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1  | INTRODUC TION

The study of the human microbiome has dramatically expanded 
our understanding of the role that microbes play in health and dis-
ease. These studies have been facilitated by the development of 
next-generation sequencing (NGS) technologies, which are capa-
ble of generating enough sequences to cover most of the diversity 

present in a sample. However, capturing the full composition is still 
a challenge, even when estimated by the distribution of 16S rDNA 
sequences (Ni et  al.,  2013; Tamames et  al.,  2012). The study of 
transcriptomes of whole microbial communities, or metatranscrip-
tomics, has increased exponentially in the last few years (Shakya 
et al., 2019; Zhang et al., 2019), and trying to analyze these kind 
of data has produced a new set of challenges. Thus, García-Ortega 
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Abstract
Metatranscriptome analysis or the analysis of the expression profiles of whole mi-
crobial communities has the additional challenge of dealing with a complex system 
with dozens of different organisms expressing genes simultaneously. An underlying 
issue for virtually all metatranscriptomic sequencing experiments is how to allocate 
the limited sequencing budget while guaranteeing that the libraries have sufficient 
depth to cover the breadth of expression of the community. Estimating the required 
sequencing depth to effectively sample the target metatranscriptome using RNA-
seq is an essential first step to obtain robust results in subsequent analysis and to 
avoid overexpansion, once the information contained in the library reaches satura-
tion. Here, we present a method to calculate the sequencing effort using a simulated 
series of metatranscriptomic/metagenomic matrices. This method is based on an 
extrapolation rarefaction curve using a Weibull growth model to estimate the maxi-
mum number of observed genes as a function of sequencing depth. This approach 
allowed us to compute the effort at different confidence intervals and to obtain an 
approximate a priori effort based on an initial fraction of sequences. The analytical 
pipeline presented here may be successfully used for the in-depth and time-effective 
characterization of complex microbial communities, representing a useful tool for the 
microbiome research community.
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and Martínez (2015), using a nonparametric estimator for the num-
ber of undetected genes, found that on average, approximately 
10% of the expressed genes per accession remain undetected if 
individual sequencing libraries are analyzed. The power and accu-
racy of such experiments depend substantially on the number of 
reads sequenced, so a crucial step in the experiment design should 
be determining the optimal read depth for a particular study or 
verifying whether the experiment has adequate depth (Robinson & 
Storey, 2014).

Most RNA-seq studies have focused on assessing the depth of 
transcriptome sequencing in eukaryotic systems, using a wide range 
of estimated sequencing depths to cover the full patterns of expres-
sion. In the human transcriptome, the sequencing depth estimated 
as necessary to observe differences in expression profiles varies 
from 100 to 700 million sequences (Toung et al., 2011; Westermann 
et al., 2012). In the case of prokaryotic RNA-seq experiments, Haas 
et al. have shown that the reads typically produced in a single lane 
of the Illumina HiSeq sequencer far exceed the number needed to 
saturate the annotated transcriptomes of diverse bacteria growing 
in monoculture (Haas et al., 2012).

In metatranscriptome sequencing, saturation is reached when 
an increment in the number of reads does not result in an additional 
increment in the number of expressed transcripts, or no additional 
ORFs are detected in the case of shotgun metagenomic analysis. 
One way of estimating the point of saturation is by using rarefaction 
curves, a method commonly used in ecology to estimate the species 
richness as a function of sampling effort. In the case of RNA-seq/
DNA-seq, a higher sequencing depth will only prolong the curve 
but is otherwise comparable to a lower sequencing depth curve for 
the same regions. Once the curve reaches a plateau, where addi-
tional sequencing would only marginally increase the number of 
transcripts observed, the curve can be considered as saturated, 
and there is therefore no need to increase the sequencing effort to 
describe the gene expression profiles of the community. Another 
useful feature of saturation curves is that they allow the complex-
ity of the sample to be assessed: Expressed transcripts will be nu-
merous in highly complex communities and low in those with low 
complexity.

We have developed a method to calculate the sequencing effort 
needed to reach the maximum number of existing genes using rar-
efaction curves extrapolating from a small initial sequencing depth 
(10%–20%) and estimating the confidence intervals at 90%, 95%, or 
99% of the maximum sequencing effort.

