude-based 
categorization and (B) exhibited tonotopic selectivity in auditory cortex bilaterally. (C) Crucially, 
however, these participants did not recruit auditory cortex in a frequency-selective way when performing 
amplitude-based categorization, in contrast to our sample of experts. This suggests that the frequency-
selective recruitment of auditory cortex that experts exhibited in the amplitude categorization task was 
not driven by properties of the acoustic signal per se. Rather, training on frequency-based auditory 
categorization drove the acquired salience of the frequency dimension, such that experts (but not 
control participants) exhibited frequency-specific recruitment of auditory cortex, even when categorizing 
along an orthogonal dimension (amplitude). 
 
Spectrally-selective activation patterns driven by category learning and overt spectral 
attention align 
 
We observe that when categorization implicitly hinges on information in a delimited frequency 
band, voxels more responsive to this frequency band show increased activation compared to 
when diagnostic information is in the less-preferred frequency band, despite simultaneous 
acoustic energy in each. We next asked whether the prioritization of category-diagnostic 
information is consistent with hypotheses that changes in perceptual weighting reflect 
attentional gain. Among the full group of participants trained on alien identity, we compared  
identity-categorization-associated activation differences with differences evoked by explicit 
sustained attention to one of two simultaneously presented streams of sinewave tones 
situated within the high- and low-frequency bands.  
 
In addition to being scanned during tonotopy and alien categorization tasks, the identity-
trained participants also completed a sustained auditory selective attention task based on the 
approach of Dick et al. (2017) who found that overt attention directed at sequences of tones 
positioned in specific frequency bands elicits an attention-driven map across auditory-
responsive cortex. Participants heard two simultaneously presented sequences of sinewave 
tones composed of concatenated 4-tone mini-sequences that varied in amplitude; mini-
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sequences were played simultaneously in higher- and lower-frequency bands, corresponding 
to the diagnostic bands of the alien identity task. At the beginning of each task block, explicit 
instructions directed participants to attend to detecting mini-sequence repeats in the high-
frequency band, the low-frequency-band, or repeats of the overall relative amplitude of the 
mini-sequence (1-back task d': M=2.28, SE=0.13).  
 
As anticipated given previous studies of spectrally-selective attention (Da Costa et al., 2013; 
de Martino et al. 2015; Dick et al.  2017; Riecke et al. 2017), voxelwise differences in activation 
when attending to high- versus low-frequency bands were strongly associated with stimulus-
evoked frequency preference (from tonotopy scans) across most auditory cortex ROIs. This 
was particularly true in lateral ROIs and in the right hemisphere.    
 

 
 
Figure 6. Theoretical accounts suggest that the neural selectivity that emerges with learning is driven 
by increased attention to diagnostic dimensions. To test this hypothesis, we assessed cross-task 
concordance with the attention-o-tonotopy task, where participants were directed to explicitly attend to 
particular frequency bands. Analyses considering all participants showed strong concordance between 
attention-driven activation and (A) the activation elicited by the tonotopy task (i.e., stimulus-driven 
activation), as well with (B) categorization-driven activation. (C-D) Sub-group analyses showed 
generally stronger concordance in early experts compared to late experts, as well as in the highest 
achievers compared to lowest achievers (the latter assessed with the 4AFC generalization task). 
 
 
We then asked whether patterns of cortical activation elicited by explicit, directed attention to 
the frequency bands align with activation patterns that arise in category decisions implicitly 
reliant on information in these same frequency bands. Cross-task concordance maps showed 
generally strong activation alignment (Fig 6); the few ROIs that exhibited negative correlations 
tended to be those for which tonotopic selectivity was weaker or those along sharp transitions 
between high-frequency-preferring and low-frequency-preferring regions. Thus, expert 
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categorization elicited activation in regions preferentially recruited when listeners explicitly 
attend to tones situated in the category-diagnostic region of the frequency dimension. Across 
multiple auditory cortical regions, activation patterns elicited by explicit, sustained attention 
aligns with the diagnostic-band prioritization that arose implicitly in categorization. In other 
words, regions recruited when listeners explicitly attend to a delimited region of the frequency 
spectrum are correspondingly more active when categorization implicitly hinges on information 
situated in these frequency bands.  
 
