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Abstract

Ensemble methods have been successfully applied in a wide range of
scenarios, including survival analysis. However, most ensemble models for
survival analysis consist of models that all optimize the same loss function and
do not fully utilize the diversity in available models. We propose heterogeneous
survival ensembles that combine several survival models, each optimizing a
different loss during training. We evaluated our proposed technique in the
context of the Prostate Cancer DREAM Challenge, where the objective was to
predict survival of patients with metastatic, castrate-resistant prostate cancer
from patient records of four phase lll clinical trials. Results demonstrate that a
diverse set of survival models were preferred over a single model and that our
heterogeneous ensemble of survival models outperformed all competing
methods with respect to predicting the exact time of death in the Prostate
Cancer DREAM Challenge.
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Introduction

Today, Cox’s proportional hazards model' is the most popular sur-
vival model because of its strong theoretical foundation. However, it
only accounts for linear effects of the features and is not applicable
to data with multicolinearities or high-dimensional feature vectors.
In addition to Cox’s proportional hazards model, many alterna-
tive survival models exist: accelerated failure time model, random
survival forest’, gradient boosting®*, or support vector machine™.
Often it is difficult to choose the best survival model, because each
model has its own advantages and disadvantages, which requires
extensive knowledge of each model. Ensembles techniques lever-
age multiple decorrelated models — called base learners — by aggre-
gating their predictions, which often provides an improvement over
a single base learner if base learners’ predictions are accurate and
diverse'"''. The first requirement states that a base learner must be
better than random guessing and the second requirement states that
predictions of any two base learners must be uncorrelated. The base
learners in most ensemble methods for survival analysis are of the
same type, such as survival trees in a random survival forest.

Caruana et al.”” proposed heterogeneous ensembles for classi-
fication, where base learners are selected from a library of many
different types of learning algorithms: support vector machines,
decision trees, k nearest neighbor classifiers, and so forth. In par-
ticular, the library itself can contain other (homogeneous) ensemble
models such that the overall model is an ensemble of ensembles.
The ensemble is constructed by estimating the performance of
models in the library from a separate validation set and iteratively
selecting the model that increases ensemble performance the most,
thus satisfying the first requirement with respect to the accuracy
of base learners. To ensure that models are diverse, which is the
second requirement, Margineant and Dietterich'® proposed to use
Cohen’s kappa'* to estimate the degree of disagreement between
any pair of classifiers. The § pairs with the lowest kappa statistic
formed the final ensemble. In addition, Rooney et al."” proposed a
method to construct a heterogeneous ensemble of regression mod-
els by ensuring that residuals on a validation set are uncorrelated.

We present heterogeneous survival ensembles to build an ensemble
from a wide range of survival models. The main advantage of this
approach is that it is not necessary to rely on a single survival model
and any assumptions or limitations that model may imply. Although
predictions are real-valued, a per-sample error measurement, simi-
lar to residuals in regression, generally does not exist. Instead, the
prediction of a survival model consists of a risk score of arbitrary
scale and a direct comparison of these values, e.g., by computing
the squared error, is not meaningful. Therefore, we propose an algo-
rithm for pruning an ensemble of survival models based on the cor-
relation between predicted risk scores on an independent test set.
We demonstrate the advantage of heterogeneous survival ensembles
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in the context of the Prostate Cancer DREAM Challenge'®, which
asked participants to build a prognostic model to predict overall
survival of patients with metastatic, castrate-resistant prostate can-
cer (mCRPC).

In the early stages of therapy, prostate cancer patients are usu-
ally treated with androgen deprivation therapy, but for 10-20% of
patients the cancer will inevitably progress from castrate-sensitive
to castrate-resistant within 5 years'’. The median survival time for
patients with mCRPC is typically less than 2 years'’. To improve our
understanding of mCRPC, the Prostate Cancer DREAM Challenge
exposed the community to a large and curated set of patient records
and asked participants to 1) predict patients’ overall survival, and
2) predict treatment discontinuation due to adverse events. In this
paper, we focus on the first sub challenge, i.e., the prediction of sur-
vival. To the best of our knowledge, this is the first scientific work
that uses heterogeneous ensembles for survival analysis.

The paper is organized as follows. In the methods section, we briefly
describe the framework of heterogeneous ensembles proposed by
Caruana et al.” and Rooney et al.”” and propose an extension to
construct a heterogeneous ensemble of survival models. Next, we
present results of three experiments on data of the Prostate Cancer
DREAM Challenge, including our final submission under the name
Team CAMP. Finally, we discuss our results and close with con-
cluding remarks.

Methods
Caruana et al.”” formulated four basic steps to construct a hetero-
geneous ensemble:

1. Initialize an empty ensemble.

2. Update the ensemble by adding a model from the library that
maximizes the (extended) ensemble’s performance on an inde-
pendent validation (hillclimb) set.

3. Repeat step 2 until the desired size of the ensemble is reached
or all models in the library have been added to the ensemble.

4. Prune the ensemble by reducing it to the subset of base learn-
ers that together maximize the performance on a validation
(hillclimb) set.

By populating the library with a wide range of algorithms, the
requirement of having a diverse set of base learners is trivially satis-
fied. In addition, each model can be trained on a separate bootstrap
sample of the training data. The second step ensures that only accu-
rate base learners are added to the ensemble, and the fourth step is
necessary to avoid overfitting on the validation set and to ensure
that the ensemble comprises a diverse group of base learners. These
two steps are referred to as ensemble selection and ensemble prun-
ing and are explained in more detail below.

Efficient ensemble selection

The algorithm by Caruana er al."” has the advantage that models
in the library can be evaluated with respect to any performance
measure. The final heterogeneous ensemble maximizes the selected
performance measure by iteratively choosing the best model from
the library. Therefore, the training data 2 needs to be split into two
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non-overlapping parts: one part (2, ) used to train base learners
from the library, and the other part (2, ) used as the validation set
to estimate model performances. Data in the biomedical domain is
usually characterized by small sample sizes, which would lead to an
even smaller training set if a separate validation set is used. Caruana
et al."® observed that if the validation set is small, the ensemble
tends to overfit more easily, which is especially concerning when
the library contains many models. To remedy this problem, Caruana
et al. [18, p. 3] proposed a solution that “embed[ded] cross-valida-
tion within ensemble selection so that all of the training data can be
used for the critical ensemble hillclimbing step.” Instead of setting
aside a separate validation set, they proposed to use cross-validated
models to determine the performance of models in the library (see
Algorithm 1).

Algorithm 1. Ensemble selection for survival analysis

Input: Library of N base survival models, training data 2,

number of folds K, minimum desired performance ¢ .

Output: Ensemble of base survival models exceeding
minimum performance.

1 M«

2 fori« 1to Ndo

3 C«©O

4 fork<« 1to Kdo

5 D i & k-th training set

6 ¥ o < k-th test set

7 M, < Train k-th sibling of i-th survival model on 2¢__

8

9

¢, < Prediction of survival model M, on 2
€« cu((D,, )

test’ ~k

test

/* Store prediction and
associated ground truth */

10 end

11 ¢ « Performance of i-th survival model based on

predictions and ground truth in ¢,

12 if¢>c  then

13 M—MU{M,, .. /* Store K
siblings and performance of i-th model */

14 end

M, &)}

ik i

15 end
16 return Base models in M

A cross-validated model is itself an ensemble of identical models,
termed siblings, each trained on a different subset of the training
data. It is constructed by splitting the training data into K equally
sized folds and training one identically parametrized model on
data from each of the K combinations of K — 1 folds. Together, the
resulting K siblings form a cross-validated model.

To estimate the performance of a cross-validated model, the com-
plete training data can be used, because the prediction of a sample
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i in the training data D only comes from the sibling that did not
see that particular sample during training, i.e., for whichi ¢ D__ .
Therefore, estimating the performance using cross-validated mod-
els has the same properties as if one would use a separate validation
set, but without reducing the size of the ensemble training data. If
a truly new data point is to be predicted, the prediction of a cross-
validated model is the average of the predictions of its siblings.
Algorithm 1 summarizes the steps in building a heterogeneous

ensemble from cross-validated survival models.

Note that if a cross-validated survival model is added to the ensem-
ble, the ensemble actually grows by K identically parametrized
models of the same type — the siblings (see line 13 in Algorithm 1).
Therefore, the prediction of an ensemble consisting of S cross-
validated models is in fact an ensemble of K x S models.

Ensemble pruning

Ensemble selection only ensures that base learners are better than
random guessing, but does not guarantee that predictions of base
learners are diverse, which is the second important requirement for
ensemble methods'™'".

In survival analysis, predictions are real-valued, because they either
correspond to a risk score or to the time of an event. Therefore, we
adapted a method for pruning an ensemble of regression models
that accounts for a base learner’s accuracy and correlation to other
base learners'”, as illustrated below.