2  | MATERIAL AND METHODS

2.1 | Methodological overview

We first simulated more than a thousand different metatranscrip-
tomic/metagenomic matrices. On those matrices, we computed rar-
efaction curves using the function iNEXT( ) from the iNEXT R library 
for Interpolation and Extrapolation for Species Diversity (Hsieh 
et al., 2016). We then used a nonlinear growth model to compute the 
maximum number of genes expected and to estimate the sequenc-
ing depth (reads) required for 90%, 95% or 99% of the maximum 
sampling effort.

Finally, using a method based on machine learning, we predicted 
the 90%, 95%, or 99% of the maximum number of genes using only 
a minimum number of sequencing depth (reads) and the sampling 
effort needed. All these functionalities were included in some func-
tions of R. The method was tested, as an application thereof, on 
metatranscriptomic samples of an oral microbiome. The results are 
presented in the supplementary material of this article.

2.2 | Simulation of metatranscriptomic/
metagenomic matrices

Metatranscriptomic/metagenomics matrices were simulated as de-
scribed in Rodríguez-Casado et  al.  (2017) and in Monleon-Getino 
et al. (2019). In order to simulate gene data and the associated reads 
in each sample, it is necessary to know which underlying probability 
model best explains the distribution of the data, for example, the 
binomial (distribution of the reads per gene in a sample), multinomial 
(distribution of the counts for the set of genes in the sample), and 
complex distributions such as the Dirichlet-multinomial (distribution 
of reads for the set of genes and samples in the experiment). The 
following is a brief theoretical introduction to these distributions, 
which once known allow the simulation of new samples by Monte-
Carlo simulation, a statistical method used to solve complex math-
ematical problems through the generation of random variables.

Table  1 shows the general metatranscriptomic/metagenomic 
matrix (M) structure (n rows: samples, p columns: genes) obtained 
after the bioinformatic analysis, which constitutes the starting point 
of this study. Outlined below are the mathematical formalization 
and the study of probability distribution, previously studied in more 
depth (Monleon-Getino et al., 2019).

Number Gene Sample 1 Sample 2 Sample jth Sample n Total

1 type. 1 m11 m12 … m1n N1.

2 type. 2 m21 m22 … m2n N2.

⋮ ⋮ … … mij … …

k type. k mk1 mk2 … mkn Nk.

Total N.1 N.2
… N.n N

TA B L E  1   Data matrix structure of M′ 
(metatranscriptomics or metagenomics 
matrix input)
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Usually, for convenience, in M we change the notation of p by k; 
also during the statistical analysis, we use the transpose M′structure 
(k rows: genes, p columns: samples), which shows the samples (e.g. 
individuals) in the columns and the identified gene in the rows 
(Table 1).

As a result of genomic analysis, M′ can be very large and usu-
ally has thousands of genes, most of them with small frequencies 
or 0, that is, M′ is typically a sparse matrix. This matrix is truncated 
because some characteristics were not observed in the sampling.

From the statistical point of view, it is highly convenient to for-
malize the probability distribution underlying this matrix structure, 
so each sample from M′ can be represented by one k-dimensional 
random vector Xj;Xj=

(
m1j,m2j,…,mkj

)
, where mkj represents the 

number of times that gene k is observed in sample j.
The probability distribution of each random vector Xi. (vector 

row) and X.j (vector column) can be associated individually with a 
multinomial distribution,

The multinomial distribution is a multivariate generalization of 
the binomial distribution, where the marginal distribution of each 
Xij is:

for example, if we consider the partition of all sample space Ωj 
the j-sample space in k parts:

One individual selected randomly has the probability �kj of be-
longing to the gene Akj in the partition:

If we wish to calculate the probability of sample j having N.j indi-
viduals, m1j belongs to class A1j, m2j to class A2j,...,mkj to class Akj, with 
the restriction

Furthermore, using the multinomial function of density (mass 
function) we can calculate this probability, MN

(
N.j;�j=

(
�1j, �2j,…, �kj

))

:

where 0≤�ij≤1 for all i in 1 to k, and �1j+…+�kj=1 (∀j), and if k = 1, 
the mass function is reduced to the binomial, ∀j=1, . . , n.

The conjugate prior of the Multinomial distribution is the 
Dirichlet distribution, the multivariate generalization of beta dis-
tribution. Hence, the parameter vector �k=

(
�1j, �2j,…, �kj

)
; ∀j has a 

prior distribution given by:

In (10), the density function is given by:

In Bayesian inference, p (�|x) is known as posterior distribution 
and is proportional to likelihood (p(x|θ))x prior distribution (p(x)), so 
p (�|x)∝p (x|�) ⋅p (x) .

