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Neurodevelopmental disorders have a heritable component and are associated with region

specific alterations in brain anatomy. However, it is unclear how genetic risks for neurode-

velopmental disorders are translated into spatially patterned brain vulnerabilities. Here, we

integrated cortical neuroimaging data from patients with neurodevelopmental disorders

caused by genomic copy number variations (CNVs) and gene expression data from healthy

subjects. For each of the six investigated disorders, we show that spatial patterns of cortical

anatomy changes in youth are correlated with cortical spatial expression of CNV genes in

neurotypical adults. By transforming normative bulk-tissue cortical expression data into cell-

type expression maps, we link anatomical change maps in each analysed disorder to specific

cell classes as well as the CNV-region genes they express. Our findings reveal organizing

principles that regulate the mapping of genetic risks onto regional brain changes in neuro-

genetic disorders. Our findings will enable screening for candidate molecular mechanisms

from readily available neuroimaging data.
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Neurodevelopmental disorders such as autism and schizo-
phrenia are highly heritable, and associated with spatially
selective changes in brain structure and function1–3,

which remain poorly understood in mechanistic terms. In parti-
cular, it remains unclear how genetic risks translate into the
spatial patterns of altered brain anatomy that have been reported
in neurodevelopmental disorders. Clarifying factors that shape
regional brain vulnerability to genetic risks would help to advance
the translational medicine of neurodevelopmental disorders.
However, progress in this area is complicated by several issues
including (i) the etiological heterogeneity of behaviorally defined
neurodevelopmental disorders4, (ii) the vast search space of
candidate biological features that could determine regional brain
vulnerability5, and (iii) lack of access to spatiotemporally com-
prehensive postmortem brain tissue from patients.

Recent experimental work in mice has suggested an organizing
principle for regional brain vulnerability to genetic risks that may
apply in human neurodevelopmental disorders. Specifically, the
spatial patterning of neuroanatomical changes in MRI brain scans
from mutant mouse models with disruptions of neurodevelop-
mental genes can be predicted by intrinsic expression gradients of
those genes in the brains of wild-type mice6,7. Strikingly, this
spatial coupling was recovered using expression data from adult
wild-type mice—despite the likely operation of mutant allele
effects much earlier in brain development. These murine data
therefore propose a transcriptional vulnerability model for the
spatial patterning of altered brain anatomy in genetically deter-
mined disorders of brain development and further suggest that
evidence for this model could be recovered even if intrinsic
expression gradients are being measured in adulthood. To date,
however, tests of the transcriptional vulnerability model in
humans have only been available from studies of brain anatomy
patients with idiopathic autism and schizophrenia8–11. Because
the genetic basis of disease is unknown in idiopathic cases, it is
not possible to determine if observed spatial patterns of neuroa-
natomical change are related to normative expression gradients
for the causal genes.

Here, we conduct a genetically informed test of the transcrip-
tional vulnerability model in humans. To achieve this test, we
study youth with known genomic dosage variations that increase
risk for one or more adverse neurodevelopmental outcomes such
as intellectual disability, specific learning disability, autism spec-
trum disorder, attention deficit hyperactivity disorder and schi-
zophrenia: Down syndrome12 (trisomy 21), sex chromosome
aneuploidies13 (XO, XXX, XXY, XYY, XXYY), Velocardiofacial
syndrome14 (del22q11) and WAGR syndrome15 (del11p13).
These diverse genetically defined disorders encompass both gains
and losses of genetic material, which range in size from sub-
chromosomal copy number variations (CNVs) to full chromo-
somal aneuploidies (henceforth collectively referred to as CNVs)
—thereby providing a powerful test for generalizability of the
transcriptional vulnerability model. We also seek to refine and
apply this transcriptional vulnerability model, by testing if the
intrinsic gene expression gradients hypothesized to guide neu-
roanatomical disruptions can themselves be rooted in spatial
patterning of the human brain by different cell-types. Such
grounding of regional transcriptional vulnerability in cell-type
composition could provide a principled framework for nomi-
nating specific genes within specific cell-types that may account
for altered anatomy in a given brain region to a given neuroge-
netic disorder.

Results
Mapping altered cortical anatomy in six different CNV con-
ditions. We assembled a total of 518 structural magnetic

resonance imaging (sMRI) brain scans from matched case
−control cohorts spanning eight different neurogenetic disorders:
XXX, XXY, XYY, XXYY, trisomy 21 (Down syndrome), X-
monosomy (Turner syndrome), del22q11.2 (Velocardiofacial
syndrome, VCFS) and del11p13 (Wilms Tumor−Aniridia syn-
drome, WAGR) (Supplementary Table 1; total N= 231 patients,
287 controls). Because the distinct gene sets defining each of these
CNV disorders is known, we were able to conduct a series of
strict, independent tests of the transcriptional vulnerability model
in humans. Specifically, we asked if the map of cortical anatomy
change in each of the six CNV states represented by these dis-
orders (henceforth: +X, +Y, +21, −X, −22q11, −11p13) was
preferentially correlated with spatial patterns of expression for the
known genes that defined that disorder. Each case−control pair
was scanned on the same MRI machine using the same image-
acquisition parameters.

A map of cortical anatomy change was made for each of the six
CNVs vs. matched controls using morphometric similarity (MS)
mapping. Rather than considering individual anatomical features
such as cortical thickness, area, and curvature, MS mapping
combines information across multiple cortical features to estimate
a network of MS between pairs of cortical regions within an
individual brain. This network can be summarized as a person-
specific map of mean MS for each cortical region (relative to all
other cortical regions). Group-level comparisons were used to
determine the spatial pattern of cortical MS change associated
with each CNV (Fig. 1a, Supplementary Fig. 1; see “Methods”).
Our use of MS mapping in this study was motivated by two key
considerations: (i) CNV disorders have dissociable impacts on
different anatomical features of the cortical sheet1, and MS
mapping provides a means of integrating this rich information,
(ii) cortical MS gradients are strongly aligned with the molecular
and cytological aspects of cortical patterning that we sought to
probe in our test of the transcriptional vulnerability model16.
Further information on topological and network features of
MSNs is provided in the original paper16. To compare results
from the use of MSNs vs. classical single-feature approaches to
cortical morphometry, we also generated supplementary maps of
anatomical change in each CNV for all of the individual cortical
features that are combined in MS mapping (Supplementary
Fig. 2a). To test for differential contribution of single cortical
features to observed MS changes in each CNV, we recomputed
CNV-specific MS change maps with exclusion of each individual
cortical feature prior to MSN construction and then determined
which of these single-feature exclusions most change the
topography of observed MS change for each CNV. This leave-
one-out procedure showed that mean curvature (+X, +Y) and
gray matter volume (−X, +21,−22q11,−11p13) were the features
that most contributed to the topography of observed MS changes
(Supplementary Fig. 2b).

Each of the six CNVs studied induced a distinct spatial pattern of
MS change across the cortex, with regionally specific MS increases
(red) and decreases (blue) relative to healthy control participants
(Fig. 1b). The distinctiveness of MS change in each CNV was not an
artifact of differences between the cohorts of healthy individuals
against which each CNV was being compared (Supplementary
Fig. 3a). Observed MS change maps in each CNV were not altered
by inclusion of total surface areas as a covariate to capture brain size
variation (correlation in MS change across regions with vs. without
covariate: +X, r= 0.99; +Y, r= 0.98; −X, r= 0.98; +21, r= 0.99;
−22q11, r= 0.97; −11p13, r= 0.98). Supplementary edge-level
analyses (i.e. examining CNV effects on inter-regional MS) revealed
the distinct patterns of anatomical disruption that underlay regional
MS increases vs. MS decreases in CNV carriers (see “Methods”,
Supplementary Fig. 3b). Comparison of MS change maps with a
standard functional-connectivity parcellation of the cortex17
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Fig. 1 Transcriptomic specificity of neuroanatomical effects. a Schematic outlining the main imaging-transcriptomic enrichment analyses and statistical
tests. b (left) Surface projections of T-statistics (z-scored for plotting purposes) for CNV effects on regional morphometric similarity (MS). Despite some
overlap across CNVs, each CNV induces a distinct profile of MS change. For full chromosome CNVs, neighboring point range plots show the median
(point) and standard error (range) rank of each chromosomal gene set—based on gene rankings from the PLS analysis (see (a), N genes per chromosome
provided in Supplementary Dataset 3). The chromosomal gene set for each CNV possessed a more extreme median rank than all other chromosomal gene
sets, and the polarity of this effect was opposite for chromosomal duplications (CNV gene set high ranked) versus deletion (CNV gene set low ranked). For
subchromosomal CNVs (depicted as red in the respective chromosome ideograms), density plots show median (solid line) and standard error (dashed
line) ranks for the relevant CNV gene set. Observed ranks are shown relative to two null distributions: PRAND-Trans (black), and PRAND-Cis (gray). PRAND was
calculated using 10,000 gene rank permutations (black). PRAND-Cis was calculated similarly to PRAND-Trans but only sampling gene ranks from the respective
chromosome of the CNV. All permuted P values were not further corrected for multiple comparisons, and were determined based on one-sided tests of
gene set enrichment (median rank; see “Methods”).
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revealed significant variation across CNVs in the magnitude of
average MS-change across different functional networks (Supple-
mentary Fig. 2c; ANOVA (ΔMS~CNV+ Network+CNV×Net-
work; F(6)Class= 6.323, P= 1.6 × 10−6; F(30)Group ×Class= 3.466,
P= 2 × 10−9). For example, MS increases in participants with
Down syndrome relative to controls were significantly enriched
within a well-defined ventral attentional network17.

