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ABSTRACT: We report herein an efficient visible-light-promoted
approach for the regioselective decarboxylative C−H acylation of
N-methyl-3-phenylquinoxalin-2(1H)-ones using α-oxo-2-phenyl-
acetic acids via dual palladium−photoredox catalysis. The reactions
were carried out at room temperature in the presence of 24 W blue
LEDs. The established protocol tolerated a wide range of
functional groups and enabled the synthesis of several acylated
N-methyl-3-phenylquinoxalin-2(1H)-ones in good to excellent
yields. The proposed mechanism for this transformation was
supported by control experiments.

■ INTRODUCTION
Visible-light photoredox catalysis has proven to be a powerful
tool for organic transformations through C−C and C-
heteroatom bond formation under mild reaction conditions.1

Unlike the well-explored two-electron transfer traditional
methods, single-electron transfer (SET)-mediated visible-
light-driven protocols activate the functional groups of reaction
substrates and result in several important organic conversions,
overcoming the drawback associated with a single catalytic
system.2 Interestingly, the combination of visible-light photo-
redox catalyst and transition metal catalyst as dual catalyst has
gained profound attention in accelerating various organic
reactions that are not accessible through a single catalytic
system.3 In the last decade, several protocols have been
reported demonstrating the successful merger of photoredox
catalysis with transition metal catalysis for the installation of
significant functional groups at specific positions of organic
molecules.4 Moreover, most of the developed dual catalytic
systems are more focused toward the use of bimetallic systems,
which involve the combination of Ru- and Ir-based complexes
as photoredox catalysts with transition metals such as Cu, Ni,
and Pd.5 However, the involvement of dual metallaphotoredox
systems of organic dyes as photoredox catalysts blended with
transition metals, still has a significant scope to be explored in
organic transformations because organic dyes are cheaper and
easier to modify compared to Ru- and Ir-complex-based
photocalysts.6 Recent progress in the application of dual
photoredox catalysts for selective C−H bond functionalization
has realized the significance of the merger of Pd catalysts with
photoredox dyes for selective decarboxylative acylation
reactions of heterocyclic molecules.7

Quinoxalin-2(1H)-ones and their derivatives, in particular,
3-substituted derivatives, have shown promising biological and
chemical properties. Anticancer,8 antiherpes,9 antiviral,10

antithrombotic,11 antitrypanosomal,12 antihistamine,13 and
antiplasmodium14 are some of the important pharmaceutical
properties exhibited by quinoxalin-2(1H)-one derivatives. In
addition, 3-substituted quinoxalin-2(1H)-ones also act as
multidrug resistance antagonists,15 antidiabetic glycogen
phosphorylase inhibitors,16 aldose reductase inhibitors,17

smooth muscle relaxant caroverine,18 modulators of PAS
kinase,19 MAO-A inhibitors,20 and calcium channel blockers,
etc.21 Owing to the significance of 3-substituted quinoxalin-
2(1H)-ones, several powerful and convenient protocols have
been designed for their preparation.22 However, the
approaches for the selective functionalization of the C−H
bond of the 3-substituted benzene ring of 3-arylquinoxalin-
2(1H)-ones are limited. Our group developed transition metal-
catalyzed approaches for the selective functionalization of 3-
arylquinoxalin-2(1H)-ones via selective activation of Csp2-H
bonds (Scheme 1a−c).23 Extending our efforts further in this
direction based on the significance and scope of Pd-based dual
photoredox catalysis, and our extensive literature survey on α-
keto acid (2-oxo-2-phenylacetic acids) as a substantial acyl
surrogate,24 we hypothesized to carry out the regioselective
decarboxylative Csp2-H acylation of 3-arylquinoxalin-2(1H)-
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ones. The reactions were carried out between 1-methyl-3-
phenylquinoxalin-2(1H)-ones and α-keto acids using a dual
photoredox catalyst obtained by merging of palladium catalyst
with visible-light photoredox catalyst, i.e., fluorescein dye
(Scheme 1d). However, to the best of our knowledge, this is
the first report for the regioselective decarboxylative acylation
of 3-arylquinoxalin-2(1H)-ones with α-keto acids under the
dual photocatlysis driven from an organic dye (fluorescein) as
a photoredox catalyst and a Pd catalyst in the presence of
visible-light at room temperature.