Of additional note, Early Experts and High Achievers showed stronger concordance between 
attention-driven and stimulus-driven tonotopic maps (Fig 6) as well as stronger similarity in 
the activation profiles elicited by the overt attention and frequency-diagnostic auditory 
categorization tasks (Fig 6). Thus, even among proficient experts, greater expertise is 
associated with stronger alignment between stimulus-driven, attention-driven, and 
categorization-driven maps of frequency-selective neural activity in auditory cortex. 
 
Discussion 
 
How does perception come to weight the most diagnostic patterns of input for the task at 
hand? We used fMRI to probe the neural consequences of learning to categorize across a 
novel soundscape defined by multiple, complex acoustic dimensions evolving in time. 
Situating category-diagnostic patterns into spectrally delimited frequency bands allowed us to 
capitalize on coarsely segregated frequency-band-specific channels of auditory tonotopic 
maps to make targeted predictions of how learning-driven modulation of cortical activity would 
intersect with existing tonotopic functional regionalization, how different trajectories of learning 
to expert-level performance would be reflected in these representations, and whether 
prioritization of category-diagnostic information aligns with overt attention directed toward 
distinct stimuli in the same frequency bands. 
 
We observe that category learning drives prioritization across a category-relevant dimension, 
as reflected in greater cortical activation within tonotopically mapped regions associated with 
the category-diagnostic frequency band, compared to the simultaneous non-diagnostic band. 
This prioritization persists even in contexts that do not require categorization according to the 
diagnostic dimension and is impacted by the trajectory of learning participants take to become 
expert and is absent among category-naïve listeners. Further, it aligns closely with the patterns 
of cortical activation that emerge when listeners explicitly direct sustained attention to 
unrelated sounds situated in the same frequency band, consistent with ‘attentional gain’ 
accounts of advantaged perceptual processing of category-diagnostic dimensions. In all, 
learning appears to drive the emergence of acquired attentional salience to category-relevant 
perceptual dimensions. 
 
The question of whether, and if so how, sensory cortical representations are impacted by 
becoming expert in a categorization domain has not had a clear answer. Evidence of cortical 
modulation with category expertise comes predominantly from visual cortex under conditions 
of active categorization (Sigala and Logothetis, 2002; De Baene et al. 2008) but with mixed 
results. Some studies do not observe effects of categorization on visual cortex (Freedman et 
al. 2003; Jiang et al. 2007; Gillebert et al. 2008; van der Linden et al. 2010), potentially 
indicative of category representations arising in flexible, amodal cortical areas with little lasting 
influence on sensory cortex (Freedman et al. 2003; Serre et al. 2007; Roy et al. 2010) with 
sensory cortical effects arising from top-down modulation in the context of active 
categorization. In contrast, our results indicate stable, lasting learning-driven change in 
auditory cortex that persists even when attention is not directed toward the category-diagnostic 
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dimension (see also Folstein et al. 2013 and Van Gulick & Gauthier, 2014 for evidence from 
visual categories). 
 
Indeed, Yin et al. 2020 present evidence for both top-down modulation of auditory cortex by 
frontal cortex and also persistent, intrinsic auditory cortical patterns related to acquired 
categories evident even in passive listening. Though we limited our investigation specifically 
to tonotopically mappable temporal cortex, these auditory regions receive rich top-down 
feedback inputs and exhibit modulation by behavioral context, extending their response 
beyond basic representation of perceptual dimensions (e.g., Zhong et al. 2019). This invites 
the possibility of top-down categorization-driven modulation -- well-documented in nonhuman 
animal electrophysiology and, particularly in the visual system (e.g., Freedman et al. 2002; 
DeGutis and D’Esposito, 2007) – influences that interact with the persistent learning-driven 
changes to auditory cortical representation outside of active categorization that we observe.  
 
Whether this modulation of neural activity is a consequence of learned ‘attentional gain’ to 
diagnostic dimensions also has surprisingly little direct support, despite the centrality of this 
proposition in theories of visual and speech categorization. It is clear that explicit attention to 
stimulus features modulates representations in both visual (Foster & Ling, 2022; Gundlach et 
al., 2023; Saenz et al. 2002; Serences & Boynton, 2007; Treue & Maunsell, 1999; Yoo et al., 
2022) and auditory (DaCosta et al. 2013; Dick et al. 2017; Reicke et al. 2017) cortical 
response. Here, we asked whether these patterns of cortical gain are concordant with patterns 
that arise implicitly across category-diagnostic dimensions in categorization. Consistent our 
prior research (Dick et al., 2017), sustained auditory selective attention across sequences of 
tones evolving simultaneously across the same two frequency bands results in greater 
activation across the attended frequency band. Here, in the same listeners, these patterns 
aligned closely with the prioritization of frequency-selective cortical activity driven by 
categorization demands. Of note, this concordance is not driven by task demands; 
prioritization of the diagnostic frequency band persists even when task demands change and 
frequency-band is no longer task-relevant. This suggests that prioritization of diagnostic 
information has become a stable, lasting part of how category exemplars among experts that 
is absent in category-naïve listeners. This presents the first empirical evidence linking acquired 
salience to category-diagnostic dimensions of acoustic input and overt, directed selective 
attention. 
 
