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Abstract Sepsis is an infection-induced systemic inflammatory syndrome. The immune response in

sepsis is characterized by the activation of both proinflammatory and anti-inflammatory pathways.

When sepsis occurs, the expression and activity of many inflammatory cytokines are markedly affected.

Xenobiotic receptors are chemical-sensing transcription factors that play essential roles in the transcrip-

tional regulation of drug-metabolizing enzymes (DMEs). Xenobiotic receptors mediate the functional

crosstalk between sepsis and drug metabolism because the inflammatory cytokines released during

sepsis can affect the expression and activity of xenobiotic receptors and thus impact the expression

and activity of DMEs. Xenobiotic receptors in turn may affect the clinical outcomes of sepsis. This
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review focuses on the sepsis-induced inflammatory response and xenobiotic receptors such as pregnane

X receptor (PXR), aryl hydrocarbon receptor (AHR), glucocorticoid receptor (GR), and constitutive an-

drostane receptor (CAR), DMEs such as CYP1A, CYP2B6, CYP2C9, and CYP3A4, and drug trans-

porters such as p-glycoprotein (P-gp), and multidrug resistance-associated protein (MRPs) that are

affected by sepsis. Understanding the xenobiotic receptor-mediated effect of sepsis on drug metabolism

will help to improve the safe use of drugs in sepsis patients and the development of new xenobiotic

receptor-based therapeutic strategies for sepsis.

ª 2020 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical

Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Sepsis remains a major challenge in the clinic because of its high
rates of morbidity and mortality. Despite advances in intensive
care and supportive technologies, the mortality rate of sepsis still
ranges from 15% to 80%1. There are 31.5 million cases of sepsis
worldwide, resulting in approximately 5.3 million deaths per
year1. Sepsis is the 10th leading cause of death in the United
States2.

Sepsis is defined as life-threatening organ dysfunction caused by
a dysregulated host response to infection3. The pathogenesis of
sepsis involves the release of endotoxins and exotoxins from
pathogens. Endotoxins, such as lipopolysaccharide (LPS) and lip-
oteichoic acid, are structural components of the bacterial cell wall4.
Exotoxins are actively secreted toxins mainly produced by gram-
positive bacteria5. Endotoxins and exotoxins activate innate im-
mune responses through pattern recognition receptors (PRRs) and
transcription factors, such as nuclear factor-kappa B (NF-kB), and
subsequently induce the production of inflammatory cytokines, such
as tumor necrosis factor (TNF-a), interleukin-1b (IL-1b), interferon
regulatory factor 3 (IRF3), interferon regulatory factor 7 (IRF7),
and adaptor protein 1 (AP-1)6. The release of inflammatory cyto-
kines induces the production of new cytokines, which in turn causes
cell and organ damage. There are several commonly used mouse
models of sepsis. The lipopolysaccharide (LPS) model simulates
sepsis-induced inflammatory response. This toxemia model induced
by i.p. injection of LPS can cause a sharp increase in cytokine
production in animals at an early stage, and the inflammatory
response disappears very quickly7. Cecal ligation and puncture
(CLP) is an independent model of sepsis that induced by bacterial
infection. In the CLP model, because of the pathophysiological
process of cecal ligation and perforation, the dysregulation of in-
flammatory factor expression and the immune response is the
closest to the pathophysiology of clinical sepsis. As such, CLP is
currently the most commonly used animal model of sepsis8.

In addition to their involvement in the inflammatory response,
the inflammatory cytokines released in sepsis can also influence
the expression and activity of xenobiotic receptors and further
affect drug-metabolizing enzymes (DMEs) and transporters. In
sepsis, the expression of hepatic and intestinal cytochrome p450
enzymes and drug transporters, such as CYP1A, CYP2B6,
CYP2C9, CYP3A4, P-gp and MRPs, is downregulated, as is the
uptake activity of trans carriers, such as organic anion transport
polypeptide 3 (OATP3). Therefore, alterations in drug metabolism
have been found in sepsis patients in the clinic. Carillo and col-
leagues9 reported that children with sepsis had a two-fold reduc-
tion in antipyrine clearance and that those with multiple organ
failure had a four-fold decrease in antipyrine clearance. These
results were consistent with the report that the clearance of anti-
pyrine is inversely correlated with circulating level of IL-6 and
multiorgan failure. Clinical studies have shown that pro-
inflammatory cytokines (especially IL-6) and cytokine antago-
nists (especially anti-IL-6 monoclonal antibody, tocilizumab) can
affect the pharmacokinetics of co-administered small molecule
drug10. Treatment of rheumatoid arthritis patients with tocilizu-
mab resulted in a 43% reduction in plasma exposure to the
CYP3A4 substrate simvastatin. This reduction indicates reversal
of IL-6 mediated CYP3A4 suppression in rheumatoid arthritis
patients with tocilizumab exposure11.