The posterior distribution of �j given X is:

Thus, in order to implement a new method that calculates the 
depth of the sample and conveniently estimates the sampling ef-
fort, as well as whether it is necessary to sequence more samples 
or not, matrices M′ can be simulated with different values of k 
and n, with M′ requiring a multinomial probability distribution. M′ 
can be directly simulated from the joint posterior Dirichlet distri-
bution, using the rdirichlet( ) function from the LearnBayes pack-
age in R (CRAN, 2018a, 2018b) and the rmultinom( ) function with 
Dirichlet prior probability (Monleon-Getino et al., 2019).

2.3 | Calculating rarefaction curves

There are many methods for calculating the rarefaction curve for 
each M′; here, we chose to use one of the most recent ones, the 
iNEXT(  ) function of R iNEXT for Interpolation and Extrapolation 
for Species Diversity (Hsieh et al., 2016). This library provides sim-
ple functions to compute and plot two types (sample size- and cov-
erage-based) of rarefaction and extrapolation of species diversity 
(based on Hill numbers) for individual-based (abundance) data or 
sampling unit-based (incidence) data.

(1)X.j∼MN
(
N.j, �1j,…, �kj

)
; ∀j=1, . . , n

(2)Xi.∼MN
(
i. , �i1,…, �in

)
; ∀i=1, . . , k

(3)Xij∼Bin
(
mij, �ij

)
; 1≤�ij≤1; ∀j=1, . . , n; ∀i=1, . . , k

A1j, A2j, … ,Akj

(4)

P
�
A1j

�
=�1j

P
�
A2j

�
=�2j

⋮

P
�
Akj

�
=�kj

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

k�
i=1

�ij=1; ∀j=1, . . , n

(5)
k∑

i=1

mij=N.j; ∀j=1, . . , n

(6)P
[(
A1j=m1j

)
∩…∩

(
Ahj=nkj

)]
=

N.j!

m1j!m2j!…mkj!
�
m1j

1j
⋅�

m2j

2j
⋅… ⋅�

mkj

kj
; ∀j

(7)�k∼Dirichlet
(
�1j, �2j,…, �kj

)
; ∀j=1, . . , n

g(���1j, �2j,…, �kj)=
Γ
�∑k

i
�ij

�

∏k

i

�
Γ�ij

� �
(�1j−1)

1j
�
(�2j−1)

2j
…�

(�kj−1)

kj
;

(8)𝛼ij>0; 0≤𝜃ij≤1;

k∑
i

𝜃ij=1; ∀j=1, . . , n

(9)�j|x∼Dirichlet
(
x1j+�1j, x2j+�2j,…, xkj+�kj

)
; ∀j=1, . . , n
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Using the iNEXT( ) function, we calculated the rarefaction curves 
for each metatranscriptomic/metagenomic matrix (M′) simulated 
previously.

2.4 | Calculating sampling effort

Unfortunately, iNEXT(  ) cannot calculate the maximum number of 
genes or estimate the sampling effort, and the reads covering 90%, 
95%, and 99% of the maximum number of genes in the case of non-
saturated rarefaction curves. To address this caveat, we propose a 
nonlinear parametric model.

In this type of study, it is common to perform an initial analysis 
for model selection. Thus, rarefaction curves were first fitted based 
on previous experience and a selection of possible nonlinear mod-
els (Mendez et al., 2017) or the use of Bayesian methods (Monleon-
Getino et al., 2017) were tested.

Several functions, including Weibull, logistic, asymptotic re-
gression through the origin (or a two-parameter Weibull growth 
model), Gompertz, and Michaelis–Menten models, were tested 
using nonlinear regression for use as extrapolations of the rar-
efaction curves (Mendez et  al.,  2017). The regression analy-
sis was performed using the R-package function nls(  ), and the 
model accuracy was tested with the function accuracy(  ) of the 
R-package rcompanion (R Companion,  2018), which produces a 
table of statistics that can fit multiple models. The model accu-
racy was tested using Efron's pseudo r-squared, Min.max.accu-
racy (for minimum, maximum accuracy, more substantial indicates 
a better fit, and a perfect fit is equal to 1), and root-mean-square 
error (RMSE), which has the same units as the predicted values. 
The Weibull sigmoid model obtained the best scores and was se-
lected as a useful function that fits and extrapolates the rarefac-
tion curve.