Aligning anatomical changes in CNVs with cortical gene
expression. Next, to query the transcriptomic correlates of altered
MS in each CNV disorder, we aligned each CNV’s MS change
map to the same publicly available atlas of gene expression for
~15k genes in adult human cortex from the Allen Human Brain
Atlas (AHBA dataset)18 (see “Methods”, Fig. 1b, Supplementary
Fig. 1). We used partial least squares (PLS) regression to rank all
~15k genes in this atlas by their multivariate correlation19,20 with
each CNV’s MS change map—resulting in one ranked gene list
for each CNV disorder (Fig. 1a, Supplementary Dataset 1). In
these lists, genes with expression patterns that are more strongly
correlated with the corresponding MS change map have large
positive or negative PLS weights and therefore occupy more
extreme ranks. The polarity of these ranked lists was set so that
genes with strongly positive PLS weights occupied extreme low
ranks (i.e., closer to c. −7500, Fig. 1a), and showed positive spatial
correlations between their cortical expression and cortical MS
change in patients vs. controls. Conversely, high-ranking genes
(i.e., closer to c. +7500, Fig. 1a) had strongly negative PLS
weights, and were expressed in spatial patterns that correlated
negatively with MS change in patients vs. controls. These CNV-
specific ranked gene lists quantify the degree of spatial corre-
spondence between observed cortical changes in a CNV disorder
and cortical expression of that CNVs gene set in health as the
median rank position of genes within the CNV region. Null
distributions for this median rank test statistic can be generated
by gene rank permutation (see “Methods”). Thus, for any given
CNV, one can test the transcriptional vulnerability model by
asking if the median rank of genes within the causal CNV region
is more extreme than would be expected by chance. For sub-
chromosomal CNVs, a null distribution of ranks was created
from 10,000 randomly sampled gene sets of the same size from
the whole genome (PRAND-Trans) as well as from the same chro-
mosome (PRAND-Cis). For chromosomal aneuploidies, we har-
nessed the natural comparison gene sets provided by other
chromosomes and primarily asked if the observed median rank of
the aneuploidic chromosome was more extreme than that of all
other chromosomal gene sets. Gene rank permutations were used
to determine the likelihood of seeing the aneuploidic chromo-
some possess the most extreme median rank of all chromosomes
(PRAND). To ensure robustness across the six donors in the
AHBA, we performed a leave-one-donor-out PLS analysis for
each syndrome’s brain map, which showed highly consistent PLS
loadings across all permutations relative to the PLS loadings
derived from the whole AHBA dataset (+X mean r= 0.98; +Y
mean r= 0.84; −X mean r= 0.97; +21 mean r= 0.98; −22q11
mean r= 0.96; −11p13 mean r= 0.98; all N= 15,043 genes).

Our analyses found independent support for the transcrip-
tional vulnerability model in each of the six CNV conditions
studied (Fig. 1b, Supplementary Dataset 2). The omnibus P value
for this observation exceeded the limits of our permutation test
(i.e. P < 0.0001, see “Methods”). In all three CNVs involving
abnormal gain of a chromosome (+X, +Y, +21), the relevant
chromosomal gene set showed a higher median rank than all
other chromosomal gene sets. Conversely, in Turner syndrome,
which involves the loss of an X-chromosome (−X), the X-
chromosome gene set showed a lower median rank than all other

chromosomal gene sets (correlation between +/− X PLS scores,
r=−0.92). Furthermore, in the two conditions associated with
subchromosomal gene losses (−22q11, −11p13), the CNV gene
set also showed a significantly lower median rank than null gene
sets of the same size drawn from the whole genome. Thus, for
these six different CNV disorders, brain regions showing
relatively high expression of the causal gene set in health tended
to show MS decreases in patients carrying a duplication of the
gene set, and MS increases in patients carrying a deletion of that
gene set. Conversely, brain regions showing relatively low
expression of the causal gene set in health tended to show MS
increases in patients with gene set deletion, and MS increases in
gene set duplication. For 5/6 CNVs studied (all but +Y), the
above median rank results were statistically significant at
Bonferroni-corrected P < 0.05. Supplementary analyses clarified
that weaker statistical significance of this median rank permuta-
tion test for the +Y CNV condition was a predictable
consequence of the small number of Y-linked genes with
available brain expression data (Supplementary Fig. 2c). MS
change maps performed better than individual anatomical feature
change maps for recovering the specific relationships between
cortical gene expression and anatomical change in each CNV
(Supplementary Fig. 2a, Supplementary Dataset 3). Taken
together, these findings provide strong evidence that the
transcriptional vulnerability model is a relevant general organiz-
ing principle for spatial patterning of anatomical changes in
genetically defined neurodevelopmental disorders.

Our integration of neuroimaging and transcriptomic data also
provided several biological insights into each of the individual
CNVs studied. First, we were able to define those genes within
each CNV region that were expressed in spatial patterns which
most closely resembled CNV-induced anatomical changes
(Supplementary Dataset 1). For example, the most-extreme-
ranking CNV region gene relative to anatomical change in each
CNV was; +X: ZCCHC12, +Y: EIF1AY, −X: GABRA3, +21:
PCP4, −22q11: MAPK1, −11p13: TRIM44. This ranking by
spatial correspondence provides an especially useful criterion for
prioritization of genes within large chromosomal and subchro-
mosomal CNVs. Second, ranked gene lists also identified genes
outside the CNV region with expression patterns that most
closely mirrored observed anatomical changes—suggesting can-
didate molecular partners that might interact with altered
expression of CNV genes to shape regional brain vulnerability
(Supplementary Dataset 1). Third, rank-based GO term enrich-
ment analyses identified biological process and cellular compo-
nent annotations that were overrepresented at extremes of each
CNV disorder’s gene list (Supplementary Dataset 4). For example,
for +21, genes with spatial expression related to MS increases
showed enrichment for cell communication and synapse
composition, whereas genes with spatial expression related to
MS decreases showed enrichment for ion transport and
intracellular structures (Supplementary Dataset 4).

Deriving cell-class gene expression gradients in the human
cortex. The above findings indicate that intrinsic transcriptomic
differences across the cortical sheet in adulthood are correlated
with regional anatomical vulnerability of the cortical sheet to
genetically defined neurodevelopmental disorders. However,
regional differences in cortical gene expression across the lifespan
are themselves thought to largely reflect regional differences in
cellular composition of the cortical sheet21. We therefore rea-
soned that the spatial correspondence between expression of
CNV genes in health and anatomical changes in CNV carriers
(Fig. 1) may be underpinned by patterned expression of CNV
genes across different cell-types with varying spatial distributions.
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As there are no spatially comprehensive maps of cell-type density
across the human brain with which one could test this hypothesis,
we generated cell-class density proxy maps from bulk-tissue
AHBA expression data using information from single-cell gene
expression studies. To generate this reference set of cell-type
maps in the human cortex, we compiled cell-specific gene sets
(N= 58) from all available large-scale single-cell studies of the
adult human cortex (see “Methods”, Supplementary Dataset 5),
and then calculated the mean expression of each cell-type gene set
in each of the 152 cortical regions within our MRI-registered
projection of the AHBA dataset (see “Methods”). Unsupervised
hierarchical clustering of this cell-by-region expression matrix
using the gap-statistic criterion22 distinguished three broad cell
groups with distinct patterns of regional expression (Fig. 2b): (i)
oligodendrocytes, (ii) other glial and endothelial cells, and (ii)
excitatory and inhibitory neurons. Further co-clustering of cells
within these three groups by the similarity in their regional
expression profiles (Fig. 2b; see “Methods”) recovered all seven
canonical cell classes within the central nervous system: micro-
glia, endothelial cells, oligodendrocyte precursors (OPCs), oligo-
dendrocytes, astrocytes, excitatory and inhibitory neurons. Thus,
independently derived cell-type gene sets from single-cell geno-
mics, reflecting diverse cortical tissue samples and varying ana-
lytic methods from five separate studies, are perfectly grouped by
cell class using the sole criterion of similarity in their regional
expression across bulk samples of cortical tissue.