Methods 
 
Participants 
Participants from the Pittsburgh, PA, USA and London, UK communities completed a five-day 
training protocol (N=95; 18-40 yrs). All were native-English speakers with normal hearing, had 
normal or corrected-to-normal vision and no history of neurological impairment or 
speech/language disorder, and reported no experience with a tonal language. Individuals who 
met criterion levels of expertise (75% across both diagnostic frequency bands on the 2AFC 
alien identity task on Day 5; see “Behavioral Training,” below) were invited to participate in a 
subsequent MRI session, with data collected from N=54 experts. Five participants’ data were 
excluded (motion, non-compliance with task) resulting a final sample of N=49 experts (18-37 
yrs, M=23.9 yrs; 29 female, 18 male, 2 non-binary; 59% White; 32 Pittsburgh, 17 London). As 
described below (see “Alien Size Only group”), we also recruited a sample of non-experts who 
participated in an abbreviated online training and MRI session (N=20, 18-43 yrs, M=28.1 yrs; 
12 female, 8 male; 55% White; 20 London). 
 
Procedure 
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Online training across 5 daily sessions  (60-90 min; see Fig 1) was implemented across Gorilla 
software (Anwyl-Irvine, Massonnié, Flitton, Kirkham, & Evershed, 2020), the Google Chrome 
browser, wired headphones (with compliance screening as in Milne et al., 2021), and a 
computer/laptop (not tablet/phone). Stimuli were created using custom code in Matlab version 
2021b (The MathWorks), Praat (Boersma, 2001) and SoX version 14.4.2 
(www.sourceforge.net).  
 
Behavioral Training.  Participants learned to associate 1400 ms novel sounds with one of 
four alien images via category-informative feedback identifying the correct alien after each 
response. The four auditory categories were sampled from a highly complex perceptual space 
(see Obasih et al., 2023). In brief, each stimulus was composed of patterned acoustic energy 
in two non-overlapping acoustic frequency bands (Fig 1; ~ 80-750 Hz and ~1000-9000 Hz). 
Each band was populated with three 400-ms tonal 'chirps' (100-ms ISI) varying in frequency 
contour (Fig 1). In the alien-identity-diagnostic frequency band (high-frequency for Categories 
A, B and low-frequency for Categories C, D), the 3 acoustically variable chirps possessed an 
underlying regularity that defined alien identity category membership (Fig 1). Temporally 
aligned chirps in the non-diagnostic frequency band (low for Categories A, B; high for 
Categories C, D) were acoustically variable and possessed no coherent regularity.  
 
To create a large set of naturally varying category exemplars, we derived chirps from 4 native 
Mandarin Chinese talkers (2 female) uttering single-syllable words in each of Mandarin’s four 
lexical tones, which convey variable, but structured, fundamental frequency (F0) contours. We 
extracted the F0 contour from each, and resynthesized the contour to create a non-speech 
chirp, time-normalizing each to be 400 ms (Fig 1). We shifted each chirp +33 semitones then 
applied a 1000 Hz high-pass filter to create a pool of chirps to populate a high-frequency band; 
equivalently we applied a -1 semitone plus a 500-Hz low-pass filter to create constituents for 
the low-frequency band. Three distinct chirps derived from the same talker and the same 
Mandarin lexical tone constituted the category-diagnostic band, conveying a regularity in 
frequency contour. Three different chirps were derived from three different Mandarin tones 
(from any of the four categories) to populate the non-diagnostic frequency band such that 
there was no regularity across chirps. In all, this created a stimulus pool of 36,000 exemplars 
(Obasih et al., 2023) from which we sampled 592 unique stimuli. (Full details in SI Text). 
 