Pruning regression ensembles. Given a library of base
learners, first, the performance of each base learner is estimated
either from a separate validation set or via cross-validated mod-
els following Algorithm 1. To estimate the diversity of a pair of
regression models, Rooney er al.”” considered a model’s residu-
als as a per-sample error measurement. Given the residuals of two
models on the same data, it is straightforward to obtain a measure of
diversity by computing Pearson’s correlation coefficient. They
defined the diversity of a single model based on the correlation
of its residuals to the residuals of all other models in the ensem-
ble and by counting how many correlation coefficients exceeded
a user-supplied threshold 7, . The diversity score can be com-
puted by subtracting the number of correlated models from the
total number of models in the ensemble and normalizing it by the
ensemble size. If a model is sufficiently correlated with all other
models, its diversity is zero, while if it is completely uncorrelated,
its diversity is one. Moreover, they defined the accuracy of the
i-th model relative to the root mean squared error (RMSE) of the
RMSE(i). Finally, Rooney ef al."” added the diversi& score of each
model to its accuracy score and selected the top S base learners
according to the combined accuracy-diversity score. Algorithm 2
summarizes the algorithm by Rooney et al.”>, where the correlation
function would compute Pearson’s correlation coefficient between
residuals of the i-th and j-th model.
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Algorithm 2. Ensemble pruning algorithm of Rooney et al.’

Input: Set of base survival models M and their average
cross-validation performance, validation set D,
desired size S of ensemble, correlation threshold t_ .

Output: Aggregated predictions of S base survival models.

1 ¢, < Highest performance score of any model in M

2 if |.M| > Sthen

3 C— O

4 fori<—1to’M’do

5 p, < Prediction of data D using i-th base survival

model in M

6 count < 0

7 forje1to|M|do

8 p, < Prediction of data D using j-th base
survival model in M

9 if i #j A correlation(p, P, D,) =1, then

10 count « count + 1

11 end

12 end

13 q<—(|M|—coun[)/ |M|

14 ¢ < Average cross-validation performance of i-th

survival model in M
15 C«Ccul(iclc +d)}
16 end
17 M « Top S survival models with highest score according
tocC
18 else
19 M* — M
20 end
21 return Prediction of 2 by aggregating predictions of base

learners in survival ensemble M™

Pruning survival ensembles. If the library consists of survival
models rather than regression models, a persample error, similar
to residuals in regression, is difficult to define. Instead, predictions
are risk scores of arbitrary scales and the ground truth is the time
of an event or the time of censoring. Hence, a direct comparison of
a predicted risk score to the observed time of an event or the time
of censoring, for instance via the squared error, is not meaningful.
We propose to measure the diversity in an ensemble based on the
correlation between predicted risk scores, i.e., independent of the
ground truth. Here, we consider two correlation measures:

1. Pearson’s correlation coefficient, and
2. Kendall’s rank correlation coefficient (Kendall’s 7).

Hence, we measure the diversity of a heterogeneous ensemble
of survival models without requiring ground truth or a separate
validation set. We believe this is not a disadvantage, because the
combined score in line 15 of Algorithm 2 already accounts for
model accuracy, which could be estimated by the concordance
index'” or integrated area under the time-dependent ROC curve”’!
on a validation set or using Algorithm 1. In fact, since the diversity
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score for survival models does not depend on ground truth, the
pruning step can be postponed until the prediction phase — under
the assumption that prediction is always performed for a set of sam-
ples and not a single sample alone. Consequently, the ensemble will
not be static anymore and is allowed to change if new test data is
provided, resulting in a dynamic ensemble.

In summary, for pruning an ensemble of survival models,
Algorithm 2 is applied during prediction with the following
modifications:

1. Replace validation data D by the feature vectors of the test
data X .

2. Compute the performance score using the concordance
index', integrated area under the time-dependent, cumulative-
dynamic ROC curve’™*' or any other performance measure
for censored outcomes.

3. Measure the correlation among predicted risk scores using
Pearson’s correlation coefficient or Kendall’s rank correlation
coefficient.

The prediction of the final ensemble is the average predicted risk
score of all its members after pruning.

Experiments

Data

The Prostate Cancer DREAM Challenge'® provided access to
1,600 health records from three separate phase III clinical trials for
training”*, and data from an independent clinical trial of 470
men for testing (values of dependent variables were held back and
not revealed to participants)™. Figure 1 illustrates the distribution
of censoring and survival times of the respective trials. The
median follow-up time for the MAINSAIL trial*, the ASCENT-
2 trial”’, and VENICE trial* was 279, 357, and 642.5 days,
respectively. For the test data from the ENTHUSE-33 trial”, the
median follow-up was 463 days.

We partitioned the training data into 7 sets by considering all pos-
sible combinations of the three trials constituting the training data
(see Table 1). Each partition was characterized by a different set of
features, ranging between 383 features for data from the MAIN-
SAIL trial to 217 features when combining data of all three trials.
Features were derived from recorded information with respect to
medications, comorbidities, laboratory measurements, tumor meas-
urements, and vital signs (see supplementary material for details).
Finally, we used a random survival forest’ to impute missing values
in the data.

Validation scheme

We performed a total of three experiments, two based on cross-
validation using the challenge training data, and one using the
challenge test data from the ENTHUSE-33 trial as hold-out data.
In the first experiment, we randomly split each of the datasets in
Table 1 into separate training and test data and performed 5-fold
cross-validation. Thus, test and training data comprised different
individuals from the same trial(s). We refer to this scenario as with-
in trial validation. In the second experiment, referred to as between
trials validation, we used data from one trial as hold-out data for
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Figure 1. Overview of distribution of survival and censoring times in training data from the ASCENT-2, VENICE, MAINSAIL, and
ENTHUSE-33 trial>>?°>. Numbers in brackets denote the total number of patients in the respective trial, and the dashed line is the median
follow-up time in the ENTHUSE-33 trial, which was used as independent test data.

5. Gradient boosting of negative log partial likelihood of Cox’s
proportional hazards model® with componentwise least

29

squares as base learners”,

Table 1. Different sets of features that were constructed by
considering the intersection between trials in the Prostate
Cancer DREAM Challenge.

ASCENT2 MAINSAIL VENICE Samples Features 6. Random survival forest’.

° ° ° 1,600 217 In addition, the training of each survival model was wrapped by grid

o o 1,124 345 search optimization to find optimal hyper-parameters. The complete

. N 1,074 200 training data was randomly split into 80% for training and 20% for

testing to estimate a model’s performance with respect to a particu-

° ° 100 — lar hyper-parameter configuration. The process was repeated for ten
yper-p g p p

. 598 350 different splits of the training data. Finally, a model was trained on

o 526 383 the complete training data using the hyper-parameters that on aver-

. 476 o age performed the best across all ten repetitions. Performance was

testing and data from one or both of the remaining trials for train-
ing. This setup resembles the challenge more closely, where test
data corresponded to a separate trial too. We only considered fea-
tures that were part of both the training and test data. In each experi-
ment above, the following six survival models were evaluated:

1. Cox’s proportional hazards model' with ridge (1,) penalty,
2. Linear survival support vector machine (SSVM)’,

3. SSVM with the clinical kernel®,
4

. Gradient boosting of negative log partial likelihood of Cox’s
proportional hazards model® with randomized regression trees
as base learners”’”*,

estimated by Harrell’s concordance index (¢ index)". All continu-
ous features were normalized to zero mean and unit variance and
nominal and ordinal features were dummy coded.

For the Prostate Cancer DREAM Challenge’s final evaluation,
we built a heterogeneous ensemble from a wide range of survival
models. In sub challenge la, the challenge organizers evaluated
submissions based on the integrated area under the time-dependent,
cumulative-dynamic ROC curve (1IAUC)**' — integrated over time
points every 6 months up to 30 months after the first day of treat-
ment — and in sub challenge 1b, based on the root mean squared
error (RMSE) with respect to deceased patients in the test data. The
performance of submitted models was estimated based on 1,000
bootstrap samples of the ENTHUSE-33 trial data and the Bayes
factor to the top performing model and a baseline model by Halabi
et al.’’ (only for sub challenge la). The Bayes factor provides an

Page 6 of 29



alternative to traditional hypothesis testing, which relies on p-val-
ues to determine which of two models is preferred (see e.g. 31).
According to Jeffreys™, a Bayes factor in the interval [3; 10] indi-
cates moderate evidence that the first model outperformed the sec-
ond model and strong evidence if the Bayes factor is greater 10, else
evidence is insufficient.

Results

With-in trial validation

Figure 2 summarizes the average cross-validation performance
across all five test sets for all seven datasets in Table 1. Overall,
the average concordance index ranged between 0.629 and 0.713
with a mean of 0.668. It is noteworthy that all classifiers but SSVM
models performed best on data of the MAINSAIL trial, which com-
prised 526 subjects and the highest number of features among all
trials (383 features). A SSVM was likely to have an disadvantage
due to the high number of features and because feature selection
is not embedded into its training as for the remaining models. In
fact, SSVM models performed worst on data from the MAIN-
SAIL and VENICE trials, which were the datasets with the most
features. SVM-based models performed best if data from at least
two trials were combined, which increased the number of samples
and decreased the number of features. Moreover, the results show
that linear survival support vector machines performed poorly. A

JA\IW 0.678 | 0.668 [ 0.666 | 0.681

mean [OKTRE

a0 a0
= =
= =
W~ 7]
o'y o
O < o
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considerable improvement could be achieved when using kernel-
based survival support vector machines with the clinical kernel,
which is especially useful if data is a mix of continuous, categorical
and ordinal features. For low-dimensional data, the kernel SSVM
could perform equally well as or better than gradient boosting mod-
els, but was always outperformed by a random survival forest.