We generated a single omnibus gene set for each of these seven
cell classes by collapsing across study-specific gene sets, and we
then visualized the mean expression for each cell-class gene set
across the cortex (Fig. 2b; see “Methods”). These transcriptomic
proxy maps for cellular patterning across the human cortex could
be validated against several independently generated maps of
cortical microstructure from neuroimaging and histology (see
“Methods”, Supplementary Fig. 4a). For example, (i) the
oligodendrocyte cell-class expression map showed a statistically
significant positive correlation with a map of intracortical
myelination as indexed by in vivo magnetization transfer
imaging19, whereas (ii) the astrocyte cell-class expression map
showed statistically significantly positive correlations with several
histological and neuroimaging markers for associative cortices
with expanded supragranular layer thickness23–25. Furthermore,
for two of our cell-class expression maps, we harnessed available
cell-class-specific markers to test for convergent validity with
available in situ hybridization data (ISH). Specifically, we
examined GFAP and MBP staining intensity as ISH markers for
astrocytes and oligodendrocytes (respectively) in postmortem
slices from cortical regions showing opposite patterns of astrocyte
and oligodendrocyte gene expression in our transcriptomic cell-
class proxy maps (Fig. 2c). This analysis revealed a close
congruence between regional cell-class representation from our
deconvolution approach (Fig. 2c), and cell-class representation
from direct ISH staining (Supplementary Fig. 4b).

Aligning anatomical changes in CNVs to cell-class gene
expression. We used our derived cell-class gene sets to test if
observed cortical anatomy changes in each CNV disorder were
organized with respect to broad cell-class gradients in the human
cortical sheet. We achieved this test for each CNV disorder by
screening for cell classes, which (i) had a cell-class gene set that
possessed a significantly extreme median rank (PRAND < 0.05) in
the CNV’s ranked gene list from AHBA alignment (Supple-
mentary Dataset 1), and (ii) included one or more extreme-
ranking (i.e., top/bottom 5% PLS ranks) genes from the CNV
region within their cell-class gene set (Supplementary Dataset 5).
These criteria identified several pairwise associations between

spatial patterns of cortical anatomy change in CNVs and
expression gradients of cell classes expressing genes from within
the CNV region. Some of these cell-gene associations integrated
cellular and molecular findings from prior research—providing
(i) evidence of convergent validity between the results of our
analytic approach and prior work, and (ii) a parsimonious inte-
gration of previously disconnected findings (Supplementary
Fig. 4c). For example, oligodendrocyte precursor cells and the
chromosome 21 gene NCAM2 have both been separately impli-
cated in the neurobiology of Down syndrome26–28. Our analytic
method recovered and synthesized these prior associations by
showing that cortical MS increases in Down syndrome are pre-
ferentially localized to cortical regions with a strong expression
signature for OPCs, which include NCAM2 in their cell-class gene
set (Supplementary Fig. 4c). We also identified informative cell-
gene associations for regions of MS change in all other CNVs
examined (excepting +Y), including: MS decreases in Down
syndrome and the transcriptomic signature for PCP4-expressing
oligodendrocytes; MS increases in WAGR syndrome (−11p13)
and PAX6-expressing astrocytes; MS increases in VCFS syndrome
(−22q11) and MAPK1-expressing inhibitory neurons; MS chan-
ges in X-chromosome aneuploidies and expression of oligoden-
drocytes, endothelial cells and astrocytes (which possess cell-class
gene sets that include neurodevelopmentally pertinent X-linked
genes such as AMMECR1, ITM2A and PTCHD1). Importantly,
our analytic framework can narrow hypotheses regarding cell-
specific drivers of regions of altered brain development in each
CNV without requiring access to postmortem brain tissue from
patients.

Validation against gene expression data from CNV carriers.
Collectively, the above findings provide strong evidence that the
spatial patterning of altered brain anatomy in pathogenic CNV
disorders in humans is organized by intrinsic expression gradients
of CNV-region genes in the human brain. We next sought to
further validate this transcriptional vulnerability model by testing
two associated predictions against direct measures of altered gene
expression in patients. First, we predicted that the ranked gene list
for each CNV disorder from comparison of neuroimaging and
AHBA data (Supplementary Dataset 1) should differentiate
between (i.e. differently rank at PRAND < 0.05) those CNV region
genes that do show robust expression changes in patients [i.e.
dosage-sensitive (DS) genes], and those that do not (nDS genes).
This prediction held for all three CNV disorders with available DS
and nDS gene sets from genome-wide comparisons of expression
between patient and control tissues: +21, +X and -X (see
“Methods”, Fig. 3b, Supplementary Dataset 6)29–31. Strikingly, we
observed statistically significant differential ranking of DS and
nDS gene sets (PRAND < 0.05) regardless of whether the gene sets
had been defined in postmortem brain tissue (available for +21),
or blood-derived lymphoblastoid cell lines (LCLs, available for
+21, +X and −X). The fact that CNV region gene dosage sen-
sitivity in patient LCLs is predictive of imaging−transcriptomic
associations in brain tissue is consistent with the idea that cis-
effects of a CNV on gene expression may be highly reproducible
across tissue types (even though normative gene expression pro-
files vary greatly between different tissue types32). This idea of
cross-tissue stability in cis-effects of a CNV on gene expression is
supported by prior research in model systems33, and our own
observation of a statistically significant correlation across genes
between the magnitude of expression change for chromosome 21
genes in brain tissue vs. in LCLs from patients with Down syn-
drome (r= 0.34, PRAND= 0.04, see “Methods”).

For all three CNVs considered, median rank differences
between DS and nDS gene sets were driven by a small subset of
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DS genes (DSSS, Fig. 3b, c, rank decile analysis; see “Methods”).
These DSSS genes possessed strongly positive PLS weights relative
to cortical changes in +21 and +X= indicating that they are
most highly expressed in cortical regions of MS increase in
patients vs. controls (e.g., +21: insula and cingulate cortex, +X:

precuneus, lateral temporal lobe), and that they are least
expressed in regions of MS reduction (e.g., +21: fronto-parietal
areas, +X: anterior cingulate). Conversely, for cortical changes in
−X, DSSS genes possessed strongly negative PLS weights—
indicating that associations between regional DSSS/nDS gene
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expression and MS changes in Turner syndrome are a mirror
image of those in +X states. Thus, for all three CNV conditions
considered, the spatial patterning of cortical MS changes was
preferentially correlated with the patterned expression of CNV
genes, but in opposite directions for DSSS vs. nDS gene sets (i.e.,
Fig. 1b vs. Fig. 3b, respectively). These observations implied that
the relative expression of DSSS vs. nDS genes should provide a
strong predictor of regional MS change in these neurodevelop-
mental disorders. This inference was verified for all three CNVs
using a surface-based rotational test to compare the map of
observed anatomical changes in the CNV disorder to that
predicted by an index of DSSS vs., nDS expression from the
AHBA (PSPIN < 0.001, Fig. 3d).

As a second validation from patient expression data, we
reasoned that if (1) the spatial patterning of MS changes is
organized by intrinsic gradients of gene expression in the human
cortex (Figs. 1b and 3d), and (2) there is a causal relationship
between cortical MS changes and altered expression of CNV-
region genes in CNV carriers, then (3) CNV carriers with greater
dysregulation of DS genes should show a more pronounced MS
changes along the spatial gradient that coheres with intrinsic
cortical expression of CNV genes. As there are no available
cohorts of CNV carriers that have provided both in vivo
neuroimaging and postmortem gene expression data from brain
tissue—we sought to test this prediction by leveraging the fact
that proximal effects of a CNV on expression of CNV region
genes are known to show good stability across tissues (see above).

