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Abstract: Model poly(n-butyl acrylate) (PBA) networks were prepared by photoinduced atom transfer
radical polymerization (photoATRP), followed by curing of polymer stars via atom transfer radical
coupling (ATRC) with a nitrosobenzene radical trap. The resulting nitroxyl radical installed thermally
labile alkoxyamine functional groups at the junctions of the network. The alkoxyamine crosslinks of
the network were degraded back to star-like products upon exposure to temperatures above 135 ◦C.
Characterization of the degraded products via gel permeation chromatography (GPC) confirmed the
inversion of polymer topology after thermal treatment.

Keywords: ATRP; ATRC; network; degradable; polyacrylate; nitroxide

1. Introduction

Crosslinked polymer networks (commonly referred to as gels, elastomers, or ther-
mosets) are versatile materials with mechanical properties tunable by both chemical com-
position and topology [1]. Thus, polymer networks have been successfully used as soft
elastomers [2–5], membranes [6,7], porous materials [8,9], pH responsive gels [10], and
medical devices [11]. Networks can be self-healing or degradable if dynamic or labile bonds
are installed at the junctions [12–17]. The bonds can be used to alter polymer topology
via post-polymerization modification upon exposure to chemical or external stimuli. The
topology of a polymer network is also influenced by the curing conditions. For example,
networks prepared by (free) radical polymerization, reversible addition fragmentation
chain transfer (RAFT), and atom transfer radical polymerization (ATRP) demonstrated
subtle differences in swelling ratios and rheology due to nuances in crosslinking chemistry,
despite an identical chemical composition [12].

Networks can be prepared by copolymerization of monomers with multi-functional
crosslinkers, or by coupling end-linked multifunctional polymers in the synthesis of “model
networks”. Model networks have uniform crosslink density and molecular weight between
entanglements because the distance between junctions is closely related to the topology
of the starting materials. The curing reaction is often highly favorable and achievable
using functional groups which could be easily attached to a polymer end-group. Model
networks have been cured by condensation [18], hydrosilylation [19], azide-alkyne cy-
cloadditions [20,21], thiol-ene reactions [22], Diels–Alder cycloadditions [23], and radical
trapping using multifunctional crosslinkers with (2,2,6,6-tetramethylpiperidin-1-yl)oxyl
(TEMPO) moieties [24].

Atom transfer radical coupling (ATRC) has not yet been used to prepare model
networks despite its synthetic simplicity and high selectivity to halogen chain-ends. An
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ATRC process relies on the ATRP equilibria between a polymer macroinitiator with halogen
chain-end functionality (CEF) and the reduced Mtn/L transition metal catalyst with the
chain-end radical and oxidized X-Mtn + 1/L catalyst [25]. Coupling is accomplished by
bimolecular termination via combination between two polymeric radicals, leading to
accumulation of the oxidized X-Mtn + 1/L catalyst unless reducing agents such as tin (II)
ethyl hexanoate, ascorbic acid, or zero-valent metals are used to (re)generate the reduced
Mtn/L catalyst (Scheme 1) [26,27]. ATRC was previously used to prepare high molecular
weight polymers, polymer macrocycles, and branched polymers [26–29].
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Scheme 1. Left: Atom transfer radical polymerization (ATRP) with regeneration of activators. Center:
Atom transfer radical coupling (ATRC) utilizes a macroinitiator bimolecular termination via combina-
tion to couple polymers. Right: Radical trap-assisted ATRC (RTA-ATRC) is accomplished by trapping
a polymeric radical with a nitroso compound to yield a nitroxide-capped polymer, which can trap a
second polymeric radical to yield a coupled polymer with the alkoxyamine functionality at its core.

A radical trap can be used to install an alkoxyamine bond during the coupling re-
action via the radical trap-assisted atom transfer radical coupling (RTA-ATRC) approach
(Scheme 1). In RTA-ATRC, the polymer macroinitiator prepared by ATRP is activated
by the ATRP catalyst to yield a chain-end radical which is trapped by a TEMPO radical
trap [30,31] or nitroso compound (i.e., nitrosobenzene) [32–39]. The latter reaction yields a
polymer with terminal nitroxide CEF capable of trapping a second macroinitiator to yield a
coupled polymer with an alkoxyamine functional group at the center. This approach was
also used to prepare high molecular weight linear polymers, branched polymers, block
copolymers, and cyclic copolymers [32–39].