Xenobiotic receptors are chemical-sensing transcriptional
factors that play essential roles in the transcriptional regula-
tion of DMEs. Many of the xenobiotic receptors, such as
PXR, CAR, and GR12e14, belong to the nuclear receptor (NR)
superfamily. NRs are proteins sensitive to steroids, thyroid
hormones, or other molecules that are widespread in the or-
gans of species from various genera. NRs are divided into
orphan NRs, steroid hormone receptors and nonsteroid hor-
mone receptors. NRs regulate the growth, balance, and
metabolism of an organism by influencing gene expression15.
The AHR is another xenobiotic receptor. Although the AHR
does not belong to the NR superfamily, the mode of action by
which the AHR senses chemicals and regulates DMEs is
similar to that of the xenobiotic NRs. The primary function of
xenobiotic receptors is to regulate the expression of DMEs
and drug transporters, and in so doing, to affect the meta-
bolism and disposition of drugs and other xenobiotics. DMEs,
among which phase I cytochrome P450s (CYPs) are the most
important, are involved in the oxidation, reduction, and hy-
drolysis of many clinical drugs16.

This review details which inflammatory cytokines are released
and how they may interact with xenobiotic receptors and DMEs
during sepsis.

2. Xenobiotic receptors mediate the effect of sepsis on drug
metabolism

2.1. The role of PXR in mediating the effect of sepsis on drug
metabolism

2.1.1. Effects of sepsis on the expression of PXR and its target
DMEs
Infection and inflammation are known to inhibit drug metabolism
and, in some cases, increase drug toxicity17. Recent evidence
suggests that PXR plays an important role in mediating the sup-
pressive effect of sepsis on drug metabolism18,19.
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PXR is as a decisive xenobiotic receptor involved in the
regulation of DMEs and transporter genes. PXR has been
confirmed to be the core component involved in the transcriptional
regulation of DME genes in a range of diverse species. The
activation of PXR induces the expression of many DMEs and
transporters, including phase I enzymes, phase II enzymes and
phase III drug transporters. Examples of PXR target genes are
phase I Cyp3a, Cyp2b6, Cyp2c9 and Cyp2c19; phase II gluta-
thione S-transferase (Gsts), UDP-glucuronic transferase (Ugts),
sulfonyl transferase (Sult); and phase III multidrug resistant pro-
tein (Mrp), organic anion transport polypeptide 2 (Oatp2) and p-
glycoprotein (P-gp)20,21.

It has been suggested that sepsis inhibits drug metabolism by
inhibiting the expression and activity of PXR. In the LPS model of
sepsis in C57BL/6 mice, the mRNA and protein levels of PXR are
significantly decreased, leading to the downregulation of the
expression of the PXR target gene Cyp3a1122. It has been sug-
gested that the sepsis-induced release of proinflammatory cyto-
kines is responsible for the suppression of the expression of PXR
and DMEs23. The suppression of PXR and DMEs is believed to be
due to the sepsis-induced release of proinflammatory cytokines23.
In support of this hypothesis, it has been reported that the treat-
ment of wild-type mice with the proinflammatory cytokine IL-6
decreases the mRNA and protein expression of PXR. The hepat-
ic mRNA expression levels of the PXR target genes Cyp3a, Mrp,
and P-gp are also reduced in IL-6-treated mice. The effect of IL-6
on the expression of PXR target DME genes is abolished in PXR-
knockout mice, suggesting that the inhibition of drug metabolism
by IL-6 is PXR dependent (Fig. 1)24.
Figure 1 Effects of sepsis on the expression of PXR and its target D