The Weibull growth model used in our studies is derived from 
the one-parameter Weibull function (10), given by:

where γ is a shape parameter and x > 0 and γ > 0. The distribution 
function has a point of inflection at 

(x, F (x))=

(
[(�−1)∕�]

1

�
, 1−exp

(
−
(
1−�−1

)))
. The following equation 

can then be used to obtain the sigmoidal curve for empirical use:

Moreover, the Weibull function of four parameters can be de-
scribed by the function F (x)=�−(�−�) e−(kx)

�

. Thus, in our case the 
Weibull growth model of four parameters (Pinheiro,  2018) is de-
scribed by the function W (x):

where W (x) is the potential number of genes being expressed for each 
number of reads (x) and now a=�, b=�−� , c=�� and m= � . a, b, c, 
and m are parameters to be estimated and e is the base of the nat-
ural logarithms. a is the asymptote of limiting value of the response 
variable W (x), x∞lim

���������→

W (x)=a, which represents the maximum number 
of expressed genes. b is the biological constant (lower asymptote), c 
is the parameter governing the rate at which the response variable 
approaches its potential maximum a, and finally, m is the allometric 
constant. The four-parameter Weibull growth model is considered 
very flexible in that it can be easily transformed into a three-, two-, or 
one-parameter model to adapt the relation between possible numbers 
of genes being expressed for each sample size (reads). For example, 
by setting b = a and m = 1 from (12), we obtained a two-parameter 
Weibull growth model (or Asymptotic regression through the origin 
model given by:

with the same meaning W(x), x, a and c (see 12).

2.5 | Estimation of the amount of sequencing 
(reads) needed to cover the total expected microbial 
metatranscriptome/metagenome (confidence band)

The maximum potential number of genes being expressed and the 
95% confidence band was used as an estimation of the asymptote 
of limiting value in a Weibull growth model of four (12) or two pa-
rameters (13). Using this Weibull parametric model, we estimated 
the amount of sequencing needed to cover 90%, 95%, and 99% of 
the total expected metagenome/metatranscriptome in the samples 
and the 95% confidence interval, based only on the first 1 million 
sequences for each sample. We used R (v. 3.6) to perform all the 
calculations described below.

Parameters in the Weibull growth model were estimated using 
the nls (Nonlinear regression), nls2 (Nonlinear regression with 
brute force (CRAN,  2018b), and minpack.lm (R Interface to the 
Levenberg-Marquardt nonlinear least squares) packages. The op-
tion ~ Ssweibull(x; a, b, c, m) was used for the four-parameter Weibull 
growth model, and ~ SsasympOrig(x; a, b) was used for the two-pa-
rameter Weibull model. In order to initialize the parameters, a "brute-
force" algorithm was used, and then, the parameters were optimized 
until those that maximize the adjustment value were optimized; the 
"brute-force" algorithm returns the nls object corresponding to the 
starting values (CRAN, 2018b).

2.6 | A priori gene prediction using a few initial 
total reads

We used different algorithms to fit a regression model to predict the 
potential number of genes, effort/reads covering 90%, 95%, or 99% 
of the maximum number of genes based on the first 10%–20% of 

(10)F (x)=1−e
(−x� )

(11)F (x)=�+(�−�) F (kx, �)

(12)W (x)=a−be
−(cx)m

(13)W (x)=a
(
1−e

(−cx)
)
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sequences (reads). As a first strategy, a classical linear regression of 
the function lm( ) was optimized using a function step( ) to perform 
the stepwise model selection, and the model was validated using the 
function cv.lm (data, model, m) from the DAAG library (Maindonald 
& Braun, 2010, 2019). This function gives internal and cross-valida-
tion measures of predictive accuracy for multiple linear regression.

Two other strategies were applied: the so-called machine learn-
ing algorithms such as support vector machines (SVM) and Extreme 
Gradient Boosting (XGBoost), in which we used the training data 
(with multiple features) xi (here the genes in each sequencing depth) 
to predict a target variable yi (maximum number of genes).

Support vector machines (SVM) constitute a data classification 
method that separates data using hyperplanes, which is useful in 
the case of regression (Cortes & Vapnik, 1995). If we have labeled 
data, SVM can generate multiple separating hyperplanes, so that the 
data space is divided into segments, each containing only one kind 
of data. The SVM technique is generally useful for data which has 
nonregularity, that is, without a known distribution. We used the 
function SVM( ) in R for the calculation (Chang & Lin, 2011).