Alkoxyamines are thermally unstable and can decompose above a temperature of
~120 ◦C. Networks crosslinked via radical trapping with TEMPO showed negligible creep
at ambient temperatures due to the high activation energy of alkoxyamine activation, but
dynamic-covalent behavior was observed at elevated temperatures once alkoxyamine
exchange became favorable [24,40–42]. Thus, alkoxyamine-crosslinked networks could be
thermally decomposed back to the linear polymer precursors by heating the network in
stoichiometric excess of monofunctional TEMPO [24].

In this manuscript, thermally degradable poly(n-butyl acrylate) model networks
were prepared by RTA-ATRC of polymer stars with a nitrosobenzene radical trap. The
degradation of the network is characterized in detail in the solid state through dynamic
mechanical analysis (DMA) at variable temperatures, and in solution by gel permeation
chromatography (GPC).
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2. Materials and Methods
2.1. Chemicals

n-Butyl acrylate (BA, 99%, Aldrich, St. Louis, MO, USA) was passed through basic
alumina column to remove radical inhibitors prior to use. Anisole (Aldrich, 99%), ni-
trosobenzene (NBz, 99%, Aldrich, St. Louis, MO, USA), α-bromoisobutyryl bromide (BiBBr,
98%, Aldrich, St. Louis, MO, USA), pentaerythritol (for synthesis Aldrich, St. Louis, MO,
USA), tin (II) ethylhexanoate (Sn(EH)2, 98%, Aldrich, St. Louis, MO, USA), tetrahydrofuran
(THF, ACS grade, Fisher Scientific, Hampton, NH, USA), copper(II) bromide (CuBr2, 99%,
Aldrich, St. Louis, MO, USA), N,N-dimethylformamide (DMF, ACS grade, Fisher Scientific,
Hampton, NH, USA), deuterated chloroform (CDCl3, 99.8%, Cambridge Isotope Laborato-
ries, Tewksbury, MA, USA), and tris [2-(dimethylamino)ethyl]amine (Me6TREN, Aldrich,
St. Louis, MO, USA) were used as received.

2.2. Instrumentation
2.2.1. Gel Permeation Chromatography (GPC)

GPC was used to characterize the molecular weight and dispersity of soluble polymer
samples with THF as the eluent. The GPC set-up consisted of a Waters 515 HPLC pump
(Waters, Milford, MA, USA), Waters 2414 refractive index detector (Waters, Milford, MA,
USA), and PSS columns (SDV 102, 103, 105 Å) (PSS, Philadelphia, PA, USA). The GPC
utilized THF as the eluent at a flow rate of 1 mL min−1 at 35 ◦C. Linear PMMA standards
were used for GPC calibration and a toluene internal standard was used as the flow marker.
The molecular weight and dispersity measurements were analyzed with WinGPC 7.0
software (PSS, Philadelphia, PA, USA).

2.2.2. Nuclear Magnetic Resonance (1H NMR)
1H NMR was carried out with Bruker Ultrashield 500 MHz NMR (Bruker, Billerica,

MA, USA) with CDCl3 as the solvent. The chemical shift of the materials was measured
relative to the CHCl3 protons as the internal standard. Bruker Topspin (v. 4.0.7) software
was used for data processing (Bruker, Billerica, MA, USA).

2.2.3. Thermogravimetric Analysis (TGA)

TGA was performed on a TA Instruments 550 TGA (TA Instruments, New Castle, DE,
USA) under an air atmosphere with a heating rate of 10 ◦C/min. The tests utilized ~15 mg
of polymer samples loaded into a platinum sample tray.

2.2.4. Dynamic Mechanical Analysis (DMA)

Mechanical properties of the polymer gels were assessed in the dry state using an
Anton Paar MCR-302 Rheometer (Anton Paar, Graz, Austria) fitted with a 25 mm diameter
stainless-steel parallel plate tool. The gels were characterized using disk-shaped samples
with a thickness of 1–2 mm and a diameter (D) of ~12 mm. The poly(n-butyl acrylate)
polymer stars and degraded networks were cast as films with a thickness of ~1 mm from
THF directly onto the stainless-steel parallel plate.

The samples were subjected to periodic torsional shearing between two parallel plates
under a strain of 0.1% at a constant normal load of 1 N between a frequency of 0.1 to
100 rad/s at 25 ◦C in the frequency sweeps.