In addition to the Alien-Identity-Category-associated spectral information, we also imposed 
orthogonal amplitude variation (between 62-80 dB SPL) on copies of each exemplar. This had 
two goals: It increased variability and task difficulty, and also permitted creation of two Alien-
Size categories, with "Big Alien" exemplars falling between 72-80 dB sound intensity (all 
reported dB referenced to 2*10-5 and measured in Praat), and “Small Alien” exemplars falling 
between 62-70 dB. Thus, each exemplar could be categorized along Identity (spectral) or Size 
(amplitude) dimensions.  
 
For Alien Identity training, each of the 5 daily sessions involved four 120-trial 2AFC alien 
identity categorization training blocks where participants indicated identity with a keypress, 
and feedback (1500 ms) indicated the correct alien. Trials were blocked according to the high- 
or low-frequency category-diagnostic band (Categories A vs. B and Categories C vs. D) such 
that every 20 trials, the category pair, and thus diagnostic frequency band, alternated; the 
other two alien response options were blanked out as response alternatives. Training stimuli 
were randomly selected from a pool of 512 exemplars (128/category).  Amplitude level was 
balanced across trials and roughly equated across categories on each day. Each training block 
was followed by a 20-trial 4AFC categorization task with all aliens as response options, and 
no feedback. These trials involved a separate pool of 20 exemplars/category that were never 
presented in training to assess generalization of learning (see Fig 1). Across both 2AFC and 
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4AFC tasks, category exemplars were mixed with a fixed level of scanner noise (57 dB) to  to 
familiarize participants with categorization in an MRI environment. The visual position of aliens 
(and associated keypress) was fixed the first two days of training, then allowed to vary starting 
on Day 3.  (We should note that Obasih et al. 2023 found that alien category learning speed 
and attainment was surprisingly unaffected by different training regimes, including 
manipulations of exemplar variability, blocking versus interleaving categories in training, and 
overt instructions to attend to the diagnostic band),  
 
On Day 1 and Day 5, participants also trained on the 'Alien Size' category size task. Across 
the first eight trials, one exemplar from each of the four categories was presented at the 
highest amplitude (80 dB), then one exemplar from each alien category at the lowest amplitude 
(62 dB). The amplitude difference diminished each successive 4 trials for a total of 40 trials, 
with 71 dB defining the big vs. small alien category boundary. In a second 40-trial block, 
amplitude values were fully randomized with equiprobable big/small exemplars and an equal 
number of exemplars from each alien category. A fixed level of scanner noise (again 57 dB) 
was mixed with stimuli to mimic the MRI sound environment. 
 
Tonotopy. To characterize voxel-wise frequency selectivity efficiently for each participant and 
create tonotopic maps, while being scanned, participants listened to sequences of 178-ms 
sinewave tones (0 ms ISI, 5 ms ramp at on/offset) organized in 4-tone mini-sequences, each 
separated by 356 ms. Participants reported infrequent mini-sequence repeats in a 1-back task. 
The frequency range of the four tones composing the mini-sequences increased or decreased 
in frequency incrementally in 10 logarithmically scaled steps to sweep across 175-5286 Hz 
(60 semitones). Across the 60 mini-sequences contained in each 64 sec sweep, there were 3 
mini-sequence repeats that occurred quasi-randomly. The swept frequency permitted both 
fMRI analysis using phase-encoded mapping, where voxels responsive to a particular 
frequency  should respond at a consistent phase delay (Dick et al., 2012; 2017; Sereno et al., 
1995) as well as  multiple regression analysis to identify voxels responsive to the range of the 
low-frequency category-diagnostic frequency band (< 500 Hz, lowest three steps)  and the 
high-frequency category-diagnostic frequency band (≥ 1000 Hz, highest five steps).  
 
For analysis of training and in-scanner behavior, the response window for each mini-sequence 
was defined from the onset of the final tone to the onset of the final tone in the subsequent 
sequence (1068-ms response window). For calculation of d-prime scores, extreme hit and 
false alarm rates of 0 or 1 were adjusted following the approach of Stanislaw and Todorov 
(1999). As an introduction to the task, participants familiarized with one up-sweep and one 
down-sweep on Day 4 of online training, with mini-sequence repeats indicated on-screen. As 
with the space alien task, during out-of-scanner training, scanner EPI noise (57 dB) was mixed 
in with tone stimuli (~80 dB).  
 