A subset of 55 patients in our study that carried an extra X-
chromosomes had previously provided a blood sample for gene
expression analysis (N= 55, karyotypes: XXX, XXY, XXYY).
These blood samples had been used to make LCLs, from which
we had measured expression for 11 DS X-chromosome genes by
qPCR29 (see “Methods”). To interrelate peripheral gene expres-
sion and cortical MS across individuals, we (i) scaled regional
cortical MS and gene expression values within each karyotype
group (to remove potential between-karyotype effects), (ii) used
PLS regression to define the principal component of shared
variance between LCL gene expression and cortical MS (Fig. 4a).
This procedure identified a statistically significant component of
shared variance between MS change and DS gene expression
across patients (P= 0.0094, see “Methods”). Strikingly, the
cortical region loadings for this component closely recapitulated
the spatial gradient of MS change associated with carriage of an
extra X chromosome (r= 0.59, P < 0.0001 by test of random
spatial rotation of cortical maps and by resampling patients; see
“Methods”, Fig. 4b). Thus, CNV-induced changes in cortical
anatomy are not only coupled to regional variation in the cortical
expression of CNV genes in health (Fig. 1), but also to
interindividual variation in the degree of altered expression in
CNV region genes among CNV carriers (Fig. 4).

Discussion
The methods and results presented above offer several theoretical
and empirical inroads into the biology of neurogenetic disorders

First, by studying genetically defined (rather than behaviorally
defined) patient cohorts, we test the transcriptional vulnerability
model in humans by benchmarking findings against a ground-
truth set of genes that are known in advance and define the
disorders studied. In this way, our analyses in humans are ana-
logous to gold-standard tests of the transcriptional vulnerability
model that have so far only been possible in transgenic mice with
experimentally induced CNVs34. We find that the transcriptional
vulnerability model is indeed an organizing principle for the
spatial targeting of pathogenic CNV effects on human brain
anatomy (Fig. 1). Strikingly, in humans, as in mice34, these spatial
relationships between intrinsic cortical expression of CNV genes
and cortical anatomy changes in CNV carriers could be recovered
despite reliance on spatially comprehensive gene expression data
that had been derived from adult brains. Thus, although gene
expression landscapes within the brain show profound spatio-
temporal dynamism21, there appears to be sufficient stability in
the topology of gene expression to recover CNV-specific asso-
ciations over developmental time.

Second, we show that cellular organization of the human brain
provides a biological lens that can translate disease-related
alterations of specific genes into disease-related alterations of
specific distributed brain regions. We exploit this cellular fra-
mework to narrow hypotheses about the specific genes and cell-
types that might underpin regional cortical disruptions in patients
with Down, VCFS, WAGR and sex chromosome aneuploidy
syndromes (Fig. 2). Critically, the analytic workflow we pursue
achieves a broad screen of many potential brain regions, cell
classes and genes without relying on postmortem tissue from
patients or generalization from model systems. This approach
provides a practical advantage given the scarcity of postmortem
brain tissue from patients (especially those with rare genetic
disorders), and also enables us to make predictions regarding the
biology of distinctly human disorders using data from native
human tissue. To facilitate wider use of this cell-map decoding
approach, we are publishing (i) the cell-class gene sets derived by
our spatial integration of prior single-cell gene expression data
(Supplementary Dataset 2), and (ii) the spatially comprehensive
cortical maps for expression of each cell-class gene set in standard
neuroimaging space (see “Data availability”).

Third, we refine and further validate the transcriptional vul-
nerability model using direct measures of gene expression in
CNV carriers. Specifically—considering full CNVs of chromo-
somes X and 21—we establish that relationships between cortical
expression in health and cortical anatomy change in CNV carriers
are significantly different for CNV region genes with contrasting
dosage sensitivity in patient tissue. As a consequence, both the
valance and magnitude of regional cortical anatomy change in
CNV carriers could be predicted from a single index of regional
cortical gene expression in health—which contrasted relative
expression of those CNV genes that do show dosage sensitivity in
CNV carriers vs. those that do not (Fig. 3). Notably, this finding
held whether the expression data used to define CNV gene dosage
sensitivity status were derived from brain tissue or from LCL

Fig. 2 Cell type decoding of AHBA microarray and CNV gene ranks. a Regional median expression (Z score) in the AIBS microarray dataset of cell-
specific gene sets, aggregated across five single-cell sequencing studies and ordered according to hierarchical clustering (N= 3 clusters based on the gap
statistic). Cell type abbreviations are maintained from the original study (see also Supplementary Dataset 5). b T-distributed stochastic neighborhood
embedding (tSNE) of cell-specific gene sets based on their spatial expression profiles distinguishes seven canonical cell classes (color coded). c Regional
weighted expression maps (see “Methods”) of each canonical cell class from (b). d Significant associations between cell classes and MS change in
different CNVs. Circles indicate cell classes with gene sets that show statistically median rank enrichment (one-sided test) relative to PLS-derived ranked
gene lists for each CNV disorder (PRAND < 0.05). Circles color indicates the direction of median rank enrichment: red circled cell classes show high
expression in brain regions where MS is greater in patients than controls (vice versa for blue circles). Named genes for each cell class are (i) expressed by
the cell, (ii) in the respective CNV, and (iii) highly correlated with regional variation in MS change for that CNV (i.e. in the top 5% of PLS ranks).
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tissue. Thus, we show that there is not only a close correspon-
dence between the spatial distribution of altered cortical anatomy
in CNV carriers and intrinsic expression of CNV-region genes in
the human brain (Fig. 1), but that this correspondence can itself

be further refined by dividing CNV region genes by the extent to
which their expression is altered in CNV carriers (Fig. 3).

Finally, using paired measures of brain anatomy and gene
expression in a large cohort of patients carrying an extra
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X-chromosome, we establish that CNV carriers with greater
upregulation of dosage-sensitive X-chromosome genes in blood-
derived LCLs show more severe profiles of cortical anatomy
change in vivo (Fig. 4). This finding uses the axis of inter-
individual variation to provide orthogonal validation of the
transcriptional vulnerability model, but also establishes a poten-
tially useful predictive relationship between peripheral gene
expression changes and central neuroanatomical changes in CNV
carriers. Importantly, the existence of this predictive relationship
is fully compatible with well-established differences in gene-
expression between blood and brain tissues in health32. Rather,
our observations only require cross-tissue stability in the prox-
imal impact of a CNV on expression of CNV region genes, and
this phenomenon already has good empirical support from stu-
dies in different tissues of aneuploidic plants33, as well as from
our own comparison of altered expression of chromosome 21
genes in brain and LCL tissues from patients with Down syn-
drome (see above). Future work examining the coordinated
impact of other CNVs on brain anatomy and gene expression, as
well as in other idiopathic neurodevelopmental disorders35,36, will
be critical in substantiating the generalizability of these findings.
In general, however, prediction of neuroanatomical phenotypes in
CNV carriers from easily gathered measures of peripheral gene
expression represents an important proof-of-principle that could
potentially open up new avenues towards advances in persona-
lized medicine for CNV-based brain disorders.

In summary, our study adopts a genetic-first approach to
provide quasi-experimental support in humans that the spatial
patterning of altered brain anatomy in neurogenetic disorders is
organized by normative expression gradients of disease-relevant
genes in the human brain. We further show that this transcrip-
tional vulnerability model for prediction of regional vulnerability
can be linked to cell-type-dependent patterning of gene expres-
sion, and validated against direct measures of gene expression in
patients. The methods and results we present provide biological
insights into several of the specific neurogenetic disorders studied,
as well as a framework for transcriptomic and cellular decoding of
brain disorders from in vivo neuroimaging data. Crucially, despite
not requiring access to any postmortem brain tissue from

patients, or inference from model systems, the methods we pre-
sent can screen the large multidimensional search space of brain
regions, cell types, and genes to propose highly specific
mechanistic targets for neurogenetic disorders of the developing
human brain.