Temperature sweeps were carried out with a normal force of 1 N and a constant ramp
of 2 ◦C/min using a constant applied shear strain of 0.1% (γ) and an angular frequency (ω)
of 10 rad/s.

Compression tests were conducted in compression mode. The samples were subjected
to a normal load increasing linearly with time (loading rate = 0.1 N/s) from 0.08 to 3 N. The
load vs. distance curves were converted into the stress σ = F/(π× (D/2)2) and compression
strain ε = (d0 − d)/d0, where the initial distance between the plates, d0 (corresponding
to the initial sample thickness), was determined by the extrapolation to zero load. The
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modulus was calculated as the slope of the initial linear region of the constructed stress–
strain curves, denoted by the red datapoints in Figure 1.
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Figure 1. GPC trace of the PBA4Br polymer stars. The molecular weight is given relative to linear
PMMA standards in THF. The polymer stars were prepared by photoinduced ATRP using a molar
ratio of [BA]/[4f-BiB]/[CuBr2]:[Me6TREN] = 400:1:04:0.24 in 16/64 v/v% DMF/Anisole. The reaction
was conducted under UV light irradiation (λmax = 374 nm at an intensity of 7.2 mW/cm2).

Stress relaxation tests were conducted at a constant frequency of 10 rad/s and an
applied strain of 0.1% at the stated temperature until degradation was complete. Normal
force was held at 0.25 N.

2.3. Synthesis
2.3.1. Synthesis of Tetrafunctional ATRP Initiator (4f-BiB)

The synthetic protocol for 4f-BiB was modified from a previously reported proce-
dure [43]. Pentaerythritol (2.00 g, 0.0153 mmol) was loaded into a 500 mL round-bottom
flask equipped with a magnetic stir bar. Tetrahydrofuran (THF, 100 mL) and pyridine
(9.42 mL, 0.0676 mmol) were loaded into the flask. The vessel was sealed with a rubber
septum and the contents were sparged by nitrogen gas for 1.5 h. The flask was lowered into
an ice bath and α-bromoisobutyryl bromide (11.40 mL, 0.0922 mmol) was added dropwise
over 20 min. The reaction was allowed to cool to room temperature overnight. The THF
solvent was removed via rotary evaporation to leave a mixture of pyridine salts and crude
product deposited on the side of the flask. Ethyl acetate (250 mL) was added to the flask and
the contents were vigorously stirred for ten minutes. The suspended solids were removed
via gravimetric filtration. The filtrate was washed with 3 × 75 mL of 1% HCl (aqueous),
3 × 75 mL sat. NaHCO3 (aqueous), and 1 × 50 mL of brine (aqueous). The mixture was
dried over MgSO4 and filtered through filter paper before excess solvent was removed by
rotary evaporation. The crude product was isolated as a white solid. The tetrafunctional
initiator was purified via recrystallization from hot methanol. Purity was confirmed by
1H NMR (500 MHz, CDCl3): δ = 4.33 (s, 8 H); 1.94 (s, 24 H).
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2.3.2. Synthesis of Poly(n-butyl acrylate) Star Polymer (PBA4-Br) by PhotoATRP

The synthetic protocol used to prepare the PBA star polymer was modified from a
previously reported procedure [44]. BA (13.26 g, 104 mmol), 4f-BiB (0.2 g, 0.260 mmol),
CuBr2 (2.3 mg, 0.01 mmol), Me6TREN (0.014 g, 0.062 mmol), DMF (12 mL), and anisole
(45 mL) were added to a 100 mL Schlenk flask equipped with a magnetic stir bar. The
contents of the flask were degassed by three cycles of freezing in liquid nitrogen, followed
by evacuation under vacuum, then thawing to room temperature. The flask was refilled
with nitrogen in the final round. An initial aliquot was taken from the reaction mixture for
characterization by 1H NMR. The photoATRP was started at room temperature by exposing
the flask to light of λmax = 374 nm at an intensity of 7.2 mW/cm2 overnight [45,46]. Upon
completion, the reaction was quenched by turning off the light and exposing the reaction to
air. An aliquot of the final reaction mixture was taken for analysis by 1H NMR, confirming
a conversion of 58% (Mn, th = 30,500, DPsc = 58). The crude reaction mixture was diluted
with THF and filtered through basic alumina to remove residual catalyst. Extra solvent
was removed by rotary evaporation. The sample was allowed to air-dry before analysis by
GPC. The stars were isolated as a transparent viscous liquid.