When considering the performance of models across all datasets
(last row in Figure 2), random survival forests and Cox’s propor-
tional hazards models stood out with an average ¢ index of 0.681,
outperforming the third best: gradient boosting with component-
wise least squares base learners. Random survival forests performed
better than Cox’s proportional hazards models on 4 out of 7 data-
sets and was tied on one dataset. The results seem to indicate that
a few datasets contain non-linearities, which were captured by
random survival forests, but not by gradient boosting with com-
ponentwise least squares and Cox’s proportional hazards models.
Nevertheless, Cox’s proportional hazards model only performed
significantly better than linear SSVM when averaging results over
all datasets (see Figure 4).

Finally, we would like to mention that 5 out of 6 survival models
performed worst on the VENICE data. Although it contained the
largest number of patients, the variance of follow-up times is more

8 sT s
S >% >
w wnx wv
Ew Tw &
S 55 SiE o
2<%} n n= =
0.80
0.672 | 0.658 | 0.67
0.688 | 0.664 0.75
0.70
0.65
0.60
0.55
0.50

Figure 2. Cross-validation performance of survival models on data from from the ASCENT-2, VENICE, and MAINSAIL trial, as well as
any combination of these datasets. The last column (mean) denotes the average performance of all models on a particular dataset and
the last row (mean) denotes the average performance of a particular model across all datasets. Numbers indicate the average of Harrell's

concordance index across five cross-validation folds.
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than two-fold larger compared to ASCENT-2 and MAINSAIL (o°
=~ 342.9 versus 165.1 for ASCENT-2 and 140.2 for MAINSAIL).
Moreover, the overlap in the distribution of censoring and survival
times was rather small (see Figure 1). Thus, the difference between
observed time points in the training and test data based on the
VENICE trial is likely more pronounced than for the data from the
MAINSAIL or ASCENT-2 trials, which means a survival model has
to generalize to a much larger time period. Moreover, the amount
of censoring in the VENICE trial is relatively low compared to the
other trials. Therefore, the observed drop in performance might
stem from the fact that the bias of Harrell’s concordance index usu-
ally increases as the amount of censoring increases™. As an alterna-
tive, we considered the integrated area under the time-dependent,
cumulative-dynamic ROC curve®*!, which was the main evaluation
measure in the Prostate Cancer DREAM Challenge. However, com-
paring the estimated integrated area under the ROC curve across
multiple datasets is not straightforward when follow-up times differ
largely among trials (see Figure 1). If the integral is estimated from
time points that exceed the follow-up time of almost all patients,
the inverse probability of censoring weights used in the estimator
of the integrated area under the curve cannot be computed, because
the estimated probability of censoring at that time point becomes
zero. On the other hand, if time points are defined too conserva-
tively, the follow-up period of most patients will end after the last
time point and the estimator would ignore a large portion of the
follow-up period. Hence, defining time points that lead to adequate
estimates of performance in all three datasets is challenging due to
large differences in the duration of follow-up periods.

Between ftrials validation

In the second experiment, training and test data were from separate
trials, which resembled the setup of the Prostate Cancer DREAM
Challenge. We included heterogeneous ensembles in the analy-
ses, trained on a library of models that included multiple copies
of each survival model, each with a different hyper-parameter con-
figuration. The library excluded linear SSVM, because it performed
poorly in previous experiments, and Cox’s proportional hazards
model, because its Newton-Rhapson optimization algorithm used
a constant step size instead of a line search, which occasionally
led to oscillation around the minimum during ensemble selection.
We investigated whether the observed differences in performance
are statistically significant by performing a Nemenyi post-hoc test*
based on the results of all train-test-set combinations in Figure 3.
Figure 5 summarizes the results.

The results confirmed observations discussed in the previous sec-
tion: 1) on average, random survival forests performed better than
gradient boosting models and SSVMs, and 2) using SSVM with
the clinical kernel was preferred over the linear model. Heteroge-
neous ensemble ranked first in our experiments, tied with Cox’s
proportional hazards model, and significantly outperformed linear
SSVM and gradient boosting with regression trees. Among the top
five models — which did not perform significantly different from
each other — in Figure 5, heterogeneous ensemble stands out by
having the lowest variance: its performance ranged between 0.636
and 0.689 (A = 0.053), which is a 14% reduction compared to the
runner-up (Cox’s model: A = 0.061) and a 12% to 40% reduction
when compared to individual base learners in the library (gradient
boosting with componentwise least squares: A = 0.060, SSVM with
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clinical kernel: A = 0.088). The results demonstrate that combin-
ing a diverse set of survival models in a heterogeneous ensemble
improves performance and increases reliability.

If performance was estimated on the VENICE data, all models per-
formed considerably worse compared to performance estimated on
the other datasets. We believe the reason for these results are similar
to the cross-validation results on the VENICE data described in the
previous section. The bias of Harrell’s concordance index due to
vastly different amounts of censoring among trials could be one
factor, while the other could be that the follow-up times differed
drastically between training and testing. If the follow-up period
is much shorter in the training data than in the testing data, it is
likely that models generalize badly for time points that were never
observed in the training data, which is only the case if the VENICE
data is used for testing, but not if data from the MAINSAIL or the
ASCENT- 2 trial is used (cf. Figure 1). Interestingly, all models,
except linear SSVM, performed best when trained on the maximum
number of available patient records, which is different from results
in the previous section, where models trained on data with more
features performed better.

An unexpected result is that Cox’s proportional hazards model was
able to outperform many of the machine learning methods, including
random survival forest, which is able to implicitly model non-linear
relationships that are not considered by Cox’s proportional haz-
ards model. A possible explanation why the Cox model performed
on par with more complicated machine learning methods might
be the fact the effective sample size reduces if the amount of cen-
soring increases, as kindly pointed out by one referee. If most
samples are censored, the effective size of the study decreases
proportionally, which in turn makes it more challenging to
reliably identify non-linear effects, which would be the strength
of the advanced survival models in our experiments. Follow-
ing Occam’s razor, the results suggest that, in this case, a simple
model is preferred.

Results also indicate that models with embedded feature
selection (gradient boosting and random survival forest) were
not significantly better than models that take into account all
features (Cox model and SSVM with the clinical kernel). The fact
that models with embedded feature selection, in particular gradient
boosting with componentwise least squares base learner, performed
poorly might be false positive selected features, i.e., features that
are actually not associated with survival. In high dimensions,
methods with embedded feature selection often suffer from
instability, i.e., the set of selected features can vary widely when
repeatedly fitting a model, e.g., when determining optimal hyper-
parameters™. This problem seems to be more pronounced when
evaluating models on data from a different study. The number of
false positive selections could be controlled by performing stability
selection™.

Challenge hold-out data
To summarize, results presented in the previous two sections dem-
onstrate that

1. SSVM should be used in combination with the clinical
kernel.
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Figure 3. Performance results using hold-out data from from the ASCENT-2, VENICE, and MAINSAIL trial. One trial was used as hold-
out data (indicated by the name to the right of the arrow) and one or two of the remaining trials as training data. Numbers indicate Harrell’s
concordance index on the hold-out data.

Critical Difference
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| ! ! !
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Figure 4. Comparison of methods based on experiments in Figure 2 with the Nemenyi post-hoc test*’. Methods are sorted by average
rank (left to right) and groups of methods that are not significantly different are connected (p-value >0.05).
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Critical Difference

Heterogeneous ensemble —

Cox model with ridge —

Random Survival Forest
SSVM (clinical kernel)

Boosting (least squares)

Boosting (trees)
L SSVM (linear)

Figure 5. Comparison of methods based on experiments in Figure 3 with the Nemenyi post-hoc test**. Methods are sorted by average
rank (left to right) and groups of methods that are not significantly different are connected (p-value >0.05).

2. Increasing the number of samples is preferred over increasing
the number of features, especially if follow-up periods are
large.

3. There is no single survival model that is clearly superior to all
other survival models.

From these observations, we concluded that employing heteroge-
neous survival models, trained on all 1,600 patient records in the
training data, would be most reliable. We built two ensembles using
Algorithm 1 and Algorithms 2: one maximizing Harrell’s concord-
ance index'’, and one minimizing the RMSE. The former was con-
structed from a library of 1,801 survival models for sub challenge
la(K=5,c, = 0.66, Ton= 0.6, S =90) and the latter from a library
of 1,842 regression models for sub challenge 1b (K'=5,¢_ = 0.85,
7. = 0.6, 5 =92). We submitted predictions based on these two
models to the Prostate Cancer DREAM Challenge. The results in
the remainder of this section refer to the final evaluation carried out

by the challenge organizers.

Sub challenge 1a. Four of the six survival models evaluated in
the cross-validation experiments formed the basis of the ensemble
(see Table 2). Figure 6 depicts scatter plots comparing models’ per-
formance and diversity. Most of the gradient boosting models with
regression trees as base learners were pruned because their predic-
tions were redundant to other models in the ensemble (Figure 6A).
In contrast, all random survival models remained in the ensemble
throughout (Figure 6C). We observed the highest diversity for gra-
dient boosting models (mean = 0.279) and the highest accuracy for
random survival forests (mean = 0.679). The final ensemble com-
prised all types of survival models in the library, strengthening our
conclusion that a diverse set of survival models is preferred over a
single model.