Attention-o-tonotopy. To characterize voxelwise spectrally-selective and amplitude-
selective overt attentional responses in individual participants, and following the approach of 
Dick et al. (2017), participants heard 4-tone mini-sequences evolving simultaneously in two 
frequency bands with instructions to “attend low” or “attend high” and report mini-sequence 
repeats from the attended frequency band. Here, an additional condition directed participants 
to “attend volume,” reporting 1-back matches on the attended amplitude dimension. Mini-
sequences were composed of 180-ms sinewave tones drawn from a pool of four frequencies 
(1, 3, 5 and 7 semitones above a ‘base’ frequency). Tones were drawn with replacement, with 
the constraint that a sequence could never be a single tone played four times. Simultaneous 
tones from high- and low-frequency bands were temporally aligned. Mini-sequences were 
separated by 360 ms silence in short blocks that concluded with 2 sec of silence. Each block 
included two mini-sequence repeats in the high-frequency band, two repeats in low-frequency 
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band, and two amplitude repeats. The 1080-ms response window for each mini-sequence was 
defined from the onset of the final tone to the onset of the final tone in the subsequent 
sequence. 
 
Participants familiarized with the task on Day 3 of online training, and first experienced mini-
sequences in single frequency bands of fixed amplitude. Next, amplitude variability was 
introduced, then finally, participants practiced with dual-frequency-band amplitude-variable 
stimuli. On-screen messages alerted participants to mini-sequence repeats in the attended 
band. There was no scanner noise mixed with stimuli during familiarization.  Participants then 
completed 24 attention-o-tonotopy trials (3 blocks/trial, 11-17 mini-sequences/block), with on-
screen feedback provided for the first half of the trials. For half of the trials, the dual-band 
stimuli had base frequencies of 280 and 1253 Hz, and for the other half, the base frequencies 
were 400 and 2123 Hz. “Attend high,” “attend low” and “attend volume” trials were 
equiprobable. The amplitude of the stimuli was set so that the two frequency bands were 
approximately equated on perceptual loudness (~73 dB average), and a fixed level of scanner 
noise (57 dB SPL) was presented throughout these trials.  
 
MRI Procedure. Images were acquired in a single 90-min session with 3T Siemens Prisma 
scanners and 32-channel head coils (CMU-Pitt BRIDGE Center in Pittsburgh, 
RRID:SCR_023356, and at the Birkbeck-UCL Centre for Neuroimaging in London). Head 
movement among London participants was minimized with a head stabilization prototype (MR 
Minimal Motion System). Both sites delivered audio over Sensimetrics earbuds with pre-
filtering to accommodate the earbuds’ response profile, presented tasks using PsychoPy (v. 
2022.2.4), and recorded responses with a button box. Identical pulse sequences were used 
across sites, and very similar QA procedures were in place by the respective MRI center teams 
to monitor scanner performance.  
 
Experts qualifying for the MRI session completed a 15-min online refresher one day prior to 
the scan. This involved two tonotopy trials (one up-sweep, one down-sweep), 80 2AFC 
categorization trials (48 alien identity, 32 alien size, drawn from the pool of 80 generalization 
exemplars with no feedback), and two short 9-block attention-o-tonotopy trials with parameters 
mirroring the MRI task.  
 
At the scanning session, structural images were acquired using a T1-weighted magnetization-
prepared rapid acquisition gradient echo (MPRAGE) sequence (TR = 2300 ms, TE = 2.98 ms, 
FOV = 256 mm, flip angle = 9°) with 1 mm sagittal slices. Functional echo planar images were 
acquired using a T2*-weighted sequence (TR = 1.0 s, TE = 30 ms, 44 slices, 2.0 mm thickness, 
in-plane resolution = 2 mm × 2 mm with 6/8 partial Fourier encoding, FOV = 212 mm, flip angle 
= 62°, multiband acceleration factor = 4); we included eight dummy volumes at the start of 
each scan to allow the scanner to reach B1 equilibrium. Functional images were acquired with 
anterior-to-posterior phase encoding; following each task, we collected two additional volumes 
with reversed phase encoding to correct for image distortion caused by B0 inhomogeneities.  
 
The scanning session started with MPRAGE acquisition. Then, participants completed four 
runs of the tonotopy task (4 sweeps/run; 1st and 3rd up-sweep, 2nd and 4th down-sweep). 
Participants fixated on a central cross overlaid on a small landscape image to minimize sweep-
related eye movements; images changed over the course each run (5 images/run; random 
duration to avoid aliasing with tonotopic sweep rate).  
 