2.3.3. Curing of PBA Networks by RTA-ATRC

An identical procedure was used to cure all polymer networks in this manuscript.
The PBA4-Br (0.4 g, 13.1 µmol of polymer stars with a Mn, th = 30,500, 1 eq.) was added

to 1-dram vials as a 50 vol% stock solution in THF (0.4 mL solvent, or 0.8 mL mixture).
PMDETA (14 µL, 66 µmol, 5 eq.), nitrosobenzene (0.0056 g, 52.5 µmol, 4 eq.), and CuBr2
(0.003 g, 13.1 µmol, 1 eq.) were mixed into the vial. The vials were sealed with a rubber
septum and electrical tape. The mixtures were degassed by nitrogen sparging for 8 min.
Then, Sn(EH)2 (0.042 mL, 130 µmol, 10 eq.) was added to the mixtures via a purged syringe.
The contents of the vials were shaken to ensure the mixture was homogeneous prior to
curing overnight at 60 ◦C. The resulting disc-shaped gels were then removed from the vials.
The gels were isolated as a soft orange solid. The gels were purified by swelling against
DMF (200 mL) to remove unreacted components. The solvent was exchanged twice a day,
for a total of 3 days. The gels were dried in an oven (40 ◦C) under vacuum to remove the
solvent. The dry weight (Wd) of the gels was between 0.19 and 0.26 g, corresponding to a
47–67% gel fraction.

3. Results
3.1. Network Synthesis

Four-arm polymer stars were prepared by photoATRP of BA from a tetrafunctional
α-bromoisobutyrate core (4f-BiB) using the grafting-from approach (Scheme 2) [43,47–49].
PhotoATRP enables the synthesis of polyacrylates and methacrylates using ppm load-
ings of copper catalyst by continuous regeneration of the CuBr/L activator by reduc-
tion of the CuBr2/Me6TREN deactivator with excess tertiary amines as the reducing
agent [43,47–49]. PhotoATRP can be conducted in the presence of photoredox catalysts,
such as quantum dots or other photosensitizers [50,51], as well as without transition metals
in a metal-free ATRP [52–54]. The polymerization proceeded under UV irradiation with a
CuBr2/Me6TREN catalyst with excess Me6TREN as the reducing agent [55]. The polymer-
ization used a molar ratio [BA]/[4f-BiB]/[CuBr2]:[Me6TREN] = 400:1:04:0.24 in 16/64 v/v%
DMF/Anisole. The reaction reached 58% conversion after stirring overnight under UV
light (λmax = 374 nm at an intensity of 7.2 mW/cm2) irradiation, providing 4-arm polymer
stars with a theoretical 58 repeating units of BA per arm. The GPC of the purified polymer
stars had a Mn, GPC = 27,300, comparable to the theoretical Mn, th = 30,500. The sample had
a narrow molecular weight distribution (Ð = 1.16) and did not have high molecular weight
shouldering visible in the GPC trace (Figure 1).
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Scheme 2. Synthetic route used to prepare degradable PBA model networks. PBA stars were prepared
by grafting-from photoATRP using a tetrafunctional initiator as the core. The polymer stars were
cured into crosslinked networks by RTA-ATRC with the nitrsobenzene radical trap.

The high retention of end-group functionality of polymers prepared by ATRP [56]
enabled curing of polymer stars into crosslinked elastomers via radical termination upon
activation by an activators generated by electron transfer (AGET) [57] mechanism in the
presence of a nitrosobenzene radical trap and a large excess of Sn(EH)2 reducing agent [58].
The curing recipe utilized a molar ratio of [NBz]/[PBA4Br]/[CuBr2]/[PMDETA]/[Sn(EH)2]
= 4/1/1/5/10 at 60 ◦C, which provided polymer networks crosslinked with thermally
labile alkoxyamine linkages (Scheme 2). The gel fractions of the networks cured using the
discussed approach were between 47% and 67%, as determined by gravimetry in the dry
state after removal of sol by swelling gels in DMF solvent.