In the challenge’s final evaluation based on 313 patients of the
ENTHUSE-33 trial, 30 out of 51 submitted models outperformed
the baseline model by Halabi et al.*’ by achieving a Bayes factor
greater than 3'°. There was a clear winner in team FIMM-UTU and
the performance of the remaining models were very close to each

other; there was merely a difference of 0.0171 points in integrated
area under the ROC curve (iIAUC) between ranks 2 and 25'°.

The proposed heterogeneous ensemble of survival models by
Team CAMP achieved an iAUC score of 0.7646 on the test data
and was ranked 23" according to iAUC and 20" according to
Bayes factor with respect to the best model (FIMM-UTU). When
considering the Bayes factor of the proposed ensemble method
to all other models, there is only sufficient evidence (Bayes fac-
tor greater 3) that five models performed better (FIMM-UTU,
Team Cornfield, TeamX, jls, and KUstat). The Bayes factor to the
top two models was 20.3 and 6.6 and ranged between 3 and 4 for
the remaining three models. With respect to the model by Halabi
et al.”, there was strong evidence (Bayes factor 12.2; iAUC 0.7432)
that heterogeneous ensembles of survival models could predict
survival of mCRPC patients more accurately.

Sub challenge 1b. In subchallenge 1b, participants were tasked
with predicting the exact time of death rather than ranking patients
according to their survival time. Similar to subchallenge 1la, our
final model was a heterogeneous ensemble, but based on a different
library of models (see Table 3).

Figure 7 illustrates the RMSE and diversity of all 1,281 models
after the first pruning step (cf. Table 3). In contrast to the ensemble
of survival models used in subchallenge la, the ensemble in this
subchallenge was characterized by very little diversity: the high-
est diversity was 0.064. In fact, all 92 models included in the final
ensemble had a diversity score below 0.001, which means that prun-
ing was almost exclusively based on the RMSE. Gradient boosting
models with componentwise least squares base learners were com-
pletely absent from the final ensemble and only two hybrid survival
support vector machine models had a sufficiently low RMSE to be
among the top 5%.

The evaluation of all submitted models on the challenge’s final test
data from the ENTHUSE-33 trial revealed that our proposed het-
erogeneous ensemble of regression models achieved the lowest root
mean squared error (194.4) among all submissions'®. The difference
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Table 2. Heterogeneous ensemble of survival models used in sub challenge
1a of the Prostate Cancer DREAM Challenge. A/l denotes the initial size of

the ensemble, Pruned the size after pruning models with Harrell's concordance
index below 0.66, and Top 5% to the final size of the ensemble corresponding to
the top 5% according the combined accuracy and diversity score in Algorithm 2.

Configurations

Survival model All Pruned Top 5%
Gradient boosted Cox model (tree)*?” 1,728 936 56
Gradient boosted Cox model (least squares)*** 36 36 7
Random survival forest” 24 24 24
Ranking-based survival SVM (clinical kernel)®# 13 3 3
X 1,801 999 90
" @ Gradient Boosting (tree) Gradient Boosting (least squares)
Selected
ged © o No i
@ o) O Yes
0]
2% e, i
(2]
o 0]
2 o)
© 04408 O -
0.¢))
'( @
7] (o)
o
° o %
I I

10 @ Random Survival Forest @ Survival SVM (clinical kernel)

0.8 + _
2007 i
o
g
T 04 - -

(@]
o o %
o) % O
0.2 1 o SOCUQ) ] o
00 I I I 1 1 I I I I I
0.66 0.67 0.68 0.69 0.70 0.66 0.67 0.68 0.69 0.70
Harrell's concordance index Harrell's concordance index

Figure 6. Concordance index and diversity score of 999 survival models for sub challenge 1a. The concordance index was evaluated
by cross-validated models on the training data from the from the ASCENT-2, VENICE, and MAINSAIL trial. Diversity was computed based on
Pearson’s correlation coefficient between predicted risk scores for 313 patients of the ENTHUSE-33 trial (final scoring set).
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Table 3. Heterogeneous ensemble used in sub challenge 1b of the Prostate
Cancer DREAM Challenge. A/l denotes the initial size of the ensemble, Pruned
the size after pruning models with a root mean squared error more than 15%
above the error of the best performing model, and Top 5% to the final size of
the ensemble corresponding to the top 5% according the combined accuracy
and diversity score in Algorithm 2. AFT: Accelerated Failure Time.

Regression model

Gradient boosted AFT model (tree)**’
Gradient boosted AFT model (least squares)***
Hybrid survival SVM (clinical kernel)®=

@ Gradient Boosting (tree)

Selected
O Yes
(o)

No .

diversity

Gradient Boosting (least squares)

- @DoOo0CoD B

Configurations

All Pruned Top 5%
1,728 1,236 90

36 36 0

78 9 2

X 1,842 1,281 92

@ Hybrid Survival SVM (clinical kernel)

o]

i %o
o
o ©9o

T T T T 1 T
240 250 260 270 280 230 240

root mean squared error

230

T
250

root mean squared error

T T 1 T T T T 1
260 270 280 230 240 250 260 270 280

root mean squared error

Figure 7. Root mean squared error (RMSE) and diversity score of 1,281 regression models for sub challenge 1b. The RMSE was
evaluated by cross-validated models on the training data from the ASCENT-2, VENICE, and MAINSAIL trial. Diversity was computed based
on Pearson’s correlation coefficient between residuals on the training data.

in RMSE between the 1* placed model and the 25" placed model
was less than 25. With respect to our proposed winning model, there
was insufficient evidence to state it outperformed all other models,
because the comparison to five other models yielded a Bayes factor
less than three (Team Cornfield, M S, JayHawks, Bmore Dream
Team, and A Bavarian dream).

Discussion

From experiments on the challenge training data, we concluded that
it would be best to combine data from all three clinical trials to
train a heterogeneous ensemble, because maximizing the number of
distinct time points was preferred. Interestingly, the winning team
of sub challenge 1a completely excluded data from the ASCENT-2
trial in their solution. They argued that it was too dissimilar to data
of the remaining three trials, including the test data®. Therefore, it
would be interesting to investigate unsupervised approaches that
could deduce a similarity or distance measure between patients,
which can be used to decrease the influence of outlying patients
during training.

The second important conclusion from our experiments is that no
survival model clearly outperformed all other models in all the
evaluated scenarios. Our statistical analysis based on results of the

between trials validation revealed that Cox’s proportional hazards
model performed significantly better than the linear survival support
vector machine and gradient boosting with regression trees as base
learners, and that the random survival forest performed significantly
better than linear survival support vector machines; the remaining
differences were deemed statistically insignificant. Therefore, we
constructed a heterogeneous ensemble of several survival models
with different hyper-parameter configurations and thereby avoided
relying only on a single survival model with a single hyper-
parameter configuration. In total, we considered two libraries, each
consisting of over 1,800 different models, which were pruned to
ensure accuracy and diversity of models — we observed only minor
differences when substituting Pearson’s correlation for Kendall’s
rank correlation during ensemble pruning.

The proposed ensemble approach was able to outperform all com-
peting models in sub challenge 1b, where the task was to predict the
exact time of death. In sub challenge 1a, participants had to provide
a relative risk score and our ensemble approach was significantly
outperformed by five competing models'®. Due to large differences
in teams’ overall solutions it is difficult to pinpoint the reason for
the observed performance difference: it could be attributed to the
choice of base learners, or to choices made during pre-processing
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or filtering the data. From our experience of the three intermediate
scoring rounds before the final submission, we would argue that
identifying the correct subset of patients in the training data that is
most similar to the test data is more important than choosing a pre-
dictive model. By training a survival model on data combined from
three trials and applying it to patients from a fourth trial, inconsist-
encies between trials inevitably lead to outliers with respect to the
test data, which in turn diminishes the performance of a model — if
not addressed explicitly during training.

A possible explanation why the heterogeneous ensemble worked
better for survival time prediction (sub challenge 1b) than for risk
score prediction (sub challenge 1a) might be that we maximized
the concordance index during ensemble construction and not the
area under the time-dependent ROC curve, which was used in the
challenge’s final evaluation. In addition, we aggregated predictions
of survival models by averaging, although predictions of survival
models are not necessarily on the same scale. In regression, the pre-
diction is a continuous value that directly corresponds to the time of
death, which allows simple averaging of individual predictions. In
survival analysis, semantics are slightly different. Although predic-
tions are real-valued as well, the prediction of a survival model does
generally not correspond to the time of death, butis arisk score on an
arbitrary scale. A homogeneous ensemble only consists of models
of the same type, therefore predictions can be aggregated by simply
computing the average. A problem arises for heterogeneous ensem-
bles if the scale of predicted risk scores differs among models. To
illustrate the problem, consider an ensemble consisting of survival
trees as used in a random survival forest” and ranking-based linear
survival support vector machines’. The prediction of the former is
based on the cumulative hazard function estimated from samples
residing in the leaf node a new sample was assigned to. Thus, pre-
dictions are always positive due to the definition of the cumulative
hazard function (see e.g. 37). In contrast, the prediction of a linear
SSVM is the inner product between a model’s vector of coefficients
and a sample’s feature vector, which can take on negative as well
as positive values. It is easy to see that, depending on the scale dif-
ference, simply averaging predicted risk scores favors models with
generally larger risk scores (in terms of absolute value) or positive
and negative predicted risk scores cancel each other out. Instead
of simply averaging risk scores, the problem could be alleviated if
model risk scores were first transformed into ranks, thereby putting
them on a common scale, before averaging the resulting ranks. We
evaluated this approach after the Prostate Cancer DREAM Chal-
lenge ended: averaging ranks instead of raw predicted risk scores
increased the iAUC value from 0.7644 to 0.7705 on a random sub
sample of the ENTHUSE-33 trial.