flammatory macrophages is induced through the NF-kB and PKC-NF-kB p

inhibits the activation of PXR in hepatocytes, leading to the downregulatio

and Mrp.
At the mechanistic level, the sepsis-induced activation of NF-
kB and PKC may be responsible for the inhibition of PXR. NF-kB,
a major nuclear transcription factor that regulates the expression
of inflammatory genes, is composed of p65 (RelA) and P50 het-
erodimers. Under nonactivation conditions, NF-kB, together with
IkB (a protein that inhibits NF-kB), can be polymerized into tri-
polymeric P65-P50-IkB and reside in the cytoplasm. The activa-
tion of NF-kB by LPS and TNF-a causes the formation of the p65/
p50 dimer, which binds to DNA. Previous studies have shown that
NF-kB p65 interferes with the binding of the PXR-RXRa complex
to DNA, thus inhibiting the activity of PXR. The mechanism of
this process involves the direct interaction of p65 with the DNA-
binding domain of RXRa, leading to steric hindrance that blocks
its binding to the PXR protein. Subsequently, the activation of the
PXReRXRa heterodimer is inhibited, the transcriptional activity
of PXR is decreased, and DME expression is downregulated25.

The activation of the PKC signaling pathway can inhibit PXR
activity through changes in the PXReNR cofactor complex,
which may be directly changed by the phosphorylation of NR
corepressor protein (NCoR), and steroid receptor coactivator 1
protein (SRC1)26. LPS and inflammatory cytokines directly
participate in PKC activation; furthermore, activated PKC facil-
itates the activation and phosphorylation of the kinase Ikk,
leading to the activation of NF-kB. Activated NF-kB inhibits
PXR activity as described above. Additionally, activated PKC
can also inhibit PXR activity by disrupting the interaction be-
tween PXR and the NR coactivator steroid receptor coactivator 1
(SRC1), enhancing the interaction between PXR and the NR
corepressor NCoR27,28. As summarized in Fig. 1, both NF-kB
MEs. The expression of IL-1b, IL-6 and TNF-a in LPS-induced in-

athways in sepsis. The increase in IL-1b, IL-6, and TNF-a expression

n of the activity of DMEs and drug transporters such as Cyp3a4, P-gp
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and PKC may mediate the effect of sepsis on the expression and
activity of PXR.

2.1.2. Reciprocal effects of PXR on inflammation and sepsis
Interestingly, the effect of sepsis on PXR is bidirectional, meaning
that PXR can also affect inflammation and the outcome of sepsis.
Activated PXR exerts anti-inflammatory effects by inhibiting NF-
kB and thus reduce inflammation caused by the inflammatory
cytokines IL-6 and IL-129. As a key regulator of inflammation,
activated NF-kB is frequently detected in various inflammatory
diseases and tumors. The gene expression levels of proin-
flammatory cytokines, including Il-6, Il-2, Tnf-a and Cox-2, in
hepatocytes of Pxr-knockout mice are significantly higher than
those of wild-type (WT) mice, which can be explained by the
failure of PXR to inhibiting NF-kB in vivo. The induction of IkBa
and TNF-a by TNF-a is significantly inhibited in primary hepa-
tocytes isolated from WT mice after 24 h of treatment with the
mouse PXR activator pregnenolone-16a-carbonitrile (PCN)30.
However, in hepatocytes isolated from Pxr-knockout mice, the
abovementioned inhibition is lost, indicating that the inhibitory
effect of PCN on the expression of NF-kB target genes is mediated
by PXR. Together, these results suggest that the activation of PXR
can inhibit NF-kB signal transduction NF-kB and target gene
expression in vivo30.

Because of the anti-inflammatory activity of PXR, it has been
suggested that pharmacological activation of PXR may be useful
to treat sepsis. PXR is considered a potential therapeutic target in
inflammatory diseases such as sepsis and inflammatory bowel
disease (IBD)31. PXR plays an important role in promoting im-
mune and inflammatory responses. In addition, activated PXR can
inhibit the activity of NF-kB by negative feedback, thereby
inhibiting the expression and secretion of IL-6, blocking the
adhesion and migration of inflammatory cells32. Therefore, the
balance between inflammation and immunity in the pathogenesis
of sepsis can be restored by the activation of PXR (Fig. 1).