■ RESULTS AND DISCUSSION
Initial study was performed by reacting 1-methyl-3-phenyl-
quinoxalin-2(1H)-one (1a) with 2-oxo-2-phenylacetic acid
(2a) under 24 W blue LEDs in the presence of 10 mol %
PdCl2(PPh3)2 as metal catalyst, 40 mol % fluorescein dye as
photocatalyst, and 6 equiv of tert-butyl peroxybenzoate
(TBPB) oxidant in air for 15 h. Unfortunately, only traces of
the desired product 3a could be seen on thin layer
chromatography (TLC) (Table 1, entry 1). However,
replacement of catalyst PdCl2(PPh3)2 with Pd2(dba)3 catalyst
could result in the desired product in 38% yield (Table 1, entry
2). Afterward, other palladium catalysts, such as PdCl2,
Pd(PPh3)4, Pd(OAc)2, and Pd(TFA)2, were screened (Table
1, entries 3−6). Interestingly, an improved product yield was
obtained when Pd(OAc)2 was used as the catalyst (Table 1,
entry 5). Moreover, replacement of Pd(OAc)2 with other
metals, i.e., Co-, Ru-, Rh-, and Ir-based catalysts was ineffective
(Table 1, entries 7−11). After exploring various catalysts, we
switched to explore the role of oxidants. In this regard, several
oxidants, such as (NH4)2S2O8, K2S2O8, TBHP (aqueous as
well as in decane), DTBP, and H2O2, were screened but none

of these could facilitate the reaction (Table 1, entries 12−17).
Even the combination of (NH4)2S2O8 and K2S2O8 with
AgNO3 was also examined but the reaction could not deliver
the desired product (Table 1, entries 18 and 19). In addition
to these oxidants, oxygen was screened, but it could not initiate
the reaction (Table 1, entry 20). Finally, 10 mol % Pd(OAc)2
and 6 equiv of TBPB were found to be effective catalyst and
oxidant, respectively.

Subsequently, other solvents and photoredox dyes were
explored to improve the reaction yield further in the presence
of Pd(OAc)2 as the catalyst and TBPB as the oxidant (Table
S1). Solvents, such as ethanol, methanol, 1,4-dioxane, DMF,
toluene, DCE, and THF, were used for the reaction (Table S1,
entries 1−7). Delightfully, all of the screened solvents could
deliver the desired product, and 60% product yield was
obtained in ethanol (Table S1, entry 5). Apart from
fluorescein, other dyes, such as Eosin Yellow, Rose Bengal,
Rhodamine 6G, and Methylene Blue, were also screened for
this transformation; however, these dyes could not render the
desired products (Table S1, entries 8−11). However, when
Acridine Red was used as a photocatalyst, only 30% product
yield was obtained (Table S1, entry 12).

Next, other parameters, such as equivalents of oxidant, mol
% of catalyst, mol % of dye, reaction time, and amount of
solvent, were screened in order to improve the product yield
further (Table S2). In this regard, initially equivalents of TBPB
oxidant varied from 6 to 8, and delightfully, an increase in the
yield of the desired product was obtained (Table S2, entry 1).
However, a further increase in the concentration of TBPB was
unsuccessful as the product yield decreased from 67% to 42%
(Table S2, entry 2). Multiple unidentified product formations
were observed at higher concentrations of TBPB. This
decrease in product yield while using 10 equiv of TBPB was

Scheme 1. Previous Transition Metal-Catalyzed Approaches for the Selective Functionalization of 3-Arylquinoxalin-2(1H)-
ones via Selective Activation of Csp2−H Bonds (a−c), and Present Work (d)
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due to the formation of multiple products in the presence of
high concentration of the oxidant. Hence, 8 equiv of TBPB
were found to be the best for this transformation. Then the
effect of the Pd(OAc)2 catalyst loading was examined.
Unfortunately, at higher catalyst loading, inferior product
yield was observed (Table S2, entry 3). Remarkably, with a
decrease in catalyst loading up to 7.5 mol %, the desired
product could be achieved in 75% yield (Table S2, entry 4).
However, a further decrease in catalyst loading was not
favorable for this transformation (Table S2, entry 5). After
finding the best catalyst loading, we subsequently studied the
effect of the concentration of photoredox catalyst fluorescein
dye. We found 30 mol % of fluorescein to be the best for this
reaction as this resulted in a maximum product yield of 79%
(Table S2, entry 6). However, any further decrease in dye
concentration was unfavorable (Table S2, entries 7−9). By
fixing the reaction parameter as 7.5 mol % Pd(OAc)2 as metal
catalyst, 30 mol % fluorescein dye as photoredox catalyst, 8
equiv TBPB as oxidant, and ethanol as solvent, we tried to see
the effect of reaction time. It was observed that with the
increase in reaction time from 15 to 25 h, the desired product
yield also increased from 79% to 95% (Table S2, entries 6 and
12). On the other hand, the product yield decreased up to 74%
when the reaction was carried out for 12 h due to the
incompletion of the reaction (Table S2, entry 13). Last, the

amount of solvent was also evaluated, but any increase and
decrease in the amount of solvent did not produce favorable
results (Table S2, entries 14 and 15).