Finally, we want to pay particular attention to the challenge of
combining multiple patients populations for risk prediction. As
mentioned above, the follow-up periods and the information
collected for the four studies considered here differed vastly.
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Figure 5 illustrates that there is no single model equally suitable
for all cohorts. This problem arises if prediction models are badly
calibrated with respect to the target cohort. If outcome informa-
tion for the target cohort is available, recalibration methods can
be used to improve calibration and discrimination of the risk
score™ ', In the context of the Prostate Cancer DREAM Chal-
lenge, Kondofersky et al.** showed that employing simple
recalibration models significantly improved prediction perform-
ance for subchallenge 1b. Moreover, researchers developed mod-
els specifically designed to amalgamate diverse patient cohorts by
utilizing ideas from machine learning*=*.

Conclusions

We proposed heterogeneous survival ensembles that are able
to aggregate predictions from a wide variety of survival models.
We evaluated our method using data from an independent fourth
trial from the Prostate Cancer DREAM Challenge. Our proposed
ensemble approach could predict the exact time of death more accu-
rately than any competing model in sub challenge 1b and was sig-
nificantly outperformed by 5 out of 50 competing solutions in sub
challenge la. We believe this result is encouraging and warrants
further research in using heterogeneous ensembles for survival
analysis. The source code is available online https://www.synapse.
org/#!Synapse:syn3647478.
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?  Amber L Simpson
Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA

The authors describe an ensemble approach for predicting survival in prostate cancer patients as part of
the 2015 Prostate Cancer DREAM (Dialogue for Reverse Engineering Assessments and Methods)
Challenge. Patients included in the study had metastatic, castrate-resistant prostate cancer, an advanced
cancer with poor prognosis. The authors are commended for undertaking a difficult problem and providing
an elegant solution incorporating Cox, gradient boosting, random survival forest, and SVM for
time-dependent analysis.

Addressing these points would improve the manuscript:

1) The luxury of a challenge is that authors are positioned to use knowledge gained from the challenge to
improve their prediction model. The intent of sharing these datasets is to develop the best biomarker that
can be used to change patient selection for therapy. Can the authors comment on what they would do
differently now that they have considered methods proposed by other groups in the challenge? How can
others use the lessons learned in this challenge to make the best biomarker possible?

2) The authors should also comment on the generalizability of their methods to other problems.

3) The paper is a good technical companion paper to the overview paper that was recently released,
which should be cited .

4) For those unfamiliar with the challenge, it is important to note that the challenge organizers confirmed
performance on the validation data as noted by a reviewer above. This information should be
incorporated into the manuscript, as it is not readily apparent.

5) How does the model perform relative to published clinical nomograms? For example, the Armstrong
nomogram achieved a concordance index of 0.69. Can the authors comment on the improvement over
existing methods? One could argue that the slight improvement is not worth the overhead of employing
ensemble methods “*

6) How does predicting survival change the management of these patients? For example, would bad
actors be selected for a different treatment or spared from treatment? If so, it may be appropriate to
calculate positive and negative predictive value for specific time points. Maximizing positive and negative
predictive value may also make sense. The proposed method could aid in chemoprevention, as an
example.

7) Is it possible to make the model publicly available as a nomogram (see nomograms.org)? Clinicians will
not have the ability to download and install the code, but they may be interested in the results for
individual patients.

8) How does the ensemble method compensate for highly correlated variables?

9) How was feature selection performed?
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10) Listing the features would be helpful for clinicians looking to refine/improve existing nomograms.
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| have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Author Response 22 Jun 2017
Sebastian Pdlsterl, Technische Universitat Minchen, Germany

The authors describe an ensemble approach for predicting survival in prostate cancer patients as
part of the 2015 Prostate Cancer DREAM (Dialogue for Reverse Engineering Assessments and
Methods) Challenge. Patients included in the study had metastatic, castrate-resistant prostate
cancer, an advanced cancer with poor prognosis. The authors are commended for undertaking a
difficult problem and providing an elegant solution incorporating Cox, gradient boosting, random
survival forest, and SVM for time-dependent analysis.

Addressing these points would improve the manuscript:

1. The luxury of a challenge is that authors are positioned to use knowledge gained from the
challenge to improve their prediction model. The intent of sharing these datasets is to
develop the best biomarker that can be used to change patient selection for therapy. Can
the authors comment on what they would do differently now that they have considered
methods proposed by other groups in the challenge? How can others use the lessons
learned in this challenge to make the best biomarker possible?

1. Response: Several teams, including the winning team (FIMM-UTU), implemented
methods to carefully select patients from the three studies constituting the training
data such that they are not too different from the target study, which was used for the
final evaluation. We believe that a considerable improvement can be gained by
discarding outliers from the training data.
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2. The authors should also comment on the generalizability of their methods to other
problems.

1. Response: Our proposed solution relies on heterogeneous ensembles, which are
comprised of survival models to predict the risk of death. Hence, our approach is
directly applicable to any data with right censored survival times. For other problems,
such as classification or regression, the ensemble selection and ensemble pruning
need to be adapted by choosing an appropriate performance measure (see line 11 of
algorithm 1 and line 14 of algorithm 2). In fact, the original authors of heterogeneous
ensembles investigated ten performance metrics for classification and Rooney et al.
proposed to using the mean squared error for regression problems. Therefore,
heterogeneous ensembles are applicable to a wide range of learning problems.

3. The paper is a good technical companion paper to the overview paper that was recently
released, which should be cited .

1. Response: We updated reference 16 to refer to the paper in The Lancet Oncology.

4. For those unfamiliar with the challenge, it is important to note that the challenge organizers
confirmed performance on the validation data as noted by a reviewer above. This
information should be incorporated into the manuscript, as it is not readily apparent.

1. Response: We updated the last paragraph of the “Validation scheme” section and
the first paragraph of the “Challenge hold-out data” to emphasize that validation was
carried out by the challenge organizers.

5. How does the model perform relative to published clinical nomograms? For example, the
Armstrong nomogram achieved a concordance index of 0.69. Can the authors comment on
the improvement over existing methods? One could argue that the slight improvement is not
worth the overhead of employing ensemble methods?-*

1. Response: In subchallenge 1a, submissions of all participating teams were
compared to the model by Halabi et al., which was considered the state-of-the-art
risk prediction model prior to the challenge. Only submissions with a statistically
better performance than the model by Halabi et al. were considered for the final
evaluation (see section Validation scheme in our manuscript for further details). Our
proposed model achieved an iIAUC score of 0.7646 on the challenge’s hold data,
whereas the model by Halabi et al. achieved a score of 0.7432, which is significantly
worse: the Bayes factor of the proposed model vs. Halabi et al. model, is 12.2, which
indicates strong evidence.

6. How does predicting survival change the management of these patients? For example,
would bad actors be selected for a different treatment or spared from treatment? If so, it may
be appropriate to calculate positive and negative predictive value for specific time points.
Maximizing positive and negative predictive value may also make sense. The proposed
method could aid in chemoprevention, as an example.

1. Response: We agree that ultimately the focus should be on improving patient
treatment, but at the same time computational methods can only hint at potentially
interesting biomarkers or patient subgroups, whether this information is useful in the
clinic requires additional research, e.g., to rule-out harmful side-effects. Data in the
Prostate Cancer DREAM Challenge are collated based on comparator arm data sets
of Phase Il prostate cancer clinical trials, where all patients received docetaxel and
prednisone in the comparator arm. Therefore, we could not determine whether
differences in survival can be attributed to different treatment types. If outcome
information from multiple treatments were available, it would indeed be very
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interesting to infer the optimal treatment by maximizing positive and negative
predictive value over time instead of specificity and sensitivity as the iIAUC metric
used in the challenge does.

7. Is it possible to make the model publicly available as a nomogram (see nomograms.org)?
Clinicians will not have the ability to download and install the code, but they may be
interested in the results for individual patients.

1. Response: Unfortunately, it is often difficult to understand how an ensemble method
relates the input to variables to each other in order to form a prediction, which is
especially true for heterogeneous ensembles, because of their non-linear nature. A
nomogram describes a non-linear model only inadequately, because it gives each
variable only a single weight and usually lacks high-order interactions. However,
there are several alternative ways to obtain insight. For instance, Breiman (Machine
Learning, 45:1, 2001. http.//dx.doi.org/10.1023/A:1010933404324) suggested a
variable importance measure for random forests that could be adapted. The j-th
feature is randomly permuted for all out-of-bag samples and run down the
corresponding tree. The output is the relative increase in prediction error as
compared to if the j-th feature is intact. Feature with a larger increase in prediction
error, are considered more important to the ensemble. If one wants to infer which
interactions among features the ensemble considers, more sophisticate methods are
available (e.g. Henelius et al., SLDS 2015.
http://dx.doi.org/10.1007/978-3-319-17091-6 5).