After tonotopy runs, there were six runs (10 blocks, 8 trials/block) of 2AFC categorization. 20 
blocks involved categorization of alien identity across the high-frequency diagnostic band, 20 
involved categorization of identity across the low-frequency band, and 20 involved size 
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categorization across amplitude. A pseudorandomized block order common across 
participants assured that blocks reliant on the same diagnostic dimension did not occur 
consecutively. Overall block order in runs 1-3 repeated in runs 4-6, but with trial order shuffled, 
and with the amplitude set to a different level within the 'big' or 'small' amplitude range. In all, 
there were 320 alien identity trials (80/category, with equivalent exemplars from the two size 
categories) and 160 alien size trials (with equal exemplars from the four identity categories).  
 
To facilitate comparisons between the alien identity and alien size blocks, 20 of the 40 blocks 
that appeared during the alien identity task also appeared in the alien size task, with the same 
fixed trial order within the block. Half of the alien size blocks appeared before their 
corresponding alien identity blocks, and half appeared after. Each block began with a visual 
display of the task (“Alien Identity” or “Alien Size,” 3 sec). Each trial was 3 seconds in length 
(1.5 seconds for audio playout, 1.5-second response window). 
 
Finally, there were two runs of the attention-o-tonotopy task (one with base frequencies of 280 
and 1253 Hz, one with base frequencies of 400 and 2123 Hz). Each run involved 15 blocks 
(22-34 sequences per block), with 12-15 sec of rest after every 3 blocks (except after the final 
block in a run). Auditory instructions at the beginning of each block indicated the locus of 
attention (“high,” “low,” “volume,” “rest”). As in the tonotopy task, participants fixated on a 
central cross overlaid on changing landscape images (5 images/run).  
 
Alien Size Only Group. An additional participant group completed an abbreviated scanner 
session, which included structural imaging, four runs of the tonotopy task, and two runs of 
2AFC categorization. Critically, the 2AFC categorization task only involved alien size trials, 
and the control group received the same alien size trials (in the same order) as the expert 
group. Prior to the scanner session, these participants completed one session of Alien Size 
training and the tonotopy training; the training procedure for these tasks was identical to the 
procedure for the expert participants.  
 
MRI Analyses. Cortical surfaces were reconstructed for each participant from the T1-
weighted MPRAGE using FreeSurfer (Dale & Sereno, 1993; Dale, Fischl, & Sereno, 1999; 
Fischl, 2012).  
 
Functional images from the tonotopy task were minimally preprocessed using AFNI (Cox, 
1996) to account for saturation by discarding the first 8 volumes, to unwarp images using 
phase-reversed images collected at the end of each task, and to align all volumes to a 
reference volume from the middle of the first run. Next, the reference volume was aligned to 
the cortical surface using boundary-based registration (Greve & Fischl, 2009) in FreeSurfer. 
 
To establish the regions of auditory cortex showing spectral selectivity, we calculated tonotopic 
maps using Fourier-based analyses on the preprocessed functional data from the tonotopy 
task in csurf, following standard phase-encoded mapping approaches (Sereno et al., 1995; 
Dick et al. 2012, 2017). Relying on the fact that each frequency step occurs at a consistent 
time within a sweep, Fourier analysis allowed us to compute a set of F-statistics indicating 
how each voxel responds at the frequency of stimulus cycling (4 cycles per run, 4 64-sec 
sweeps per run) relative to other frequencies; the phase lag (i.e., the delay relative to the start 
of the cycle) of the maximal response can be used to determine the frequency preference of 
each voxel. We performed Fourier analysis of each run (up-sweeps time-reversed for phase 
averaging with down-sweeps).  
 
Finally, we painted the phase of the signal (indicating frequency preference) as a color map 
and visualized the data on each participant’s cortical surface reconstruction. Projecting each 
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subject’s data onto an icosahedral surface and averaging across participants created a group 
map that was projected to a single participant’s surface reconstruction for visualization. 
Subsequent region-of-interest (ROI) analyses, described below, were limited to regions in 
auditory cortex where tonotopic organization was observed at the group level in expert 
participants.  
 