After optimizing reaction conditions, the scope of the
reaction partners, such as 1-methyl-3-phenylquinoxalin-2(1H)-
ones and α-keto carboxylic acids, was explored. Initially, the
scope of keto acids was explored. Several phenylglyoxylic acids
containing substituents, such as methoxy, methyl, fluoro,
chloro, and bromo, were reacted with 1-methyl-3-phenyl-
quinoxalin-2(1H)-one (Table 2, 3b−3g). All the substrates
delivered the desired products smoothly under optimized
reaction conditions and yielded the respective products in
moderate to good yield. A maximum of 95% yield was
obtained in the case of unsubstituted phenylglyoxylic acid
(Table 2, 3a). Additionally, from the experimental results it
was inferred that other substituents have no significant role in
reaction outcomes as none of them could produce the product
in better yield as compared to the unsubstituted α-keto acid
(Table 2, 3a−3g). Furthermore, these substituted α-keto
carboxylic acids were treated with differently substituted 1-
methyl-3-phenylquinoxalin-2(1H)-ones bearing substituents,
such as -OMe, -Me, -Cl, and -F groups, on the 3-phenyl
ring, i.e., ring B. 3-Phenylquinoxalin-2(1H)-one having
electron-releasing groups (methoxy and methyl) at the para-
position of ring B, delivered a slightly better yield than that of
electron-withdrawing fluoro and chloro groups at that position
(Table 2, 3h−3ab).

We further examined the scope of differently substituted 1-
methyl-3-phenylquinoxalin-2(1H)-ones, and this time various
substituents were present on ring A (Table 2, 3ac, 3ad, 3ag−
3ak). Ring A equipped with a methyl group provided a better
product yield than that with the chloro group. Interestingly,
the inductive effect of substituents present on phenylglyoxylic
acid played a significant role in this reaction. Better product
yield was obtained with substituents with positive inductive
effects (Table 2, 3ah−3aj) as compared to those substituents
with negative inductive effects. An increase in product yield
was observed with the increase in the +I effect of the
substituents present on phenylglyoxylic acid. A slight decrease
in case of methoxy substituted group on phenylglyoxylic acid
could be due to the −I effect of the -OMe group (Table 2,
3ak).

3-Phenylquinoxalin-2(1H)-ones bearing substituents on
both rings, i.e. rings A and B were also explored with
substituted phenylglyoxylic acids (Table 2, 3ae, 3af, 3al−3at).
Interestingly, both substrates with a methyl group delivered the
corresponding product in 89% yield (Table 2, 3an). However,
replacing the methyl group of keto acid by methoxy resulted in
a considerable decrease of product yield (Table 2, 3ap).
Moreover, other substituents could not contribute as
effectively as methyl and methoxy groups. 2-(Naphthalen-2-
yl)-2-oxoacetic acid also delivered the corresponding products
with 1-methyl-3-phenylquinoxalin-2(1H)-ones (Table 2, 3g,
3k, 3ab and 3at). The introduction of substituents at the ortho-
position of ring B resulted in the inability to generate products
(Table 2, 3ay and 3az), primarily due to the presence of
significant steric hindrance at the ortho-position. Conversely,
when the same substituents were positioned at the meta-
position, notably improved results were obtained (Table 2,
3au, 3av).

Interestingly, heterocyclic analogs of 1-methyl-quinoxalin-
2(1H)-one, such as 3-thiophene, resulted in the corresponding
products in 70% yield (Table 2, 3aw).

Table 1. Optimization to Study the Effect of Various
Catalysts and Oxidantsa

entry catalyst oxidant yield (%)b

1 PdCl2(PPh3)2 TBPB traces
2 Pd2(dba)3 TBPB 38
3 PdCl2 TBPB 5
4 Pd(PPh3)4 TBPB 30
5 Pd(OAc)2 TBPB 55
6 Pd(TFA)2 TBPB 51
7 Co(acac)3 TBPB traces
8 RuCl3·xH2O TBPB NRc