8. How does the ensemble method compensate for highly correlated variables?

1. Response: Whether the ensemble compensates for highly correlated variables
depends on choice of base learners. Here, all base learners account for
muilticolinearities. The penalized Cox model and survival support vector machine use
a ridge (L2) penalty, gradient boosting with regression trees and random survival
forests recursively split the data based on a single feature, and gradient boosting with
componentwise least squares selects only one feature in each iteration such that the
error is maximally reduced. Hence, all models can be trained despite highly
correlated variables in the data.

9. How was feature selection performed?

1. Response: We did not perform feature selection prior to constructing the
heterogeneous ensemble, however, the ensemble comprised base learners that
implicitly perform feature selection when trained on high-dimensional data, namely
random survival forest and gradient boosting models. The remaining models
(penalized Cox model and survival support vector machine) do not perform feature
selection and only account for multicolinearities.

10. Listing the features would be helpful for clinicians looking to refine/improve existing
nomograms.

1. Response: We trained models on different subsets of the data, ranging from 383
features for data from the MAINSAIL trial to 217 features when combining data of all
three trials (see table 1). More details on the extracted features are available from the
supplementary material and at htips./www.synapse.org/#!Synapse:syn4650470.

Competing Interests: No competing interests were disclosed.

Referee Report 06 March 2017
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doi:10.5256/f1000research.8853.r20214

?  Jinfeng Xiao
Department of Computer Science, University of lllinois at Urbana—Champaign, Urbana, IL, USA

This paper is written by CAMP, a winning team of the 2015 Prostate Cancer DREAM Challenge (“the
PCDC”, or “the challenge”), to introduce their winning method. The authors built heterogeneous
ensembles with the training data (Trials ASCENT-2, MAINSAIL, VENICE) and the unlabeled part of the
validation data (Trial ENTHUSE-33). The high performance of their method, especially in predicting
patients’ days to death, was confirmed by the challenge organizers on the validation data. This
manuscript contains sufficient details about the actual method they used in the PCDC. Achilles heels for
this paper include: 1) To show the necessity of using ensembles; 2) To establish the generalizability of the
proposed ensemble models to new data sets. See the major issues below for more detailed comments.

Major issues:

1. The power of averaging over the base learners was taken for granted in the paper without
experimental evidence. Training an ensemble costs much more effort than training a single model,
and therefore it has to be shown that such effort is worth it. Direct comparison in performance
between the ensemble and base learners is needed to make this point clear.

2. The training of the ensembles, in particular the ensemble pruning step, used information from the
validation set. Although only the features, but not the outcomes, of the validation data were seen
by the model, this practice is still not encouraged. A generalizable model should not use the
validation data in any way during training. Therefore, whether the proposed method is
generalizable to new data sets is in doubt. | would suggest the authors to prune the ensemble on
the training set and check the performance on the validation set.

3. There is no instruction in the code documentation about how to apply the code to new data sets.
Adding such information can greatly increase the chance that the code will be used by other
researchers.

4. Can the authors mine some knowledge from the trained model? For example, what are the most
important features? Where are the baseline (i.e. Halabi’s model) features in the ranked list? Such

analysis of the model can be helpful to biomedical researchers and doctors.

Minor issues:

1. In Algorithms 1 & 2, how did the authors choose the minimum desired performance c
desired set of ensemble S?

2. Page 6, paragraph 2, line 3: “Median” should be changed to “standard deviation” or some other
measures of variance, because in a within-trial validation the “median” is not directly related to “the
difference between observed time points in the training and test data” (lines 5-6).

3. Page 8, paragraph 2, the last 8 lines: This example is not very convincing. A model considering all
features trained on the first dataset will assign a very small (if not zero) weight to feature 3, which
will compensate little for the fact that feature 3 is important in the second dataset.

4. Page 8, paragraph 5: What numerical difficulties did the authors encounter so that they could not
include the Cox regression in the ensembles? Is there anything special about Cox model that
makes it harder to train than other base learners?

5. ltis not explicitly stated in the paper that the authors are from Team CAMP.

min @nd the

Grammar:
Page 4, last paragraph: “within-in trial validation” should be “within-trial validation”; “between trials
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validation” should be “between-trial validation”.

References
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model for predicting overall survival in first-line chemotherapy for patients with metastatic
castration-resistant prostate cancer.J Clin Oncol. 2014; 32 (7): 671-7 PubMed Abstract | Publisher Full
Text
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I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Sebastian Pélsterl, Technische Universitat Minchen, Germany

This paper is written by CAMP, a winning team of the 2015 Prostate Cancer DREAM Challenge
(“the PCDC”, or “the challenge”), to introduce their winning method. The authors built
heterogeneous ensembles with the training data (Trials ASCENT-2, MAINSAIL, VENICE) and the
unlabeled part of the validation data (Trial ENTHUSE-33). The high performance of their method,
especially in predicting patients’ days to death, was confirmed by the challenge organizers on the
validation data. This manuscript contains sufficient details about the actual method they used in the
PCDC. Achilles heels for this paper include: 1) To show the necessity of using ensembles; 2) To
establish the generalizability of the proposed ensemble models to new data sets. See the major
issues below for more detailed comments.

Major issues:

1. The power of averaging over the base learners was taken for granted in the paper without
experimental evidence. Training an ensemble costs much more effort than training a single
model, and therefore it has to be shown that such effort is worth it. Direct comparison in
performance between the ensemble and base learners is needed to make this point clear.

1. Response: We included heterogeneous ensembles in the between trials validation
(see figures 3 and 5) and in our discussion of the results.

2. The training of the ensembles, in particular the ensemble pruning step, used information
from the validation set. Although only the features, but not the outcomes, of the validation
data were seen by the model, this practice is still not encouraged. A generalizable model
should not use the validation data in any way during training. Therefore, whether the
proposed method is generalizable to new data sets is in doubt. | would suggest the authors
to prune the ensemble on the training set and check the performance on the validation set.

1. Response: For survival data, the pruning step is delayed until prediction is
performed, because predictions are risk scores on an arbitrary scale for which a
per-sample error measure is not readily available. This is in contrast to ensemble
pruning for regression problems, where a per-sample error can be easily computed
and models having highly correlated errors are pruned. As referee 2 suggests, the
pruning step could be performed via cross-validation on the training data. However,
our pruning step does not take survival times or censoring status into account,
therefore we prefer to delay the pruning step as long as possible as to avoid
overfitting on the training data. If the additional costs associated with storing the
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ensemble before pruning are prohibitive, we recommend that pruning should be
performed via cross-validation on the training data.

3. There is no instruction in the code documentation about how to apply the code to new data
sets. Adding such information can greatly increase the chance that the code will be used by
other researchers.

1. Response: Our source code is accompanied by a README file explaining all steps
necessary to reproduce our results. The source code can be downloaded from
Synapse (htip./dx.doi.org/10.7303/syn3647478) as well as GitHub (
https.//github.com/tum-camp/dream-prostate-cancer-challenge).

4. Can the authors mine some knowledge from the trained model? For example, what are the
most important features? Where are the baseline (i.e. Halabi’s model) features in the
ranked list? Such analysis of the model can be helpful to biomedical researchers and
doctors.

1. Response: Please see our response to question 8 of referee 1.

Minor issues:
1. In Algorithms 1 & 2, how did the authors choose the minimum desired performance c

the desired set of ensemble S?

1. Response: We chose c,,;, = 0.66 based on results of the with-in trial validation
(figure 2): approximately 30% of the experiments performed worse. The final
ensemble consists of all base learners in the top 5% according the combined
accuracy and diversity score (see table 2 and algorithm 2). Both c¢,,,., and S remained
fixed throughout our experiments and were not optimised.

2. Page 6, paragraph 2, line 3: “Median” should be changed to “standard deviation” or some
other measures of variance, because in a within-trial validation the “median” is not directly
related to “the difference between observed time points in the training and test data” (lines
5-6).

1. Response: Thank you for the suggestion, we replaced median by standard deviation
in the manuscript.

3. Page 8, paragraph 2, the last 8 lines: This example is not very convincing. A model
considering all features trained on the first dataset will assign a very small (if not zero)
weight to feature 3, which will compensate little for the fact that feature 3 is important in the
second dataset.

1. Response: We agree that the example was inadequate to explain this observation.
We replaced it by referencing the work by Meinshausen and Blihimann, who showed
that models with embedded feature selection suffer from false positive selections in
high dimensions.

4. Page 8, paragraph 5: What numerical difficulties did the authors encounter so that they
could not include the Cox regression in the ensembles? Is there anything special about Cox
model that makes it harder to train than other base learners?

1. Response: Please see our response to question 7 of referee 1.

5. ltis not explicitly stated in the paper that the authors are from Team CAMP.