2.2. The role of AHR in mediating the effect of sepsis on drug
metabolism

2.2.1. Effect of AHR on sepsis
The AHR is a period circadian protein, Per/aryl hydrocarbon re-
ceptor nuclear translocator protein, ARNT/single-minded protein,
Sim (PAS) domain transcriptional factor and typical xenobiotic
receptor. Although the AHR does not belong to the NR super-
family, the mode of action by which the AHR senses chemicals
and regulates DMEs is similar to that of the xenobiotic NRs. In
addition to its xenobiotic functions, the AHR also plays an
important role in maintaining physiological homeostasis and
participates in cell proliferation and differentiation, the immune
response, gene expression regulation, hormone metabolism,
inflammation, immune self-recognition and reactions to external
stimuli. The AHR is also a key regulator of inflammation and
immunity in severe pneumonia and other types of sepsis33e37. The
expression of the AHR, which is indispensable for the LPS-
induced signaling cascade of the inflammatory response and
sepsis tolerance, is closely linked to the release of inflammatory
factors38e40. The activation or upregulation AHR expression can
regulate the expression of the anti-inflammatory cytokine IL-10
and downregulate the expression of the proinflammatory cyto-
kines IL-6 and IL-8, thereby inhibiting the inflammatory response,
maintaining immune homeostasis, and altering the occurrence and
prognosis of sepsis (Fig. 2).
IL-10, which plays an important negative regulatory role in the
early progression of sepsis, can inhibit the inflammatory response
induced by various immune cells and limit tissue damage and
immunopathological changes during infection41. IL-10 is regu-
lated by multiple transcription factors and signaling pathways. An
increasing number of studies have shown that the AHR is the key
regulator of IL-10 expression. Src tyrosine kinase (SRC), one of
nine nonreceptor tyrosine kinases, is a known intracellular target
protein that mediates tyrosine phosphorylation. SRC can induce
the production of IL-10 and downregulate the expression of the
proinflammatory factors IL-1b, IL-6, IL-18, and TNF-a42. Signal
transducers and activators of transcription 3 (STAT3) are known
transcriptional regulators of LPS-induced inflammatory factor
expression. STAT3 regulates IL-10 expression by binding to intron
4, and STAT3 is also a downstream regulatory factor of IL-10.
Moreover, IL-10 can activate STAT3 in an autocrine regulatory
manner43.

We recently reported that both the phosphorylation of SRC and
STAT3 and the expression of IL-10 are decreased in inflammatory
macrophages derived from Ahr-knockout mice. These results
suggest that the AHR positively regulates the expression of IL-10
through a nongenomic pathway, and this regulation depends on
the tyrosine phosphorylation-mediated activation of SRC and
STAT344. We have shown that the positive regulation of IL-10 by
AHR is reduced by specific SRC inhibitors and that the phos-
phorylation of STAT3 is downregulated by Src inhibitors, sug-
gesting that SRC can induce IL-10 production upstream of
STAT344. These results indicated that AHR activation enhances
the phosphorylation of SRC; then, p-SRC upregulates STAT3
phosphorylation, and p-STAT3 further positively regulates the
production of IL-10 by macrophages. Thus, the inhibition of the
inflammatory reaction by AHR activation can improve tolerance
to LPS, regulate immune functions, and reduce sepsis-induced
mortality.

Previous studies also found that the AHR is involved in LPS-
induced inflammatory gene expression. Ahr-knockout mice are
hypersensitive to LPS-induced sepsis, mainly as a result of
macrophage dysfunction. LPS-treated Ahr-knockout mice show
markedly higher plasma levels of IL-1b, IL-18, IL-6, and TNF-a
than WT control mice45. Activated AHR also plays a central role
in limiting endotoxin-induced inflammation46. The activation of
the AHR by endogenous and exogenous ligands upregulates the
expression of anti-inflammatory factors such as IL-10 and
downregulates the expression of proinflammatory factors such as
IL-1b, IL-6, IL-18 and TNF-a. These anti-inflammatory and
proinflammatory factors can regulate cytokine production by im-
mune cells and thus affect the inflammatory response and ho-
meostasis of the immune system. Therefore, we believe that the
protective effects of AHR via the regulation of the SRC-STAT3-
IL-10 signaling pathway may be a potential therapeutic target
for the early intervention and treatment of severe pneumonia and
sepsis.

2.2.2. Effects of sepsis on the expression of AHR and its target
DMEs
Cyp1a and Cyp1b are primary AHR target genes. The hepatic
expression of Ahr and Cyp1a2, the predominant Cyp1a isoform in
the rat liver, which plays an important role in the sepsis-induced
inflammatory response and liver injury, is downregulated in cecum
ligation and puncture (CLP)-induced sepsis47e51. Transcription of
the Cyp1a2 gene is mediated by the AHR, together with its heter-
odimerization partner AHR nuclear translocator (ARNT) and the



Figure 2 Effects of sepsis on AHR and inflammatory factors. During sepsis, the activation of NF-kB increases the expression of inflammatory

factors IL-1b and IL-10 in LPS-stimulated inflammatory macrophages, and the expression of AHR is upregulated through the NF-kB pathway.