9 [RuCl2(p-cymene)]2 TBPB NRc

10 [RhCl(cyclooctadiene)]2 TBPB NRc

11 IrCl3 TBPB traces
12 Pd(OAc)2 (NH4)2S2O8 NRc

13 Pd(OAc)2 K2S2O8 NRc

14 Pd(OAc)2 TBHP (aq) 17
15 Pd(OAc)2 TBHP (decane) 18
16 Pd(OAc)2 DTBP traces
17 Pd(OAc)2 H2O2 NRc

18 Pd(OAc)2 (NH4)2S2O8 (6) NRc,d

19 Pd(OAc)2 K2S2O8 NRc,d

20 Pd(OAc)2 O2 NR
aReagents and conditions: a mixture of 1-methyl-3-phenylquinoxalin-
2(1H)-one (1 mmol), phenylglyoxylic acid (3 mmol), catalyst (10
mol %), fluorescein dye (40 mol %), and oxidant (6 equiv) was stirred
in water solvent at room temperature for 15 h under irradiation of 24
W blue LEDs. bIsolated yield. cNo reaction (starting material was
present unreacted). dOxidants were taken along with AgNO3.
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To acquire a deeper understanding of the reaction pathway,
various control experiments were performed (Scheme S1).
When the reaction between 1-methyl-3-phenylquinoxalin-
2(1H)-one and phenylglyoxylic acid was carried out in the
presence of the radical scavenger reagent “TEMPO” (2,2,6,6-
tetramethylpiperidine-1-oxyl, 5 mol %), the reaction was
quenched completely and no acylated product was obtained
(Scheme S1a). This result suggested the SET radical pathway
for this transformation. The formation of the TEMPO-benzoyl
adduct was confirmed by NMR spectroscopy to ensure the
formation of benzoyl radical. Furthermore, when the reaction
was carried out in the absence of Pd(OAc)2 catalyst, no
product formation was observed, revealing the need for Pd
catalyst to enable this transformation (Scheme S1b). However,
in the absence of TBPB oxidant, the product was obtained in

just 30% yield (Scheme S1c). The product formation in the
absence of TBPB could be due to the formation of acyl radicals
by fluorescein dye in the presence of blue LED light.7c

Furthermore, when the reaction was performed without blue
LED light at room temperature, no product formation was
seen (Scheme S1d). Intresetingly, at 50 °C, a 35% yield of
product was obtained (Scheme S1e). Then, on−off experiment
was performed to study the reaction profile. This experiment
showed that the reaction proceeds only under irradiation of
blue light, while the yield remains unchanged during the off
conditions, indicating the need for consistent photoexcitation
in facilitating this transformation (Figure S1).

On the basis of these experiments and literature reports,25 a
plausible reaction mechanism has been depicted in Scheme 2.
The mechanism starts with the photoexcitation of fluorescein

Table 2. Study of Substrate Scope for Decarboxylative Acylation of 1-Methyl-3-phenylquinoxalin-2(1H)-ones
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dye (FI) to give its excited form FI*. Meanwhile, cyclo-
palladation between the Pd(II) catalyst and substrate 1a
delivers intermediate A. This intermediate A reacts with acyl
radical II and affords the Pd(III) intermediate B. Next,
intermediate B can undergo a single electron oxidation to
render a Pd(IV) complex, which helps to reduce the excited
species of fluorescein dye. The anion radical form of
fluorescein closes the photocatalytic cycle by generating a t-
butoxide radical through back electron transfer. The formed t-
butoxide radical creates acyl radical II by the elimination of
CO2. Finally, reductive elimination from intermediate C takes
places to produce the desired product 3a and regenerates
Pd(II) back.

To check the industrial applicability of this protocol, the
reaction was also carried out at gram scale, and the
corresponding product was obtained in 87% yield (Scheme
S2).

■ CONCLUSION
In summary, we have disclosed the regioselective decarbox-
ylative C−H functionalization of N-methyl-3-phenylquinox-
alin-2(1H)-ones via photoredox/Pd-dual catalysis in the
presence of visible light. This transformation involves mild
reaction conditions, cheaper and readily available acylating
agents, inexpensive and metal-free photocatalyst, and is
operationally facile. The reaction demonstrated a wide
substrate scope and furnished easy access to acylated N-
methyl-3-phenylquinoxalin-2(1H)-ones using 2-oxo-2-phenyl-
acetic acids via C−H activation.

■ EXPERIMENTAL SECTION
General Procedure for the Synthesis of Compounds

3a−3at. An oven-dried 10 mL screw-capped reaction vial with
a small stirring bar was charged with a mixture of 1-methyl-3-
phenylquinoxalin-2(1H)-one 1 (1 mmol), α-oxo acid 2 (3
mmol), Pd(OAc)2 (7.5 mol %), and TBPB (8 equiv) in
ethanol (1.5 mL). The resulting mixture was stirred at room
temperature for 25 h under irradiation of 24W blue LED light.

The progress of the reaction was monitored by TLC. After
completion of the reaction, the reaction mixture was cooled to
ambient temperature, washed with 20 mL of saturated solution
of NaHCO3, and extracted with ethyl acetate (3 × 15 mL).
The organic layer was separated, dried over anhydrous
Na2SO4, and concentrated on a rotary evaporator to obtain
the crude product. The crude product thus obtained was
further purified on a silica gel column using hexane/ethyl
acetate (8:2) as the eluent to afford pure targeted products.
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