Methods
Cohorts, diagnostic classification, and MRI acquisition. Sex chromosome
aneuploidies [National Institutes of Health—Bethesda, USA (NIH)]: This dataset
has been described in detail previously37–39. Briefly, we included 297 patients with
various supernumerary X- and/or Y-chromosome counts and 165 healthy controls
(79 females) (Supplementary Table 1). Patients were recruited through the
National Institutes of Health (NIH) website and parent support groups. The pre-
sence of sex chromosome aneuploidy was confirmed by karyotype testing. Exclu-
sion criteria included a history of head injury, neurological condition resulting in
gross brain abnormalities, and mosaicism (determined by visualization of 50
metaphase spreads in peripheral blood). Healthy controls were enrolled in long-
itudinal studies of typical brain development40. Exclusion criteria for controls
included the use of psychiatric medication, enrollment in special education ser-
vices, history of mental health treatment, or prior diagnosis of a medical condition
that impacts the nervous system. Full-scale IQ was measured with the WASI.
Subjects were scanned on a 1.5 T GE Signa scanner (axial slices= 124 × 1.5 mm,
TE= 5 ms, TR= 24 ms, flip angle= 45°, acquisition matrix= 256 × 192, FOV=
24 cm) using a spoiled-gradient recalled echo (3D-SPGR) imaging sequence. The
research protocol was approved by the institutional review board (IRB) at the
National Institute of Mental Health, and informed consent or assent was obtained
from all individuals who participated in the study, as well as consent from their
parents if the child was under the legal age of majority (Clinical trial reg. no.
NCT00001246; clinicaltrials.gov).

Down Syndrome/Trisomy 21 [NIH]: This dataset has been described in detail
previously2. Briefly, we included 26 patients (13 females) with Down Syndrome
and 42 healthy controls (21 females) (Supplementary Table 1). All participants with
DS had a chromosomal diagnosis of Trisomy 21 according to parent report or
direct testing, with no instances of mosaicism. In addition to the genetic inclusion
criteria, participants were also required to be free of any history of acquired head
injury or other conditions that would cause gross brain abnormalities. Full-scale IQ
was measured as follows: for participants under the age of 18, the Differential
Ability Scales, Second Edition41 was administered, and for participants 18 and
older, the Kaufman Brief Intelligence Test, Second Edition42 was administered.
Imaging was completed without sedation on the same 3-T General Electric Scanner
using an 8-channel head coil. High-resolution (0.94 × 0.94 × 1.2 mm) T1-weighted
images were acquired utilizing an ASSET-calibrated magnetization-prepared rapid
gradient echo sequence (128 slices; 224 × 224 acquisition matrix; flip angle= 12°;
field of view [FOV]= 240 mm). The research protocol was approved by the IRB at
the National Institute of Mental Health, and informed consent or assent was
obtained from all individuals who participated in the study, as well as consent from
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their parents if the child was under the legal age of majority (Clinical trial reg. no.
NCT00001246; clinicaltrials.gov).

Wilms Tumor−Aniridia Syndrome (WAGR) [NIH]: A total of 31 patients with
heterozygous contiguous gene deletions of incremental variable length on the short
arm of chromosome 11 (11p13 deletion), and 23 healthy controls participated in a
comprehensive genotype/phenotype study approved by the NIH IRB and with the
informed consent of their parents/legal guardians (Supplementary Table 1).
Healthy controls were screened and excluded for history of neurological and
psychological impairments. Chromosome deletions were characterized by
microsatellite marker analysis and oligonucleotide array comparative genomic
hybridization. Neuropsychological assessments were conducted using standardized
psychological tests. All participants underwent MRI structural brain imaging.
Imaging quality controls included visual inspection of the raw images for motion
artifacts as well as the quality of the surface and volume segmentations. The image
processing results were inspected for surface and volume segmentation errors by
FML and AR. The MRI brain scans were collected at 1-mm3 resolution using a 3D
TFE T1-weighted sequence on a 3.0 T Philips Achieva MRI scanner equipped
with an 8-channel phased array head coil. The sequence parameters were as
follows: TR= 8.3 ms, TE= 3.8 ms, TI delay= 1031 ms, 160 shots. In total,
171 slices were acquired in the sagittal plane with an acquisition matrix of 240 ×
240 and an FOV of 240 mm. The research protocol was approved by the IRB at the
National Institute of Mental Health, and informed consent or assent was obtained
from all individuals who participated in the study, as well as consent from their
parents if the child was under the legal age of majority (Clinical trial reg. no.
NCT00758108; clinicaltrials.gov).

Turner Syndrome (X-monosomy) [Institute of Psychiatry, Psychology and
Neuroscience—London, UK (IoPPN)]: This cohort and associated data have been
described in depth previously43,44. We included 20 females with X-monosomy
(Turner’s Syndrome) (TS) and 36 healthy controls in this study (Supplementary
Table 1). Briefly, participants with TS were recruited through a university-based
behavioral genetics research program run in collaboration with the South London
and Maudsley NHS Foundation Trust and typically developing controls through
local advertisement. Karyotype was determined for each participant with TS by
analyzing 30 metaphase spreads using conventional cytogenetic techniques. No
participants suffered from any psychiatric or medical disorders that would grossly
affect brain function (e.g. epilepsy, neurosurgery, head injury, hypertension,
schizophrenia) as determined by a structured clinical interview and examination, as
well as review of medical notes. Structural MRI data were acquired using a GE
Signa 1.5 T Neuro-optimized MR system (General Electric, Milwaukee,
Wisconsin). Whole-head coronal 3D-SPGR images (TR= 14 ms, TE= 3 ms, 256 ×
192 acquisition matrix, 124 × 1.5 mm slices) were obtained from all subjects.
Ethical approval was obtained from the local Ethics Committee and informed
written consent was obtained from all participants (specific Ethics Committee
reference ID was held by the since restructured Institute of Psychiatry Ethics
Committee. Presence of active Ethics Committee approval verified through original
publications43,44).

Velocardiofacial Syndrome (VCFS) [IOPPN]: Briefly, all patients with VCFS
and control subjects were screened for medical conditions affecting brain function
by means of a semi-structured clinical interview and routine blood tests45,46. Full-
scale intelligence was measured by means of the Canavan et al. shortened version of
the Wechsler Adult Intelligence Scale—Revised47. We included 27 controls (11
females) alongside 29 participants (13 females) with clinical features of VCFS
(Supplementary Table 1) and a 22q11.2 deletion detected by fluorescence in situ
hybridization (FISH; Oncor Inc, Gaithersburg, MD, USA). Subjects were scanned
on a 1.5 T GE Signa scanner at the Maudsley Hospital in London, UK. A whole-
head 3D-SPGR image was acquired for each subject (TR= 11.9 ms; TE= 5.2 ms;
256 × 192 acquisition matrix; 124 × 1.5 mm slices). Ethical approval was obtained
from the local Ethics Committee. All subjects (or their guardians, when subjects
<16 years old) gave written informed consent after the procedure was fully
explained (specific Ethics Committee reference ID was held by the since
restructured Institute of Psychiatry Ethics Committee. Presence of active Ethics
Committee approval verified through original publications45,46).

Image quality control. Each of the patient/control datasets used in the current
manuscript were taken from previous studies. As such, previous quality control
procedures for each dataset can be found in the original papers (see sections
above). In addition, each cortical surface reconstruction was manually inspected for
topological defects, scrambling patients, and controls to avoid bias.

Generation of morphometric similarity networks. All T1-weighted (T1w) scans
were processed using the Montreal Neurological Institute’s CIVET pipeline48

(v1.1.10). Due to the lack of multimodal imaging, only (gray matter) morphometric
features derived from the T1-weighted scans were estimated (CT cortical thickness,
SA surface area, GM gray matter volume, MC mean curvature, IC intrinsic cur-
vature). GM values were estimated using the T1w volumes of each subject. Vertex-
wise CT and SA values were estimated using the resulting pial surface recon-
structions from CIVET, while MC and IC metrics of these surfaces were estimated
using the freely available Caret5 software package49. These surface meshes
(∼80,000 vertices per mesh) were down sampled into our regional parcellation
(below), where the vertex-wise estimates of the features were averaged within a

given region in the parcellation. Cortical surface representations were plotted using
BrainsForPublication v0.2.1 (https://doi.org/10.5281/zenodo.1069156).

For each subject, regional morphometric features (CT, SA, GM, MC, and IC)
were first scaled (Z-scored, per feature across regions) to account for variation in
value distributions between the features. After normalization, morphometric
similarity networks (MSNs) were generated by computing the regional pairwise
Pearson correlations in morphometric feature sets, yielding an association matrix
representing the strength of MS between each pair of cortical areas16. For all
individuals, regional MS (i.e., nodal similarity) estimates were calculated as the
average MS between a given cortical region and all others. We have previously
demonstrated that there is an extremely high spatial concordance (r= 0.91)
between the topography of regional MS derived from T1-weighted MRI data alone,
and regional MS from more modalities (e.g. a combination of T1w and diffusion
weighted imaging16).