Concurrently, the activation of AHR can enhance the phosphorylation of SRC; then, p-SRC upregulates STAT3 phosphorylation, and p-STAT3

further positively regulates the production of IL-10 by macrophages.
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chaperone heat shock protein 90 (HSP90)52,53. Upon ligand stimu-
lation, the AHReHSP90 complex enters the nucleus and subse-
quently dissociates, enabling the phosphorylation of the AHR by
tyrosine kinase. The activated AHR then forms a heterodimeric
complex with ARNT54. Within the nucleus, the AHReARNT
complex recognizes and binds to specific regulatory sequences
known as dioxin response elements (DREs) in the promoter region
and initiates the transcription of the Cyp1a2 gene (Fig. 3)55e58.

The downregulation of hepatic AHR and Cyp1a2 expression in
septic animals does not appear to be due to elevated endotoxin
levels because the treatment of hepatocytes with TNF-a and IL-1b
is sufficient to downregulate the protein expression of Cyp1a2 and
the AHR59. These results suggest that endotoxin itself may not be
required to decrease the expression of the Ahr and Cyp1a2 genes
after CLP but rather that the decreased expression of Ahr and
Cyp1a2 is caused by the proinflammatory factors TNF-a and
IL-1b60e62. Interestingly, the effect of sepsis on the expression of
AHR and Cyp1a2 is model specific. The suppression of AHR and
Cyp1a2 expression has been found only in the CLPmodel of sepsis.
In a previous study, we found that LPS-induced sepsis upregulates
rather than downregulates the expression of the AHR and Cyp1a2.
The induction of AHR expression in LPS-stimulated macrophages
is attenuated in cells cotreated with an NF-kB inhibitor (PDTC),
suggesting that AHR induction is NF-kB dependent.
In the CLP model of sepsis, the decreased expression of the
Ahr gene precedes the downregulation of Cyp1a2 expression,
suggesting that the decreased expression of Ahr may be respon-
sible for the downregulation of Cyp1a2 expression63. As AHR
induces the expression of specific genes by binding to their pro-
moters, the translocation of AHR to the nucleus in sepsis suggests
that alterations in the DNA binding of Ahr may have contributed
to downregulated Cyp1a2 expression in sepsis59. Therefore, dur-
ing CLP-induced sepsis, the release of proinflammatory factors,
such as TNF-a and IL-1b, decreases the expression of AHR. The
decreased expression of AHR in turn downregulates the expres-
sion of Cyp1a2. In the LPS model of sepsis, LPS may increase the
expression of AHR through the activation of NF-kB, which in-
creases the expression and activity of Cyp1a2. Cyp1a2 has both
endobiotic and xenobiotic substrates. Future studies are necessary
to define the pathophysiological consequence of the sepsis-
induced regulation of Ahr and Cyp1a2.

2.3. The role of GR in mediating the effect of sepsis on drug
metabolism

2.3.1. Effect of sepsis on GR expression
Glucocorticoid (GC) therapy has been widely used in the clinic to
treat sepsis. The pharmacological activity of GCs is mediated by



Figure 3 Effects of sepsis on the expression of the AHR and the GR and their target DMEs. In sepsis, the activation of GR and AHR in

hepatocytes is inhibited due to the production of inflammatory factors TNF-1 and IL-1b. The inhibition of GR expression leads to the down-

regulation of CYP2C9 gene expression. The inhibition of GR can also reduce PXR expression, thereby inhibiting the expression of CYP2B6 and

CYP3A4. The suppression of AHR has an effect on the phosphorylation of AHR, leading to the downregulation of the expression of Cyp1a2.
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the glucocorticoid receptor (GR). The GR is a nuclear hormone
receptor with a wide range of roles in both health and disease. The
GR is a ligand-binding transcription factor, but in the absence of
ligand, the GR resides in the cytoplasm bound to HSP90 and other
stabilizing cofactors64. When GCs and other GR ligands cross the
cell membrane, they bind to free GR in the cytoplasm. The ligand-
activated GR then rapidly translocates to the nucleus, where the
transcription of target genes is initiated. Two molecules of GR
bind to glucocorticoid receptor response elements (GREs) in the
promoter regions of steroid-sensitive genes as a homodimer,
leading to the transcription of genes encoding anti-inflammatory
mediators (e.g., IL-10) and the inhibition of NF-kB65. GCs can
also suppress the synthesis of the phospholipase A2 (PLA2),
cyclooxygenase 2 (COX-2), and nitric oxide synthase (NOS)
genes, decreasing the production of prostanoids, platelet-
activating factor, and nitric oxide, which are key molecules in
the inflammatory pathway. Therefore, GCs attenuate the inflam-
matory response and nearly preserve or restore the histology of
both lung and systemic organs, thereby promoting sepsis recovery
(Fig. 4)66e69.