1. Response: We mentioned that we participated under the name “Team CAMP” at the
end of the introduction and in the section “Challenge hold-out data”.

min @nd

min

Grammar:

Page 4, last paragraph: “within-in trial validation” should be “within-trial validation”; “between trials
validation” should be “between-trial validation”.

Response: Thank you, we corrected these errors in the manuscript.

Competing Interests: No competing interests were disclosed.
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Referee Report 19 December 2016

doi:10.5256/f1000research.8853.r18609

?

Donna P. Ankerst
Department of Mathematics, Technical University of Munich, Garching, Germany

The authors are to be congratulated for landing among the circle of winners of the Prostate Cancer
DREAM Challenge and for clearly describing their innovative methods in this paper. An informative
discussion critically appraises their approach, providing suggestions for advancing the field of clinical risk
prediction. Instead of relying on one survival model, their approach hinges on heterogeneous ensembles
that invoke a variety of model types, including gradient boosting (least squares versus trees), random
survival forests, and survival support vector machines (linear versus clinical kernels), thereby hedging
against sub-optimality of any single model for any single test set. | have only minor comments.
1. Itis argued throughout that heterogeneous ensembles have been shown to be optimal compared

to single models for this challenge, but | did not see a head-to-head comparison illustrating this.

For example, could one not add ensemble methods as an extra column to the within- and

between-trial validations in Figures 2 and 3, respectively?

2. | greatly appreciated Figure 4 that showed which of the multiple comparisons in Figure 3 (the
between-trial validation) were actually critically different, as many of the iAUCs only differed out to
the second decimal (which is by the way a clinically meaningless difference). It would be nice to
also have such a comparison for Figure 2 (the within-trial validation) that could definitely show
whether or not the Cox model was statistically indistinguishable from random forests, and to
temper the Results section concerning the comparison of the methods. One method only beats
another if the confidence intervals of the respective AUCs do not overlap. Given their similar
performance, the comparison among the different individual survival models might not be as
relevant as whether or not the ensemble outperformed any one of them.

3. As nicely pointed out in the Discussion, it is a surprise and a great pity that the concordance
statistic ¢ was used for the training of the models instead of the iIAUC, the criterion used for
evaluation for the challenge. While easy to compute, the concordance statistic suffers greatly from
censored observations, they essentially are discarded in the evaluation. This means that only a
minority of the data in the ASCENT and MAINSAIL trials were used (71% and 82.5% of the data
censored). The iAUC, however, also suffers from censored data, but from what | understand, to a
lesser extent. Is it possible to redo Figures 2 and 3 using the iAUC instead of the concordance
statistic, to see if similar conclusions held?

4. In the discussion of the within-trial internal cross-validation of Figure 2 it is mentioned that some of
the methods may have performed poorly because of a difference in follow-up between the random
partitions of the trial into training and test sets. In medical studies, this is often controlled using
stratified randomization, which ensures the proportion of observed events (deaths in this case) or
follow-up remains equal across the sets. Would it be possible to implement to see if it improved the
outcome for VENICE, in order to help explain the poor behavior there? It of course, does not help
the between-trial validation, the subject of the next point.
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5. The problem of recalibration to different trials is becoming more and more recognized in medicine;
searching for “recalibration risk score” or “recalibration risk model” in PubMed reveals hundreds of
suggestions and applications. The authors do a nice job of illustrating the particular difficulties with
survival data — a look at Figure 1 shows that median follow-up in the held out ENTHUSE-33 trial
was longer than two of the trials used for training. In our analysis for the challenge we showed that
recalibration made a big difference for the root-mean-squared-error in Subchallenge 1b but not the
iAUC in Subchallenge 1a, matching previous results we have obtained in proposals to dynamically
update risk models (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532612/). Recalibration
means any method to tweak an existing risk model to conform to a particular target population, but
has the problem that it requires data from the intended target population, something not generally
possible for clinical practice. | agree with the authors that this could have improved their models
and would like to see more discussion of the literature from recalibration of survival models.

6. Inthe Discussion of the between-trials validation, the authors try to explain the surprising result that
the simpler Cox model with its stringent proportional hazards and linear assumption performs as
well as some of the other models that incorporate non-linearity. | think lack of statistical power, i.e.,
small sample size, may be another culprit here. The effective information size for survival data
(defined as the size of the information matrix) is only proportional to the number of observed events
and not the total sample size, this is an issue that clinical trial statisticians who design trials
understand well, but unfortunately not the rest of the community. It was a point | tried to raise at the
first Challenge webinar, foreseeing that there would be many ties among winners due to the high
censoring. While for training it seemed like there were trials of size 476, 526 and 598 patients for
the respective trials in Figure 1, with a total of 1600 patients, the effective information content was
only 138, 92, and 432, respectively, for a total of 662 patients. Simulation studies would reveal
what sample size would be needed to detect nonlinearities of different magnitudes. My point is not
to suggest doing these, but rather to modify the discussion that the high-performance of Cox’s
simpler model may be due to the Occam’s Razor principle, that if there exists two explanations for
data, the simpler is preferred.

7. Inlight of Point 6.), it is a pity that the well-performing Cox’s proportional hazards model was
eventually dropped because of numerical problems. Our team used this model without much
difficulty. Can the authors elaborate here or propose suggestions for overcoming the numerical
difficulties? For example, could it be that the input data contained a lot of features with anomalies
that should have been cleaned out?

8. | realize it was not the point of this paper, but it is a pity that there is no discussion of the specifics
of the 90 features that ultimately made it into the prediction models. Were they the same as the
ones found by Halabi et al.? 90 features are a lot and not generally implementable in online risk
tools designed to help patients — would there be a way to summarize the features that are most
important in order to help clinicians understand the important indicators?

9. Looking back at the Halabi paper, which has a simple Cox model with a handful of predictors that is
immediately interpretable, the AUC obtained there on the test set (0.76) seems close to those
obtained in this challenge. The AUC is a rank-based discrimination measure, that reflects the
probability that for a randomly selected pair of patients, the patient that died later had a lower risk
score and differences have to be interpreted relative to this meaning. | would like to hear the
authors’ reflection as to whether the DREAM Challenge has proven the case for the large-scale
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methods used in the Challenge or against them. What future directions are needed to improve
prediction? Some, like myself, would argue that new markers need to be discovered rather than
bigger models.

Competing Interests: No competing interests were disclosed.

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

Sebastian Pdlsterl, Technische Universitat Minchen, Germany

The authors are to be congratulated for landing among the circle of winners of the Prostate Cancer
DREAM Challenge and for clearly describing their innovative methods in this paper. An informative
discussion critically appraises their approach, providing suggestions for advancing the field of
clinical risk prediction. Instead of relying on one survival model, their approach hinges on
heterogeneous ensembles that invoke a variety of model types, including gradient boosting (least
squares versus trees), random survival forests, and survival support vector machines (linear versus
clinical kernels), thereby hedging against sub-optimality of any single model for any single test set.
| have only minor comments.

1. Itis argued throughout that heterogeneous ensembles have been shown to be optimal
compared to single models for this challenge, but | did not see a head-to-head comparison
illustrating this. For example, could one not add ensemble methods as an extra column to
the within- and between-trial validations in Figures 2 and 3, respectively?

1. Response: We included heterogeneous ensembles in the between trials validation
(see figures 3 and 5) and in our discussion of the results.

2. | greatly appreciated Figure 4 that showed which of the multiple comparisons in Figure 3
(the between-trial validation) were actually critically different, as many of the iAUCs only
differed out to the second decimal (which is by the way a clinically meaningless difference).
It would be nice to also have such a comparison for Figure 2 (the within-trial validation) that
could definitely show whether or not the Cox model was statistically indistinguishable from
random forests, and to temper the Results section concerning the comparison of the
methods. One method only beats another if the confidence intervals of the respective AUCs
do not overlap. Given their similar performance, the comparison among the different
individual survival models might not be as relevant as whether or not the ensemble
outperformed any one of them.

1. Response: As suggested, we added a plot for the results presented in figure 2. It
shows that the Cox model and random survival forest only significantly outperform
linear SVM, whereas the performance of the other methods lies within the critical
difference interval.

3. As nicely pointed out in the Discussion, it is a surprise and a great pity that the concordance
statistic ¢ was used for the training of the models instead of the iAUC, the criterion used for
evaluation for the challenge. While easy to compute, the concordance statistic suffers
greatly from censored observations, they essentially are discarded in the evaluation. This
means that only a minority of the data in the ASCENT and MAINSAIL trials were used (71%
and 82.5% of the data censored). The iAUC, however, also suffers from censored data, but
from what | understand, to a lesser extent. Is it possible to redo Figures 2 and 3 using the
iIAUC instead of the concordance statistic, to see if similar conclusions held?
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1. Response: We did perform the same analyses as depicted in figures 2 and 3 using
IAUC as evaluation criteria. When ranking methods according to average iAUC, one
arrives at the same conclusion as when ranking according to average c-index.
However, the average performance with respect to the test datasets are quite
different. As we pointed out in the main text, this is due to the definition of the IAUC
used in the Prostate Cancer Dream Challenge, which is the integral over time points
every 6 months up to 30 months after the first day of treatment. This would cover
most time points in ASCENT-2 and MAINSAIL, but would miss out many events
occurring after 30 months for VENICE (cf. figure 1). Consequently, it appears that all
methods perform considerably better when tested on the VENICE data. Usually, it is
recommended to choose the limits of the interval to integrate over from the data, e.g.
the 5% to 90% percentile of observed time points. However, the iIAUC would be
based on a different interval for each study, making inter-study comparisons difficult
to interpret. Therefore, we believe that the c-index is easier to interpret when
considering the inter-study comparison. In addition, we re-trained our heterogeneous
ensemble using the iIAUC metric in algorithm 2 and submitted its prediction after the
challenge concluded. We obtained an iAUC of 0.7636 compared to 0.7644 when
using c-index, and 0.7537 for the Halabi model.