Extreme Gradient Boosting is an efficient implementation of 
the gradient boosting framework from Chen and Guestrin (2016). 
Gradient boosting is a state-of-the-art prediction technique that se-
quentially produces a model in the form of linear combinations of 
simple predictors—typically decision trees—by solving an infinite-di-
mensional convex optimization problem. XBoost(  ) from library 
Xboost( ) in R (Chen & Guestrin, 2016) permits the calculation of this 
predicted method.

In order to check the accuracy of different models, it is com-
mon to use the coefficient of determination (R2 or R-squared), the 
mean absolute error (MAE), and the root-mean-square error (RMSE) 
(Hyndman & Koehler, 2006).

R2 is the percentage of the response variable variation that is 
explained by the model:

R2 is always between 0 and 1, 0 indicating that the model ex-
plains none of the variability of the response data around its mean 
and 1 that the model explains all the variability of the response data 
around its mean.

RMSE is a frequently used measure of the differences between 
values (sample and population values) predicted by a model or an 
estimator and the values observed. The RMSE represents the sam-
ple standard deviation of the differences between predicted and 
observed values.

where n is the number of pairs of observations, ŷi the value predicted 
and yi the observed value.

Mean absolute error (MAE) is the average vertical distance be-
tween each point and the Y = X line:

where n is the number of pairs of observations, ŷi the predicted value 
and yi the observed value.

2.7 | Metatranscriptome databases used in the 
method application

We used metatranscriptome datasets from three different 
sources for the application of the proposed method. The first set 
was generated in our lab as described in Yost et  al.  (2015) and 
is available at the Human Oral Microbiome Database (HOMD) 
server under the submission number 20141024 (ftp://ftp.homd.
org/publi​cation_data/20141​024/RNA/ ). The second dataset 
was generated by Benítez-Páez et  al.  (2014) and is available at 
the MG-RAST server by accessing the “Oral Metatranscriptome” 
project, id 935 (http://metag​enomi​cs.anl.gov/linkin.cgi?proje​
ct=935). The third dataset was generated by Jorth et  al.  (2014) 
and is available at DNAnexus study number SRP033605 (http://
sra.dnane​xus.com/studi​es/SRP03​3605). All databases were bio-
informatically cleaned of rRNA sequences, and in the case of 
SRP033605, we also removed low-quality sequences from the 
query files. Fast clipper and fastq quality filters from the Fastx 
toolkit (http://hanno​nlab.cshl.edu/fastx​toolk​it/) were used to 
remove sequences shorter than 50 bp with a quality score > 20 
in > 80% of the sequence.

3  | RESULTS AND DISCUSSION

3.1 | Metatranscriptomic/ Metagenomic matrix 
simulation, rarefaction computation, and estimation 
of parameters

Our focus was to study the transcriptome of whole complex micro-
bial communities rather than individual transcriptomes, using an 
oral community as a model. The oral microbiome is one of the best 
characterized human body sites (Belda-Ferre et al., 2012; Haffajee 
et al., 2008; Marsh, 2006; Paster et al., 2001; Peterson et al., 2013; 
Socransky et al., 1998), comprising an extremely complex and highly 
organized biofilm community (Kolenbrander,  2000; Kolenbrander 
et al., 2002). More than 700 bacterial species have been identified in 
the oral cavity [Paster et al., 2001; Dewhirst et al., 2010]. Many oral 
bacterial species have not yet been cultivated, and the only informa-
tion we possess about them derives from their 16S rRNA phyloge-
netic affiliation.

In the current study, we investigated the proposed mathematical 
Weibull model, using nonlinear regression modeling. This model is 
a generalization of the asymptotic growth model in that it reduces 
when the parameter m is unity (see Methods).