3.2. Network Characterization
3.2.1. Mechanical Properties of the Networks

The modulus of the cured polymer network was 64.8 kPa, as determined by a com-
pression test at ambient temperature (Figure 2a). The successful crosslinking reaction was
confirmed by frequency sweep across a frequency of 0.01–100 rad/s at an applied strain of
1 N (Figure 2b). The storage modulus (G′) values were greater than the loss modulus (G′ ′)
across the range of frequencies, confirming a solid but rubbery character of the crosslinked
elastomer. In contrast, the original PBA stars behaved as a soft, viscous liquid because PBA
is significantly above its glass transition temperature (Tg = −55 ◦C) at room temperature.

Figure 3a shows the temperature dependence of the storage and loss moduli over-
layed with the loss factor (i.e., tan δ = G′ ′/G′) from room temperature up to 190 ◦C. The
temperature sweep shows that the network structure was maintained across a long rubbery
plateau between 25 and 135 ◦C. Degradation of the network was observed above 135 ◦C
as a concurrent drop in the storage modulus by an order of magnitude, and a drop in loss
modulus by a factor of two. This led to a spike in the loss factor corresponding to a loss of
mechanical integrity in the network. It should be noted that degradation of the network
led to a solid to liquid transition which increased the sample diameter, that could lead to
some inaccuracies in rheological characterization during sample degradation (Figure 3b).
The degraded network was soluble in THF.
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Figure 2. (a) Compression test of PBA elastomer at room temperature. (b) Frequency sweep of the
polymer stars (blue), crosslinked network (black), and degraded network recast as a film (red) from a
range of 0.1 to 100 rad/s with a 1 N normal force and T = 25 ◦C.
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Figure 3. (a) Temperature sweep of the PBA elastomer from a temperature of 25 to 190 ◦C. The loss
factor is the tan δ = G′ ′/G′. The sweep was conducted at a frequency of 10 rad/s and a constant
applied shear strain of 0.1%. The applied normal force was 1 N. (b) Picture of the DMA set-up after
network degradation during the temperature sweep experiment. The degraded network became a
liquid which flowed over the side of the sample plate.
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A frequency sweep of the degraded product re-casted as a film showed a liquid
character, indicating successful cleavage of the majority of alkoxyamine crosslinks, however
the modulus was still higher than that of the original PBA stars (Figure 2b). GPC of the
degraded network is shown in Figure 4. The degraded polymer had a Mn, GPC = 28,300
(Ð = 1.83) comparable to the original 4-arm star polymer, with an additional high molecular
weight shoulder characteristic of polyacrylates terminated by coupling [59,60]. There
was a lower molecular weight shoulder with a Mn, GPC ~ 7000. This may be attributed
to cleavage of some star-arms from the core at a high temperature under shear, as the
molecular weight of the impurity closely matches the theoretical molecular weight of one
PBA arm (i.e., Mn, th, arm = 7400).
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Figure 4. GPC trace of the degraded network after the temperature sweep overlayed with the trace of
the PBA4Br star polymer precursor. The molecular weight is relative to linear PMMA standards in THF.

Stress relaxation experiments were performed at 130, 150, and 170 ◦C using polymer
networks cured using an identical recipe to characterize the rate of alkoxyamine decompo-
sition at an applied strain of 0.1% (Figure 5a). Similar to the temperature sweep experiment,
polymer networks exposed to elevated temperatures at the same applied strain were ob-
served to degrade by a concurrent decrease in storage moduli and an increase in loss
factor after sample degradation. As expected, the rate of sample degradation increased
with the relaxation temperature, in agreement with the increase in the rate of alkoxyamine
decomposition observed in other reports. Networks degraded after nearly 2 h at 130 ◦C.
The decomposition was shortened to 20 min at 150 ◦C, and ~7 min at 170 ◦C. A quantitative
measurement of the temperature-dependent viscous flow of a network with exchangeable
crosslinks was determined by an Arrhenius plot of the characteristic relaxation time (τ37%)
vs. temperature. The τ37% is defined as the time when G′ = 0.37G′0. The Arrhenius plot
was linear for the polymer networks over the tested temperature range, providing an
Ea = 106.0 ± 12.4 kJ/mol (Figure 5b), a value comparable to the reported Ea of thermal
cleavage of typical alkoxyamines [61].