4. In the discussion of the within-trial internal cross-validation of Figure 2 it is mentioned that
some of the methods may have performed poorly because of a difference in follow-up
between the random partitions of the trial into training and test sets. In medical studies, this
is often controlled using stratified randomization, which ensures the proportion of observed
events (deaths in this case) or follow-up remains equal across the sets. Would it be possible
to implement to see if it improved the outcome for VENICE, in order to help explain the poor
behavior there? It of course, does not help the between-trial validation, the subject of the
next point.

1. Response: We implemented the suggested modification to perform stratified
cross-validation and repeated the experiment. The results are very similar to figure 2:
the average performance of all methods is still worst when trained and tested on data
from the VENICE study.

5. The problem of recalibration to different trials is becoming more and more recognized in
medicine; searching for “recalibration risk score” or “recalibration risk model” in PubMed
reveals hundreds of suggestions and applications. The authors do a nice job of illustrating
the particular difficulties with survival data — a look at Figure 1 shows that median follow-up
in the held out ENTHUSE-33 trial was longer than two of the trials used for training. In our
analysis for the challenge we showed that recalibration made a big difference for the
root-mean-squared-error in Subchallenge 1b but not the iAUC in Subchallenge 1a, matching
previous results we have obtained in proposals to dynamically update risk models (
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4532612/). Recalibration means any
method to tweak an existing risk model to conform to a particular target population, but has
the problem that it requires data from the intended target population, something not
generally possible for clinical practice. | agree with the authors that this could have improved
their models and would like to see more discussion of the literature from recalibration of
survival models.

1. Response: We agree with the referee that calibration is an important aspect besides
discrimination that should be considered for prognostic models. The focus of the
referenced article is on calibration of binary classification models, which is very
different from calibration with respect to survival models. In contrast to binary
classification, predicted risk scores of a survival model are only the relative risk, but
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not absolute risks (Royston and Altman. BMC Medical Research Methodology,
13(1), 2013. hiip://doi.org/10.1186/1471-2288-13-33). Although, a measure of
absolute risk can be derived for the Cox model by estimating the baseline hazard
function, to the best of our knowledge, there is no standard approach to statistically
assess calibration for arbitrary survival models. We could only visually assess
calibration by constructing low, medium, and high risk groups corresponding to
cut-offs at the 33% and 66% percentile of predicted risk scores. Using the same
cut-offs on predicted risk scores from hold-out dataset, we constructed two
Kaplan-Meier plots, each stratified by risk group. For a well calibrated model, we
would expect the Kaplan-Meier curves derived from the training and hold-out data to
agree with each other. The disadvantage of this approach is that we cannot precisely
quantify the lack of calibration.

6. In the Discussion of the between-trials validation, the authors try to explain the surprising
result that the simpler Cox model with its stringent proportional hazards and linear
assumption performs as well as some of the other models that incorporate non-linearity. |
think lack of statistical power, i.e., small sample size, may be another culprit here. The
effective information size for survival data (defined as the size of the information matrix) is
only proportional to the number of observed events and not the total sample size, this is an
issue that clinical trial statisticians who design trials understand well, but unfortunately not
the rest of the community. It was a point | tried to raise at the first Challenge webinar,
foreseeing that there would be many ties among winners due to the high censoring. While
for training it seemed like there were trials of size 476, 526 and 598 patients for the
respective trials in Figure 1, with a total of 1600 patients, the effective information content
was only 138, 92, and 432, respectively, for a total of 662 patients. Simulation studies
would reveal what sample size would be needed to detect nonlinearities of different
magnitudes. My point is not to suggest doing these, but rather to modify the discussion that
the high-performance of Cox’s simpler model may be due to the Occam’s Razor principle,
that if there exists two explanations for data, the simpler is preferred.

1. Response: Thank you for pointing out that effective sample size could be limiting the
performance of more complicated models. We added a paragraph discussing this
issue to the “Between trials validation” section.

7. Inlight of Point 6.), it is a pity that the well-performing Cox’s proportional hazards model was
eventually dropped because of numerical problems. Our team used this model without
much difficulty. Can the authors elaborate here or propose suggestions for overcoming the
numerical difficulties? For example, could it be that the input data contained a lot of features
with anomalies that should have been cleaned out?

1. Response: We fit Cox’s proportional hazards model using a Newton-Rhapson
algorithm with constant step size, i.e., without a line search. We observed that
optimization sometimes diverged, which can be attributed to choosing a constant
step size. If the chosen step size is too large, it can lead to oscillation around the
minimum due to overshooting and the minimum is never reached. A crude solution
would be to increase the tolerance that determines convergence or choose a
different starting point. A better solution would be to determine the optimal step size
in each iteration of Newton’s method via line search or employing a trust region
method (see e.g. Boyd and Vandenberghe, Convex Optimization, Cambridge
University Press, 2009). Unfortunately, we were unable to implement this
modification before the challenge was closed.

8. | realize it was not the point of this paper, but it is a pity that there is no discussion of the
specifics of the 90 features that ultimately made it into the prediction models. Were they the
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same as the ones found by Halabi et al.? 90 features are a lot and not generally
implementable in online risk tools designed to help patients — would there be a way to
summarize the features that are most important in order to help clinicians understand the
important indicators?

1. Response: Our final ensemble considered 217 features (see table 1), which
included those found by Halabi et al., and was comprised of 90 different base
learners (see table 3). We agree that the raw predictive performance of a model often
provides insufficient information in medical research. Clearly, there is a trade-off
between model complexity and how well a model can be interpreted. As we
mentioned in the introduction of our manuscript, an ensemble approach is only
beneficial if base learners perform better than random prediction and are diverse.
The latter can be achieved by using base learners that are based on different loss
functions (heterogeneous ensemble) or by using the same loss for all base learners
and forcing each base learner to consider different subsets of features
(homogeneous ensemble). We chose to utilize both types by selecting base learners
from a large library of different models and identical, but differently parametrized,
models. Consequently, we encourage base learners to weight features differently,
which makes creating a universal ranking of features challenging. Although feature
importances are not directly available from our final ensemble, there are several
alternative ways to obtain insight. For instance, Breiman (Machine Learning, 45:1,
2001. http://dx.doi.org/10.1023/A:1010933404324) suggested a variable importance
measure for random forests that could be adapted. The j-th feature is randomly
permuted for all out-of-bag samples and run down the corresponding tree. The
output is the relative increase in prediction error as compared to if the j-th feature is
intact. Feature with a larger increase in prediction error, are considered more
important to the ensemble. If one wants to infer which interactions among features
the ensemble considers, more sophisticate methods are available (e.g. Henelius et
al., SLDS 2015. htip://dx.doi.org/10.1007/978-3-319-17091-6 5).

9. Looking back at the Halabi paper, which has a simple Cox model with a handful of
predictors that is immediately interpretable, the AUC obtained there on the test set (0.76)
seems close to those obtained in this challenge. The AUC is a rank-based discrimination
measure, that reflects the probability that for a randomly selected pair of patients, the patient
that died later had a lower risk score and differences have to be interpreted relative to this
meaning. | would like to hear the authors’ reflection as to whether the DREAM Challenge
has proven the case for the large-scale methods used in the Challenge or against them.
What future directions are needed to improve prediction? Some, like myself, would argue
that new markers need to be discovered rather than bigger models.

1. Response: The Prostate Cancer DREAM challenge provided high-quality data to a
large group of researchers, which led to improved prediction performance compared
to the model by Halabi et al. and highlighted interesting problems for future research.
In particular, we believe that future research should focus on how to best utilize data
from multiple clinical trials and how to adapt a model to new patient cohorts. As
described in our manuscript, the Prostate Cancer DREAM challenge compiled data
from four clinical trials, with each trial having its own characteristics, ranging from
different follow-up periods to different clinical information collected. In light of these
differences, just combining all the data and learning a model on top of it is likely to
lead to a poor model, despite an increase in sample size. Multiple teams identified
this problem and tried to address it. Most importantly, the winning team (FIMM-UTU)
selected a subset of the provided patient data as to obtain a coherent patient sample
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for training their model. By identifying and omitting patients that appear considerably
different from the remaining patients, they successfully lessened the effect of
study-specific batch-effects. Another interesting approach has been proposed by
team A Bavarian dream (as pointed out by the reviewer above). They used
recalibration methods to adapt their model to the target study, which was used for
final evaluation. In conclusion, we believe that the biggest improvements in risk
prediction were not due to identifying new risk markers, but by choosing methods
that account for sub-structures in the data. More research is needed to reliably detect
such sub-structures and to overcome the problems they attend.
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