Some studies have shown that in the LPS-induced sepsis
model, GR expression is markedly reduced in the lung, liver, and
kidney. Decreased GR expression results in the activation of
NF-kB, and the sustained activation of NF-kB eventually upre-
gulates the expression of iNOS, TNF-a, and IL-6. Decreased GR
expression may reduce the therapeutic effect of GCs in sepsis,
further decreasing the sensitivity to GCs70,71.

Three different 30-splice variants of the GR have been reported:
GR-a, the most abundant, which binds to ligands and is func-
tionally active; GR-P, which is thought to enhance the function of
GR-a72; and GR-b, a dominant-negative inhibitor of GR-a73,74. A
study found that the mRNA levels of the GR-a and GR-p splice
variants in neutrophils from children with sepsis were reduced on
day 0 compared to their levels after recovery75. GR-a and GR-P
mRNA levels gradually increased on days 3 and 7 and normalized
after recovery. GR-b mRNA levels did not change significantly
during sepsis. These results suggest that GC treatment that takes
into account the timing and tissue-specific regulation of GR splice
variants would benefit patients with sepsis.

2.3.2. Effects of sepsis on the expression of GR and its target
DMEs
Studies have confirmed the existence of a GR-PXR-P450 cascade
and illustrated the central contribution of the GR and this cascade
to the maintenance of a significant level of xenobiotic metabolism
in the liver76. First, physiological concentrations of GCs induce
CYP2C9 expression by activating the GR. The activated GR also
increases the expression of PXR and its heterodimerization partner
RXR, leading to increased basal transcriptional activation of the
PXR target gene CYP3A4. Second, PXR can be activated by



Figure 4 Effects of sepsis on GR and inflammatory factors. During sepsis, the expression of GR is downregulated in LPS-stimulated in-

flammatory macrophages. Decreased GR expression results in the activation of NF-kB, and the sustained activation of NF-kB, leading to the

upregulation of iNOS, TNF-a and IL-6 expression.
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xenobiotics or high concentrations of GCs, which increases the
expression of CYP2B6 and CYP3A477. Therefore, the activation of
the GR results in the enhanced expression of CYP2B6, CYP3A4,
and CYP2C9. GCs increase the mRNA and protein levels of PXR
and RXR, potentiating the xenobiotic receptor-mediated induction
of CYP2B6, CYP2C9 and CYP3A4 expression78,79. Since the
expression of the GR is suppressed by sepsis, the inhibition of the
GR by sepsis may downregulate the expression of CYP2B6,
CYP2C9 and CYP3A4 genes, thereby inhibiting drug metabolism
(Fig. 4).
3. Conclusions and perspectives

Sepsis is a life-threatening organ dysfunction caused by a dysre-
gulated host response to infection. Drug metabolism is known to
be compromised during sepsis, but the underlying mechanism
needs to be clarified. In this article, we reviewed the effect of the
sepsis-induced release of inflammatory factors, such as IL-1b,
IL-6 and TNF-a, on the expression and activity of xenobiotic
receptors, such as PXR, AHR, and GR, as well as their target
DMEs. Accumulating evidence suggests that xenobiotic receptors
are important mediators of the inhibitory effect of sepsis on drug
metabolism. The effect of sepsis on DMEs has potential impli-
cations in drug metabolism and disposition, therapeutic outcomes,
drug toxicity, and drugedrug interactions. It would be interesting
to know whether the pharmacological activation of PXR can be
used to mitigate the sepsis-induced inhibition of drug metabolism.
However, the expression and activity of xenobiotic receptors can
in return affect inflammation and the clinical outcome of sepsis. It
would be equally interesting to know whether xenobiotic re-
ceptors, such as PXR and AHR, can be used as therapeutic targets
for sepsis. Among the limitations of the studies herein, many of
the observations have been made in animal models of sepsis.
Thus, many of the mechanistic insights need to be validated in
human studies.
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