Cortical parcellation. We generated a 308-region (N= 152 LH regions) cortical
parcellation using a back-tracking algorithm to restrict the parcel size to be
approximately 500 mm2, with the Desikan−Killiany atlas boundaries as starting
points50,51. This parcellation has been used in previous structural19,52,53 and
functional20 imaging studies of connectomes, and was also used in our first study of
MSNs16.

Statistical analyses of MSN differences. For each cohort, group-wise effects of
disease on nodal similarity were modeled using the “lm” base function in R, with
sex and age included as covariates. Linear regression was conducted using the
standard ordinary least squares (OLS) procedure. This model was fitted for each
region, and the two-sided T-statistic (contrast= patient− control) was extracted
(represented in Fig. 2a as a Z-score for plotting purposes). For the SCA groups, we
collectively modeled each chromosome dosage effect as follows:

NSi � interceptþ β1 ageð Þ þ β2 sexð Þ þ β3 Xanð Þ þ β4 Yanð Þ; ð1Þ
where NSi is the nodal similarity estimate across subjects at region i, and Xan and
Yan are the number of supernumerary X and Y chromosomes (respectively). This
was done after ruling out any significant interactions between Xan and sex, or Xan
and Yan for variation in nodal similarity1.

For the +21, −X, −22q11.2, −11p13 patient−control comparisons in nodal
similarity (NSi), the following model was used:

NSi � interceptþ β1 ageð Þ þ β2 sexð Þ þ β3 Dxð Þ; ð2Þ
where Dx is the binary classification of patients and controls.

These procedures resulted in MS change maps for six different CNV conditions,
which were taken into subsequent analyses (+X, +Y, +21, −X, −22q11, −11p13).

Interpreting regional morphometric similarity differences. Due to the zero-
centered nature of the regional MS distribution (Supplementary Fig. 3a), we
annotated the regional MS change maps (T-statistics) to determine the underlying
effects at the edge level (i.e., at the level of inter-regional MS). For each CNV, we
first computed the edgewise MS change between patients and controls (i.e., Eqs. (1)
or (2) for each edge, or pairwise correlation). Then, for the top ten positive (red in
Fig. 1b) and ten negative (blue in Fig. 1b) regional MS T-statistics, we took the
absolute sum of their corresponding edge T values for each of four possible types of
edge effect:

hypercoupling= an edge with a positive weight in controls, and a positive edge
T-statistic for the CNV effect (i.e. regions that are morphometrically similar in
controls being rendered more similar by the CNV)

dedifferentiation= an edge with a negative weight in controls, and a positive
edge T-statistic for the CNV effect (i.e. regions that are morphometrically
dissimilar in controls being rendered less dissimilar by the CNV)

decoupling= an edge with a positive weight in controls, and a negative edge T-
statistic for the CNV effect (i.e. regions that are morphometrically similar in
controls being rendered less similar by the CNV).

hyperdifferentiation= an edge with a negative weight in controls, and a
negative edge T-statistic for the CNV effect (i.e. regions that are morphome-
trically dissimilar in controls being rendered more dissimilar by the CNV)

These four effects are depicted in the legend of Supplementary Fig. 3b.

Derivation of gene sets for each CNV. Assignments of AHBA genes to chro-
mosome locations were made according to those from ref. 54. These assignments
defined the gene sets used for all chromosome-level analyses. Gene sets for the two
subchromosomal CNVs in our study were defined as follows. The 11p13-deletion
(WAGR) gene set was defined using the known distribution of proximal and distal
breakpoints in the WAGR patient cohort studied (relative to the NCB136/hg18
genome assembly, referenced via the USCS Genome Browser). We used the median
proximal and distal breakpoints across patients to define a representative
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chromosomal segment for use in analysis, which encompassed 45 AHBA genes in
total (Supplementary Dataset 1) including both WAGR critical region genes (WT1
and PAX6). As patient-specific breakpoint data were not available for the 22q11.2-
deletion (VCFS) cohort, we defined the gene set for this CNV using reference
breakpoints for the most common A−D deletion type (seen in >85% of patients)55,
which encompassed 20 genes from the AHBA dataset.

Transcriptomic alignment of neuroimaging data. Methods for the alignment of
the microarray gene expression data from six adult human donors, provided by the
Allen Human Brain Atlas (AHBA), to the left hemisphere (N= 152 regions) of our
parcellation has been described in depth elsewhere8,16,52, where we have shown
that the gene expression data are robust to leaving a given donor out of the analysis.
Briefly, we used FreeSurfer’s recon-all to reconstruct and parcellate the cerebral
cortex of each AHBA donor using the corresponding T1-weighted volume56.
Tissue samples were assigned to the nearest parcel centroid of the left hemisphere
of our parcellation in each subject’s native space. For the two subjects with right
hemisphere data, we first reflected the right hemisphere samples’ coordinates and
then performed the mapping. The median regional expression was estimated for
each gene across participants (N= 6) and then each gene’s regional values were
normalized (Z-scored), resulting in a 152 (regions) × 15,043 (genes) matrix of the
genome-wide expression data for the left hemisphere. The code and data under-
lying the AHBA alignment are available online at https://github.com/
RafaelRomeroGarcia/geneExpression_Repository.

Partial least squares regression of MS differences. This method—applied in
similar analyses integrating neuroimaging and brain gene expression data—has
been described previously8,19 (see also Supplementary Fig. 1). Here, we employ PLS
regression to rank AHBA genes by their multivariate spatial alignment with cortical
MS changes in each of the six different CNV conditions (+X, +Y, +21, −X,
−22q11, −11p13). As detailed below, these ranked gene list for each CNV con-
dition (Supplementary Dataset 1) provide a unifying framework to test for pre-
ferential spatial alignment between CNV-induced MS change and the spatial
expression user-defined gene sets of interest (e.g. genes within vs. without the CNV
region, gene sets defining different cell types etc.).

Briefly, PLS regression is a data reduction technique closely related to principal
component analysis (PCA) and OLS regression. Here we use the SIMPLS
algorithm57 in R (“pls” package58), where the independent variable matrix (X) and
the dependent variable (Y) is centered giving rise to X0 and Y0 respectively. The
first component is then weighted by w1 and q1 to calculate factor scores (or PLS
component scores) T1 and U1.

This T1 is the weighted sum of the centered independent variable:

T1 ¼ X0w1 þ E1; ð3Þ

and U1 is the weighted sum of the centered dependent variable:

U1 ¼ Y0q1 þ E2; ð4Þ

The weights and the factors scores are calculated to ensure the maximum
covariance between T1 and U1, which is a departure from regular PCA where the
scores and loadings are calculated to explain the maximum variance in X0.

The SIMPLS algorithm provides an alternative where the matrices are not
deflated by the weights when calculating the new components, and, as a result, it is
easier to interpret the components based on the original centered matrices.

As the components are calculated to explain the maximum covariance between
the dependent and independent variables, the first component need not explain the
maximum variance in the dependent variable. However, as the number of
components calculated increases, they progressively tend to explain less variance in
the dependent variable. We verified that the first component (U1, used for gene
rank analysis) for each CNV-specific PLS explained the most relative variance.

For each CNV, we used U1 to rank genes by their PLS loadings (from large
positive to large negative PLS loadings, Fig. 1a). The polarity of the PLS
components was fixed so that gene ranks would have the same meaning across all
CNVs. Thus, for all CNV-induced MS change maps, genes with large positive PLS
weights had higher than average expression in cortical regions where MS is
increased in CNV carriers relative to controls (i.e., red regions in Fig. 1b), and
lower than average expression in cortical regions where MS is decreased in CNV
carriers relative to controls (i.e., blue regions in Fig. 1b). Conversely, genes with
large negative PLS weights had higher than average expression in cortical regions
where MS is reduced in CNV carriers relative to controls (i.e. blue regions in
Fig. 1b), and lower than average expression in cortical regions where MS is
increased in CNV carriers relative to controls (i.e. red regions in Fig. 1b). Mid-
ranking genes with smaller PLS weights showed expression gradients that are
weakly related to the pattern of cortical MS change.