(14)R
2=Explained variation∕Total variation

(15)RMSE=

∑n

i=1

�
ŷi−yi

�2
n

(16)
MAE=

∑n

i=1

���
�
ŷi−yi

����
n

ftp://ftp.homd.org/publication_data/20141024/RNA/
ftp://ftp.homd.org/publication_data/20141024/RNA/
http://metagenomics.anl.gov/linkin.cgi?project=935
http://metagenomics.anl.gov/linkin.cgi?project=935
http://sra.dnanexus.com/studies/SRP033605
http://sra.dnanexus.com/studies/SRP033605
http://hannonlab.cshl.edu/fastxtoolkit/
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Estimations of parameters of interest Mean Minimum Maximum

Maximum number of genes observed 183,312 6 926,470

Effort computed using the 
iNEXT( )+Weibull model

72.399% 1.208% 100%

Reads covering 99% of the maximum 
number of genes

5,788,494 80 31,779,350

TA B L E  2   Estimations of parameters of 
interest using a set of 1,587 simulations 
by means of a multinomial model of a 
metatranscriptomic/ metagenomic matrix

F I G U R E  1   Calculation of the number of genes versus the number of reads using the PILI3( ) function of the library(Sequencingeffort). 
Interpolated data (solid red line), extrapolated data (dashed line), and red dot (limit of observed data)

Model name
Predictors used in the model (independent 
variables, Xi)

Results (R2) with different 
algorithms of prediction

Model 1 •	 Asymptote estimated using a logistic 
function

•	 Asymptote estimated using a four-
parameter Weibull function

•	 “Observed” minimum number of reads of 
the 20% vector

•	 “Observed” maximum number of reads of 
the 20% vector

SVM = 0.9964754
LM = 0.9990069
Xboost = 0.999999

Model 2 •	 Asymptote estimated using a four-
parameter Weibull function

•	 “Observed” minimum number of reads of 
the 20% vector

•	 “Observed” maximum number of reads of 
the 20% vector

SVM = 0.9964423
LM = 0.9981882
Xboost 0.9999981

TA B L E  3   Model accuracy for the 
prediction of the maximum number of 
genes using only 20% of total reads in a 
simulation of 1,587 metatranscriptomic/
metagenomic genomic sequences
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Using an R script (see Supplementary Material), we simulated 
1,587 metatranscriptomic/metagenomic matrices containing 
more than 99 reads, with random numbers of genes (min  =  267, 
max = 339,319) and reads (min = 550, max = 6,823,774), and always 
3 samples (replicas). The simulations had a high computational cost 
of more than 2 weeks and were carried out on a Linux Xeon SP 4114 
2.2 GHz computer server with 40 cores. This information has been 
collected in a data frame for further analysis.

A rarefaction curve using the 1,587 simulated cases was com-
puted using the function iNEXT( ), and the vector obtained (n = 100 
points, x = reads, y = genes) was saved and used later to compute 
(a) the maximum number of genes, (b) the sampling effort to reach 
the maximum number of genes (minimum = 1%, maximum = 100%; 
see Table 2), and c) the reads covering 90, 95 and 99% of the max-
imum number of genes. This last part [points (a), (b), and (c) ] was 
done using an estimation based on the Weibull model described in 
Section 2.3 using nonlinear regression.

Four examples of the results obtained are shown in Figure 1. The re-
sults can be distinguished in four different types of rarefaction curves:

•	 Over-sampling curves: minimum sampling effort to obtain the 

maximum amount of genes in a quick rarefaction curve (Figure 1.a).
•	 Correct sampling curves: medium sampling effort to obtain the 

maximum amount of genes in a saturated rarefaction curve 
(Figure 1.b).

•	 Under-sampling curves: maximum sampling effort to obtain the 
maximum amount of genes in a nonobserved saturated rarefac-
tion curve (Figure 1.c).

•	 Very under-sampling: very maximum sampling effort to obtain the 
maximum amount of genes in a nonobserved saturated rarefac-
tion curve (Figure 1.d).

Moreover, in the curves of Figure 1, we can distinguish the ver-
tical lines of the reads covering 90%, 95%, and 99% of the maximum 
number of genes.

3.2 | A priori gene prediction using only a few 
total reads

Using the simulated data and the parameters estimated previously, 
we fitted a regression to predict the potential number of genes and 

F I G U R E  2   RMSE and absolute error bands (mean (red), 95% (blue), and 99% confidence (magenta)) of different methods [(a) support 
vector machine, (b) linear regression model, and (c) XBoost] using 20% of sequencing depth (reads) to predict the maximum number of genes. 
300 random resamples were performed
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the reads covering 90%, 95%, or 99% of the maximum number of 
genes using only the first 20% of sequences (reads). To implement 
this method, we used three algorithms (linear model (lm), Extreme 
Gradient Boosting (XB), and support vector machine (SVM)) to pre-
dict the aforementioned values. Several predictors were tested to 
predict the maximum number of genes as a function of the first 20% 
of sequences (reads). Using the simulated data, several good predic-
tors were detected, such as the asymptote, using a four-parameter 
Weibull model or other similar and well-known models such as the 
logistics curve model (Mendez et al., 2017). Other predictors used 
were the minimum–maximum number of genes observed and, finally, 
the minimum–maximum number of reads observed (see Table 3, cen-
tral column; model 1 and model 2 and supplementary material).