We next performed a regression-based analysis on the preprocessed functional data from 
each of the three tasks using 3dREMLfit in AFNI (Chen et al., 2012). For each analysis, 
regressors were constructed by convolving a vector of the onset times for each frequency step 
with a square wave of the appropriate duration. (Rigid-body motion parameters (movement in 
the x-, y- and z-axis directions, as well as pitch, roll, and yaw) were included as regressors of 
no interest). The resultant beta estimates were used to compute, for each task, the difference 
in activation between the high-frequency condition and low-frequency condition. In the 
categorization tasks, this corresponds to the difference between performing categorization on 
high-frequency-diagnostic stimuli vs. low-frequency-diagnostic stimuli. In the attention-o-
tonotopy task, this corresponds to the difference between explicitly attending to high or low 
frequency mini-sequences. Results were mapped to the cortical surface using the mri_vol2surf 
Freesurfer command. To generate group-level contrast maps, subject-level maps were 
projected onto an icosahedral mesh and averaged, the result of which was displayed on a 
single subject’s surface. 
 
Although there is a macroscopic cross-participant similarity in large-scale tonotopic gradients, 
there is considerable cross-participant variability in frequency preference at a finer grain, 
particularly when voxels are aligned by cortical folding patterns (Besle et al., 2018; Moerel et 
al., 2014). Thus, to measure regional encoding and cross-task correspondence in spectral 
attentional weighting while taking this variability into account, we calculated the degree of 
correspondence in cross-task voxel-wise spectral selectivity in a set of small cortical surface 
ROIs defined in a previous study (Dick et al., 2017). Here, we limit our analysis to those ROIs 
where tonotopic selectivity was observed at the group level in our expert participants. For each 
participant, the ROIs that tessellate tonotopically-organized auditory cortex (37 per 
hemisphere) were projected from a single participant to the unit icosahedron  (sphere_reg), 
then projected again to each curvature-aligned  participant's surface, and finally to the 
bbregister-aligned native space 2 x 2 x 2 mm EPI space using Freesurfer's mri_label2vol.  
 
For each ROI, cross-task concordance was evaluated via regression analysis, where all 
subject-wise beta coefficients in one task (e.g., btonotopy(high-low)) was used to predict the high-
low betas in another task (e.g., battention-o-tonotopy(high-low)); each regression model included random 
intercepts for each participant. The resultant t values were transformed to z statistics, and 
these z values were painted onto the cortical surface. Significance (alpha < 0.05) was 
assessed using one-tailed tests, as we had a priori hypothesized a positive relationship 
between betas across tasks.  To control for multiple comparisons, we applied a false discovery 
rate (FDR) correction on our p values using the 3dFDR command in AFNI. Note that because 
3dFDR performs a two-tailed adjustment, p values associated with negative z statistics were 
inverted (i.e., 1-p) both prior to and following FDR correction, yielding FDR-corrected values 
that reflect one-tailed tests. Similar analyses were performed for different subgroups of 
participants defined based on behavioral performance during training.  
 
We also conducted a series of analyses to compare cortical responses across groups (e.g., 
in participants who acquired category expertise early in training vs. those who acquired 
expertise over the course of training). We tested whether the resultant cross-task concordance 
statistics differed across groups by computing a zdifference statistic (Hays, 1994), defined as: 
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These values were projected onto a single subject’s cortical surface, providing an index of 
which group demonstrated stronger cross-task concordance. For these analyses, significance 
was assessed using two-tailed tests and FDR corrections were applied to control for multiple 
comparisons.  
 
Data Availability 
The datasets and code generated and analyzed in the current study are available at 
https://osf.io/arjcf/. 
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Supplemental Materials 
 

 
 
Supplemental Figure S1. There were multiple trajectories of learning to achieve 
expertise in alien identity categorization. A. Highest Achievers. Defined as participants in 
the top tercile of performance on the 4AFC generalization task (N=16). B. Lowest Achievers. 
Defined as participants in the bottom tercile of performance on the 4AFC generalization task 
(N=16). C. Early Experts. Defined as participants who, on Day 1, achieved at least 90% 
accuracy on 2AFC for each category pair defined by diagnostic frequency band (N=17). D. 
Late Experts. Defined as participants who improved 20-55% in accuracy on 2AFC for the low-
frequency diagnostic band over Days 1-5 (N=16). E. Distribution of Learning Trajectories 
by Participant. The Venn diagrams show how participants relate to the four learning 
trajectories. Note that 4 of the 49 total participants are not included in any subgroup based on 
these criteria. 
 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 23, 2024. ; https://doi.org/10.1101/2024.09.21.614258doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.21.614258
http://creativecommons.org/licenses/by-nc-nd/4.0/