It is important to note that T1 and U1 are the first PLS component weights in
the common dimension of the X and Y variables. Thus, in our analyses comparing
AHBA gene expression to cortical MS change (as in the example interpretation
above), the common dimension is at the level of the nodes. However, in our
analyses comparing individual patient gene expression to individual cortical MS
maps, the common dimension was people rather than brain regions (see below).

Median rank gene enrichment analysis. The ranked gene lists provided by PLS
regression of AHBA expression and MS change provided a common framework to
test if the spatial expression of a given gene set was nonrandomly related to an
observed spatial pattern of MS change. Specifically, we quantified this degree of
spatial correspondence or a given gene set using an objective and simple measure of
median gene set rank. This allowed for interpretation of gene rank enrichment both
relative to the center of the rank distribution, and relative to the extremes of the list.
Statistical significance of observed gene set median ranks was established by
comparison with null median rank distributions from 10,000 gene rank permu-
tations (PRAND).

For the full chromosome CNVs, median ranks were assessed for chromosomes
1:22, X, Y, and the pseudoautosomal region (PAR, or X | Y). For plotting purposes,
results with full chromosomes are presented in Fig. 1b, and results with all
chromosomes and PAR genes are shown in Supplementary Dataset 2. For the
subchromosomal deletions (−22q11.2/VCFS and −11p13/WAGR), we performed
additional variants of our PRAND test (PRAND-Cis and PRAND-Trans), only comparing
observed median ranks to those for 10,000 from gene sets of equivalent size
resampled from relevant chromosome (i.e., chromosome 22 for −22q11.2 and
chromosome 11 for −11p13).

Given that CNV gene sets varied greatly in size, and the smallest gene set (+Y),
was notable for being the only gene set that had an observed median ran that fell
below the nominal PRAND= 0.05 threshold, we conducted supplementary analyses
to investigate the relationship between CNV gene set size and the statistical
significance of observed CNV gene set median ranks relative to the PRAND null
distribution. We decided to nest these analyses in the context of the X-
chromosome, which was the CNV that contained the greatest number of linked
genes in the AHBA. Across different subsamples of the X-chromosome gene set,
ranging from the set size of the Y-chromosome (smallest whole-chromosome
CNV) to the full size of the X-chromosome, we generated 10,000 median gene
ranks from the +X PLS-ranked gene list within each subsample, as well as median
gene ranks from random pulls of the entire (AHBA-overlapping) genome of
comparable set size (Supplementary Fig. 2c). Since pairs of X-chromosome subsets
and random subsets were arbitrarily matched, subsample P values were calculated
by testing the median of the X-chromosome median gene ranks against the 10,000
null median gene ranks generated by the random pulls. This was performed for
each subsample size (Supplementary Fig. 2c) to evaluate a predicted P value for
median ranks of CNV gene sets sized similarly to the CNVs (+Y, +21) observed in
our study.

Due to the fact that MS change maps integrated information from multiple
individual anatomical metrics (e.g. cortical thickness, surface area, etc.), we tested if
anatomical change maps for each of these individual MS features were also capable
of recovering the preferential relationship between cortical expression gradients for
CNV genes in health, and CNV effects on cortical anatomy in patients. To achieve
this, we repeated the analytic steps detailed above for each CNV, replacing the MS
change map with change maps for every individual metric used as part of our five-
feature MS mapping (Supplementary Fig. 2a): gray matter volume, cortical
thickness, surface area, mean curvature, and intrinsic curvature. PLS-derived gene
ranks from all these analyses were assessed for statistically significant extreme
ranking of CNV gene sets (PRAND < 0.05, Supplementary Dataset 3).

Gene ontology enrichment analyses. Functional enrichment was assessed using
rank-based gene ontology (GO) enrichment analysis. First, we subsetted the full
PLS-ranked gene lists for each CNV to only contain genes that were determined as
brain-expressed (see below). Then, each refined brain-only CNV gene list was
inputted to GOrilla59,60 ordered by PLS score separately in increasing and
decreasing order to obtain enrichments for both tails of the gene list. Full output
can be found in Supplementary Dataset 4.

Generating cell-class gene expression maps. We compiled data from five dif-
ferent single-cell studies using postmortem cortical samples in human postnatal
subjects61–65, to avoid any bias based on acquisition methodology or analysis or
thresholding.

To obtain gene sets for each cell type, categorical determinations were based on
each individual study, as per the respective methods and analysis choices in the
original paper. All cell-type gene sets were available as part of the respective papers.
For the Zhang et al.61 and Darmanis et al.64 papers, these data had already been
reported elsewhere66, and therefore were re-used in the present study. This
approach led to the initial inclusion of 58 cell classes, many of which were
overlapping based on nomenclature and/or constituent genes. The genes within
each of these 58 cell-types are compiled in Supplementary Dataset 5.

We generated spatial maps of expression for each cell type gene set by
calculating the median regional expression score for each gene set in the AHBA
bulk microarray dataset (Fig. 2a). Then we performed hierarchical clustering of this
region-by-cell-type expression matrix, using the gap statistic22 criterion. This
unsupervised analysis enabled us to determine if the cell-type gene sets from
diverse studies could be grouped into biologically grounded clusters by their
patterned expression across the cortical sheet. The clustering of study-specific gene
sets according to known cell classes was taken to indicate that gene expression
gradients in the cortical sheet are partly organized by cell-type.
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The convergence of cell-type expression topography allowed us to cluster
individual study cell-type gene lists into canonical cell classes. Within the context
of the N= 3 hierarchical clustering solution from Fig. 2a, we performed post hoc
assignment of each study-specific cell-type into cell classes based on the
visualization of the t-Distributed Stochastic Neighborhood Embedding (tSNE)
solution (Fig. 2b) on the data from Fig. 2. This solution clearly organized study-
specific cell types into seven canonical classes, which were fully nested within the
N= 3 hierarchical clustering solution from Fig. 2a. These seven classes were:
astrocytes (Astro), endothelial cells (Endo), microglia (Micro), excitatory neurons
(Neuro-Ex), inhibitory neurons (Neuro-In), oligodendrocytes (Oligo), and OPCs.

To derive the expression maps for each of these seven cell classes, we first
collapsed across study-specific gene lists to generate a single omnibus gene list for
each cell class, and then calculated a weighted average expression for each cell-class
gene set in each region of our 152 AHBA parcellation (Fig. 2c). Weights for each
underlying cell-type were computed by estimating the Euclidean distance of each
cell-type from the centroid of their respective cell class using PCA. Two studies did
not subset neurons into excitatory and inhibitory, and thus these gene sets were
excluded from this cell-class assignment. Additionally, only one study included the
annotation of the “Per” (pericyte) type, and thus this gene set was also excluded.

Cortical map comparison of overall cell-class expression. To validate the
individual cell-class expression maps derived from integration of single-cell
expression studies and AHBA microarray data (Fig. 2c), we computed the spatial
correlation of each cell-class expression map to established maps of cortical
microstructure from diverse in vivo neuroimaging and postmortem histological
studies, including maps of cytoarchitecture67 myeloarchitecture19, and gradients of
evolutionary24, developmental24, and interindividual (allometric) anatomical scal-
ing23 (Supplementary Fig. 4).

For the cytoarchitectonic maps, a 100-μm resolution volumetric histological
reconstruction of a postmortem human brain from a 65-year-old male was
obtained from the open-access BigBrain67 repository on February 2, 2018 (https://
bigbrain.loris.ca/main.php). Using previously defined surfaces of the layer I/II
boundary, layer IV, and white matter25, we divided the cortical mantle in
supragranular (layer I/II to layer IV) and infragranular bands (layer IV to white
matter). Band thickness was calculated as the Euclidean distance between the
respective surfaces. To approximate cellular density, we extended upon recent work
on BigBrain microstructure profiles68 and generated microstructure profiles within
supra- and infragranular bands. Intensity profiles using five equivolumetric
surfaces within the predefined surfaces of the BigBrain were then averaged to
produce an approximate density value. Calculations were performed at 163,842
matched vertices per hemisphere, then averaged within each cortical region in our
parcellation.

The myeloarchitecture (magnetization transfer, or MT) and anatomical scaling
maps used in these comparative analyses were taken from previous
studies19,23,24,67.

Spatial permutation testing for cortical map comparisons. To assess the spe-
cificity of the correspondence between pairs of cortical maps, we generated 10,000
rotations (i.e., spins) of the cortical parcellation16,53. This matching provides a
mapping from the set of regions to itself, and allows any regional measure to be
permuted while controlling for spatial contiguity and hemispheric symmetry.