After testing the prediction of the proposed models using the 
three aforementioned prediction algorithms (lm, Xboost and SVM), 
it was found that the results of the prediction of interest (maximum 
number of genes and reads covering 90%, 95%, or 99% of the maxi-
mum number of genes) for the total curve with the 1,587 simulated 
samples were very similar, with an R2 > 0.99, which indicates a pos-
sible over-fitting (see Table 3, right column).

To validate the method and the models, we initially used only the 
first 20 points of the rarefaction curve (reads of 20% of the total amount 

of the curve obtained) and then divided the total number of simulated 
rarefaction curves (n = 1,587) and the estimated parameters (maximum 
number of genes, sampling effort, etc.) into two parts using cross-val-
idation: (a) In the training set, 70% was used to train and estimate the 
prediction models (lm, XB, and SVM), and (b) in the test set, 30% was 
used to check the model fit and capacity to predict the maximum num-
ber of genes, and reads covering 90%, 95%, and 99% of the maximum 
number of genes using only the first 20% of sequences (reads).

We used 300 random resamplings, and a significant computa-
tional effort was made to obtain the predictions using models 1 and 
2. We determined that the XB and lm are useful methods to predict 
the maximum number of genes using only 20% of sequencing depth. 
To prove the accuracy of the method, we used the mean absolute 
error (MAE), root-square-mean error (RSME), and the coefficient of 
determination (R2) between estimations using the Weibull model 
with 100% and 20% of the rarefaction curve.

The results of the validations of the three prediction methods 
(XB, lm, and SVM) and model 1 are presented in Figures  2 and 3 
(prediction of maximum number of genes) and 4 and 5 (prediction of 
reads covering 95% of the maximum number of genes), which show 
the absolute error (MAE), RMSE bands (mean and 95% and 99% con-
fidence), and R2 for the 300 random resampling test sets. It can be 

F I G U R E  3   Coefficient of determination (R2) bands (mean (red), 95% (blue) and 99% confidence (magenta)) of the different methods used 
[(a) Support vector machine, (b) linear regression model, and (c) XBoost] using 20% of sequencing depth (reads) to predict the maximum 
number of genes. 300 random resamples were performed
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observed that SVM and XB are the best methods in all situations 
(estimation of the maximum number of genes; number of reads to 
cover 95% of the maximum number of genes).

The final SVM method (model 1) for predicting the maxi-
mum number of genes has an RMSE = 13,454, MAE = 10,086 and 
R2 = 0.996 between the observed and predicted values (Figure 2(a,b) 
and Figure 3(a). The final SVM model (model 1) for predicting reads to 
cover 95% of the maximum number of genes has an RMSE = 147,816, 
MAE = 113,611 and R2 = 0.997 between the observed and predicted 
values (Figure 4(a,b) and Figure 5(b).

The final XB model estimated to predict the maximum number of 
genes has an RMSE = 8,229, MAE = 3,819 and R2 = 0.998 between 
the observed and predicted values (Figure 2(e,f) and Figure 3(c). The 
final XB model estimated to predict reads covering 95% of the max-
imum number of genes has an RMSE = 99,388, MAE = 46,696 and 
R2 = 0.999 between the observed and predicted values (Figure 4(e,f) 
and Figure 5(c).

Finally, an XB model 1 including the total amount of simulated 
data (n  =  1,587) was estimated and saved. The R2 of all data and 
prediction models (lm, XB, and SVM) are presented in Figure 6. This 
model will be used to predict the described parameters of interest 
(maximum number of genes: Figure 6 a,b,c, reads to cover 95% of 
the maximum number of genes: Figure 6d,e,f, effort, etc.). Also, the 
confidence interval (95%) of the prediction was obtained by applying 
a "bagging" method, which was possible with the XB model and in-
volves creating the same model many times (with randomness).

Finally, using 100 subsamples we obtained the prediction mean 
and 95% by means of the function ci.mean( ) of the library(Publish) 
for R. The final XB model estimated to predict the maximum num-
ber of genes has an MAE  =  86 and R2  =  0.9999997 between the 
observed and predicted values (Figure 6c). The final XB model es-
timated to predict reads covering 95% of the maximum number of 
genes has an MAE = 634 and R2 = 0.9999999 between the observed 
and predicted values (Figure 6g).