Polymers 2022, 14, 713 9 of 13

Polymers 2022, 14, x FOR PEER REVIEW 9 of 14 
 

 

Stress relaxation experiments were performed at 130, 150, and 170 °C using polymer 
networks cured using an identical recipe to characterize the rate of alkoxyamine decom-
position at an applied strain of 0.1% (Figure 5a). Similar to the temperature sweep exper-
iment, polymer networks exposed to elevated temperatures at the same applied strain 
were observed to degrade by a concurrent decrease in storage moduli and an increase in 
loss factor after sample degradation. As expected, the rate of sample degradation in-
creased with the relaxation temperature, in agreement with the increase in the rate of 
alkoxyamine decomposition observed in other reports. Networks degraded after nearly 2 
h at 130 °C. The decomposition was shortened to 20 min at 150 °C, and ~7 min at 170 °C. 
A quantitative measurement of the temperature-dependent viscous flow of a network 
with exchangeable crosslinks was determined by an Arrhenius plot of the characteristic 
relaxation time (τ37%) vs. temperature. The τ37% is defined as the time when G’ = 0.37G’0. 
The Arrhenius plot was linear for the polymer networks over the tested temperature 
range, providing an Ea = 106.0 ± 12.4 kJ/mol (Figure 5b), a value comparable to the reported 
Ea of thermal cleavage of typical alkoxyamines [61]. 

 

 
Figure 5. (a) Stress relaxation of crosslinked PBA networks. Samples were held at a frequency of 10 
rad/s and an applied strain of 0.1% at a given temperature until degradation was complete. The loss 
factor is the tan δ = G”/G’. (b) Arrhenius plot of the logarithm of chain relaxation at 37% G0 (ln τ37%) 
against inverse temperature for stress relaxation experiments. 

 

1 10 100
0

20

40

60

80

100  130 oC
 150 oC
 170 oC 

N
or

m
al

iz
ed

 G
'

Time (min)

τ37%

(a)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

 F
ac

to
r

0.0022 0.0023 0.0024 0.0025

5.5

6.0

6.5

7.0

7.5

8.0

8.5

ln
(τ

37
%
)

1/T (K-1)

(b)

Figure 5. (a) Stress relaxation of crosslinked PBA networks. Samples were held at a frequency of
10 rad/s and an applied strain of 0.1% at a given temperature until degradation was complete. The
loss factor is the tan δ = G′ ′/G′. (b) Arrhenius plot of the logarithm of chain relaxation at 37% G0

(ln τ37%) against inverse temperature for stress relaxation experiments.

3.2.2. Degradation in Solution

The degradability of the network was assessed under controlled conditions. The
crosslinked network was swollen in 1,2,4-trichlorobenzene (40 mg sample/2 mL solvent)
and heated at 200 ◦C for 60 min to ensure degradation of the majority of alkoxyamine
crosslinks. The network was fully soluble in the solvent after heating, indicating that most
crosslinks were cleaved after thermal treatment (Figure 6a). The GPC trace of the degraded
network was comparable to the original star polymer. In line with the network degraded
during the temperature sweep, a fraction of coupled polymer impurity was present in this
sample (Figure 6b). This indicates that most polymer stars were cured with alkoxyamine
crosslinks, and a fraction of stars were coupled by standard biradical combination without
the radical trap. The fraction of cleaved single arms at Mn, GPC ~ 7000 was lower than in
the sample degraded in the temperature sweep.
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3.2.3. Thermogravimetric Analysis

The TGA traces of the network in Figure 7 showed that the network had Td,10% = 328 ◦C,
comparable to the Td,10% = 310 ◦C of the PBA star precursor, which further supported
degradation of alkoxyamines as the route of primary degradation. The crosslinked network
had a higher tendency toward char formation, which may be attributed to differences in
end-group functionality [62].
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4. Conclusions

Poly(n-butyl acrylate) polymer stars with well-defined topology were prepared by
photoinduced ATRP. The stars were used as multi-functional macromonomers in the
synthesis of soft model networks via RTA-ATRC with a nitrosobenzene radical trap. The
crosslinked networks exhibited a low modulus and were degraded above 130 ◦C in the
solid state. The temperature sweep data showed that the network retained a consistent
rubbery plateau prior to degradation. The dissolution of the solid network to liquid
stars was observed as an abrupt decrease in both storage and loss moduli after network
integrity was compromised. The degradation rate of the alkoxyamine-crosslinked network
was accelerated at higher temperatures. GPC of the degraded polymers showed that the
inversion of model network topology was achievable both in solution and in the solid state.
The high molecular weight shouldering in the GPC traces of degraded polymers indicated
bimolecular coupling of stars via radical termination.
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