We first obtained the spherical surface coordinates of each of our 308 regions
on the fsaverage template in Freesurfer. These were then rotated about the three
principal axes at three randomly generated angles. Given the separate left- and
right-hemisphere cortical projections, the rotation was applied to both
hemispheres. However, to preserve symmetry, the same random angles were
applied to both hemispheres with the caveat that the sign of the angles was flipped
for the rotation around the y and z axes.

Following each rotation, coordinates of the rotated regions were matched to
coordinates of the initial regions using Euclidean distance, proceeding in
descending order of average Euclidean distance between pairs of regions on the
rotated and unrotated spheres (i.e., starting with the rotated region that is furthest
away, on average, from the unrotated regions).

Linking CNV-induced anatomical changes to cell-class expression maps. Our
analysis of expression gradients for previously reported single-cell expression sig-
natures (see above) yielded an omnibus gene set for each of the seven canonical cell
classes. We assessed the relationship between cortical expression of these cell
classes and cortical MS change in each CNV by considering two complementary
features. First, we identified cell-class gene sets that occupied significantly extreme
ranks in each CNV’s ranked gene list from AHBA (PRAND < 0.05). This rank-based
criterion provides a test for the degree of spatial coupling between cortical
expression of each cell class and each CNV change map. Then, among the cell
classes that met this rank-based criterion for a given CNV, we examined the
expression of CNV genes to identify cell classes that expressed CNV genes which
(i) were independently recorded as being brain-expressed from proteomic data (see
below), and (ii) occupied extreme ranks (<5th, or >95th centile) alongside the cell-
class gene list in the relevant CNVs ranked gene list.

Validation against gene expression data in CNV carriers. Dosage-sensitive (DS)
genes were defined as those within the CNV region that were reported to show a
statistically significant fold change in congruence with the genomic copy number
change (i.e., increased in duplication carriers vs. controls or decreased in deletion
carriers vs. controls).

Prior reports enabled us to define DS genes in +21 for two different tissue types:
brain30 and blood-derived LCLs31. Brain DS genes were defined as all chromosome
21 genes determined to show developmentally stable and statistically significant
upregulation in patients vs. controls by authors of a prior study of postmortem
brain tissue (see Supplementary Table 3 from ref. 30). The LCL DS gene set was
defined as all chromosome 21 genes found to be significantly upregulated in LCLs
from postnatal +21 CNV carriers relative to controls (see Table 3 from ref. 31). For
each tissue, non-dosage-sensitive (nDS) chromosome 21 genes were defined as
those within the AHBA dataset that did not fall within the respective tissue DS set.

For X-chromosome aneuploidies, DS X-linked genes were defined using a prior
microarray study29 of X-chromosome dosage effects on gene expression in LCLs
from participants with a wide range of X-chromosome complements. X-linked LCL
DS genes were defined as all X-linked genes with expression levels showing a
significant positive association with X-chromosome count variation across a wide
karyotype range spanning X-chromosome monosomy (i.e., −X CNV), euploidy,
and X-chromosome duplication states (i.e., +X CNV). This criterion (see
Supplementary Information Text S3 from ref. 29) defined 40 DS genes for −X and
+X CNVs. Non-dosage-sensitive genes for these CNV conditions were defined as
all X-linked genes within the AHBA dataset that did not fall within the DS gene set.

We used median rank comparisons to test if DS and nDS genes showed patterns
of cortical expression that were differentially correlated to cortical MS changes in
each CNV (Fig. 3b, left). Specifically, the observed difference between median ranks
of DS and nDS sets was compared to the differences of 10,000 gene rank
permutations (PRAND).

A median rank difference between two gene sets could be driven by a difference
in overall rank distribution between gene sets, or by a subgroup of genes in one or
both sets with extreme ranks. We used rank decile analysis to differentiate between
these two scenarios. Specifically, we (i) computed the difference in the proportion
of genes in the DS vs. nDS gene sets for each decile of the CNV ranked gene lists,
and (ii) tested for deciles with significant differences at PRAND < 0.05 (see Fig. 3b,
right). For all four instances of DS-nDS gene set comparison (+21 brain-derived
sets; +21, −X, +X LCL-derived sets), median rank differences between the DS and
nDS gene set were driven by a small subset of extreme-ranked DS genes (DSSS,
Fig. 3b, c, Supplementary Dataset 6).

For all three CNVs considered in these analyses (+21, +X, −X), the median
rank for these DSSS CNV genes was of an opposite polarity to that observed for the
CNV gene set as a whole (cf. Figs. 3c, 1b). This observation implied that observed
cortical MS changes in +21, +X and −X CNVs could be related to two opposing
cortical gradients of CNV gene expression: those for DSSS genes vs. those for nDS
genes. To verify this inference, we compared the cortical pattern of MS change for
each of these CNVs from neuroimaging data, to the cortical pattern of differential
expression for DSSS vs. nDS gene sets as calculated from AHBA postmortem data
(Fig. 3d).

Linking peripheral gene expression and brain anatomy. These analyses sought
to validate the relationship between CNV gene expression and cortical MS using
the axis of interindividual variation. We could test the relationship between
interindividual variation of gene expression and cortical MS using a subset of
55 CNV carriers in our study from whom we had gathered measures of LCL gene
expression as well as sMRI brain scans. These study participants all carried an extra
X-chromosome (11 XXX, 23 XXY, 11 XXYY), and originated from the National
Institutes of Health Sex Chromosome Aneuploidy cohort. Details of sMRI data
collection and MS map calculation for this cohort have already been described
above. As part of a previously published gene expression study, we had also gen-
erated qRT-PCR (quantitative reverse transcription polymerase chain reaction)
measures of gene expression in LCL tissue from these participants for 11 DS X-
linked genes. These 11 genes had been selected based on a genome-wide micro-
array screen for X-chromosome dosage effects on LCL gene expression in sex
chromosome aneuploidy conditions29. The methods for generation, preprocessing
and analysis of these qRT-PCR data have been detailed previously29. Briefly, RNA
was extracted by standard methods (Qiagen), and qRT-PCR was performed using
the Fluidigm platform. For data processing, an assay with Ct > 23 was deemed to be
not expressed. Expression data were normalized relative to the averaged expression
of the two housekeeping genes ACTB and B2M, which were not differentially
expressed across groups in either microarray or rtPCR data.

Before inter-relating gene expression and cortical MS across these 55 +X
carriers, we first scaled gene expression and MS data across individuals within each
karyotype group to remove between-karyotype group effects. This enabled us to
test if, within any given +X karyotype group, greater disruption of DS gene
expression was related to a cortical MS map that more strongly resembled the +X
MS change map (Fig. 1b). To achieve this we used PLS regression to interrelate
interindividual variation in gene expression and interindividual variation in cortical
MS (see above). Partial least squares regression defined a principal component of
covariance between gene expression and cortical MS across patients, and feature
loadings onto this component: one for each gene, and one for each cortical region.
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The cortical region loadings from this PLS component were then compared to the
+X cortical MS change map in order to test of those regions which are most
sensitive to X chromosome dosage are also those that vary most with
interindividual variation in expression of DS X-linked genes among carriers of an
extra X chromosome. This map comparison consisted of computing the spatial
correlation between PLS loadings and the +X MS change map, and comparing this
correlation to the distribution of 10,000 correlations given by random spatial
rotations of the +X MS change map (i.e., PSPIN).

Defining brain-specific genes. The genes included within the AHBA dataset
cannot be assumed to be all brain-expressed. In our analytic approach of ranking
genes based on the multivariate correlation (via PLS regression) between their
brain expression and CNV-induced anatomical changes, high-ranking genes must
show some spatial variation in their expression such that they have a non-zero
expression in at least some brain regions. Not filtering the GO and single-cell
analyses by brain expression would therefore risk artifactual elevation of GO terms
(and cell-type enrichments) relating to brain expression.

Thus, for the GO enrichment analyses and the single-cell enrichment analyses
detailed above, we first thresholded our whole-genome gene set (N= 15,043) to
only contain genes that were determined as brain-expressed via the Human Protein
Atlas (HPA; https://www.proteinatlas.org/) database of normal tissue expression.
Genes whose levels of expression were not-detected (as determined by the HPA) in
the cerebral cortex were excluded, yielding a list of N= 7971 genes with detected
brain expression (Supplementary Dataset 7).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All relevant data to perform the analyses performed in this manuscript can be found
here: https://github.com/jms290/PolySyn_MSNs.
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