F I G U R E  4   RMSE and absolute error bands (mean (red), 95% (blue), and 99% confidence (magenta)) of different methods [(a) Support 
vector machine, (b) linear regression model, and (c) XBoost] using 20% of sequencing depth (reads) to predict the reads covering 95% of the 
maximum number of genes. 300 random resamples were performed
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3.3 | Application of the proposed method to 
real data

External validation (real data not used before) was performed to 
check the algorithms developed previously. To this end, we used a 
set of 15 datasets of metatranscriptomes from the oral cavity. These 
RNA sequences consist of vectors of 105–1.5 × 107 read depth with 
a 10,000 and 600,000 gene size, most of them with saturation but in 
some cases with a definite unsaturation. We used these sequences 
to validate the method and predict the maximum number of genes 
and the number of reads covering 95% of the maximum number of 
genes, using all the available reads or only a percentage (3%, 20%, 
and 60% of read depth). The function monle.predict.max( ) was de-
veloped to compute this type of incomplete transcriptomic vectors 
(X = sequencing depth, Y = genes).

The results of this validation are shown in the supplementary 
material and reflect that the used model, based on a four-parameter 

Weibull model, had a perfect fit and could correctly estimate the 
parameters of interest (maximum number of genes, read depth cov-
ering 95% of the maximum number of genes).

When only a percentage (3%, 20%, and 60% of read depth) of the 
transcriptomic vector was used, the results were also quite accept-
able for predicting the maximum amount of genes and moderately 
acceptable for predicting the reads covering 95% of the maximum 
number of genes. The prediction for the maximum number of genes 
was considered acceptable when the maximum number of genes 
was within the XB bagging 95% prediction interval. Similarly, the 
prediction of the read depth covering 95% of the maximum num-
ber of genes was considered acceptable when within the XB bagging 
95% prediction interval or between the 90%–99% interval calcu-
lated using the 100% read depth of the transcriptome.

When 3% (105–5 × 105 reads) was used to predict the param-
eters of interest, 12/15 (80%) curves to predict the number of 
genes and 6/15 (33%) curves to predict the reads covering 95% 

F I G U R E  5   Coefficient of determination (R2) bands (mean (red), 95% (blue), and 99% confidence (magenta)) of the different methods used. 
[(a) Support vector machine, (b) linear regression model, and (c) XBoost] using 20% of sequencing depth (reads) to predict the reads covering 
95% of the maximum number of genes. 300 random resamples were performed



13392  |     MONLEON-GETINO and FRIAS-LOPEZ

of the maximum number of genes were acceptable. When 20% 
(105–3  ×  106 reads) was used to predict the parameters of in-
terest, 14/15 (93%) curves to predict the number of genes and 
9/15 (60%) curves to predict reads covering 95% of the maximum 
number of genes were acceptable. When 60% (105–1 × 107 reads) 
were used to predict the parameters of interest, 14/15 (90%) 
curves to predict the number of genes and 9/15 (60%) curves 
to predict reads covering 95% of the maximum number of genes 
were acceptable.

3.4 | Conclusions

This proposed method to estimate the maximum number of genes and 
the reads covering 90, 95, and 99% of the maximum number of genes, 
using an algorithm based on a rarefaction curve + Weibull model + ma-
chine learning prediction, will help researchers to know whether sam-
pling is sufficient or needs to be increased. The method should be used 
with precaution when predicting the sequencing depth, especially 
with unsaturated samples. However, although the proposed model can 
cause predictive problems, it was found to work in most cases. Further 
studies using real sequences and typologies should be carried out to 
fully validate the model and the simulation-based methodology.

Estimating the sequencing depth required to adequately sam-
ple the target metatranscriptome/metagenome using RNA-seq, 
and Shotgun is an essential first step in obtaining robust results 
in subsequent analysis and avoiding overexpansion once the in-
formation contained in the library reaches saturation. Our method 

allows the use of an initial shallowly sequenced sample (in this 
case 20% of the total amount of reads sampled) to estimate the 
sequencing effort needed to cover the whole metatranscriptome/
metagenome from the same sample and therefore to estimate the 
sample size. The initial number of sequences is low enough for 
current NGS methods to analyze a considerable number of sam-
ples at a low cost.
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