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Abstract: The giant cell arteritis (GCA) pathophysiology is complex and multifactorial, involving a
predisposing genetic background, the role of immune aging and the activation of vascular dendritic
cells by an unknown trigger. Once activated, dendritic cells recruit CD4 T cells and induce their
activation, proliferation and polarization into Th1 and Th17, which produce interferon-gamma
(IFN-γ) and interleukin-17 (IL-17), respectively. IFN-γ triggers the production of chemokines by
vascular smooth muscle cells, which leads to the recruitment of additional CD4 and CD8 T cells
and also monocytes that differentiate into macrophages. Recent data have shown that IL-17, IFN-γ
and GM-CSF induce the differentiation of macrophage subpopulations, which play a role in the
destruction of the arterial wall, in neoangiogenesis or intimal hyperplasia. Under the influence of
different mediators, mainly endothelin-1 and PDGF, vascular smooth muscle cells migrate to the
intima, proliferate and change their phenotype to become myofibroblasts that further proliferate and
produce extracellular matrix proteins, increasing the vascular stenosis. In addition, several defects in
the immune regulatory mechanisms probably contribute to chronic vascular inflammation in GCA: a
defect in the PD-1/PD-L1 pathway, a quantitative and qualitative Treg deficiency, the implication of
resident cells, the role of GM-CSF and IL-6, the implication of the NOTCH pathway and the role of
mucosal-associated invariant T cells and tissue-resident memory T cells.

Keywords: giant cell arteritis; pathogenesis; IL-6; T cells; GM-CSF; vascular smooth muscle cells

1. Introduction

Giant cell arteritis (GCA) is a granulomatous vasculitis affecting large vessels, espe-
cially the aorta and its major branches, mainly subclavian arteries and cranial arteries of the
external carotid system. This vasculitis affects adults after 50 years (peak incidence between
70 and 80 years) and women are affected two to three times more frequently than men [1–5].
Systemic signs, i.e., fever, asthenia, anorexia and weight loss, are frequent, unspecific and
related to systemic inflammation that is largely correlated with serum interleukin-6 (IL-6)
elevation [6,7]. Patients also present ischemic signs, which are responsible for the most
serious features of this vasculitis and the clinical manifestations of which directly depend
on the topography of the arterial involvement. Ischemic signs are a consequence of the
remodeling process affecting the arterial wall, which leads to its thickening, and finally, to
vascular stenosis or occlusion [8]. The diagnosis of GCA is usually confirmed by a temporal
artery biopsy (TAB) revealing non-necrotizing granulomatous panarteritis and showing
these two pathological processes: 1—vascular inflammation related to a transmural cellular
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infiltrate composed of mononuclear cells (T cells and macrophages) and sometimes giant
cells, 2—vascular remodeling with typical fragmentation of the internal elastic lamina,
destruction of the media and proliferation of myofibroblasts, leading to a hyperplastic
neointima and resulting in the stenosis of the vascular lumen [9,10] (Figure 1).
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Figure 1. Confocal microscopy analysis of healthy temporal artery (A) and GCA temporal artery
(B) with staining of α-SMA (red), CD90 (green), CD45 (yellow) and nuclei (DAPI (4′,6-Diamidine-2′-
phenylindole dihydrochloride), blue). (A): The arterial wall of the healthy artery is well preserved.
DAPI underlines collagenic structures such as internal and external elastic lamina. Vascular smooth
muscle cells (α-SMA+) are restricted in the media and the intima is very thin. (B): The Giant Cell
Arteritis (GCA) artery is characterized by inflammation and severe vascular remodeling. The zoomed-
in square region shows CD45 staining of an infiltration of the arterial wall by mononuclear cells. The
adventitia is rich in CD90+ cells that are fibroblasts, the internal elastic lamina and media are digested
and there α-SMA+CD90+ cells in the intima, which fits with myofibroblasts that have migrated and
proliferated from the media to the intima, resulting in severe intimal hyperplasia and leading to the
stenosis of the vascular lumen.

2. Implications of Genetic Background, Epigenetics and Aging

The incidence of GCA follows a north to south gradient. The highest prevalence is
observed in Scandinavian countries and in Olmsted County, Minnesota (overall annual
incidence reaches 18.8 per 100,000 persons aged 50 years or older), where the population
has a similar ethnicity, suggesting that the occurrence of GCA is favored by one genetic
background [11–14].

In the last 20 years, several studies have reported genetic polymorphisms affecting
genes involved in the immune response and inflammation that are associated with an
increased risk of having GCA [15]. The most relevant association is with the major histo-
compatibility complex (MHC) class-II genes. There is a strong association between GCA
and the human leukocyte antigen (HLA) region, which highlights the essential role of
adaptive immunity in the pathogenesis of this vasculitis. Alleles of HLA-DRB1*04, particu-
larly the HLA-DRB1*0401, DRB1*0404 or DRB1*0408 haplotypes, have been shown to be
associated with the occurrence of GCA in independent cohorts [16–27] and are expressed
by 60% of patients affected by polymyalgia rheumatica (PMR) or GCA [18,24,28]. These
haplotypes are thought to be responsible for the selection of peptides involved in the
GCA pathogenesis that are then presented to CD4+ T cells. Importantly, a genome-wide
association study (GWAS) assessing 2134 GCA patients from 10 independent populations
of European ancestry and 9125 controls confirmed that class-II MHC is the genomic region
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with the strongest association with GCA [29]. More recently, a study including 184 patients
with cranial GCA, 105 patients with large-vessel GCA and 486 healthy controls showed an
association between the HLA-B*15:01 allele and GCA, regardless of the clinical phenotype
of the disease, and that there was an increased risk of developing GCA, whatever its pheno-
type, if HLA-B*15:01 and HLA-DRB1*04:01 were expressed together [30]. This latest study
reinforces the concept that susceptibility to GCA is strongly related to the HLA region.
Furthermore, this GWAS study also identified two genes outside the HLA region associated
with GCA susceptibility: PLG (gene of plasminogen) and P4HA2 (encodes an isoform
of the alpha subunit of the collagen prolyl 4-hydroxylase, which is essential for collagen
biosynthesis). Interestingly, these genes are involved in a wide spectrum of physiological
processes, some of which are relevant to the GCA pathogenesis, such as wound healing,
angiogenesis, lymphocyte recruitment and inflammation for PLG and vascular remodeling
for P4HA2 [29,31].

In addition to genetic factors, research has shown that a dynamic relationship exists
between genetic predispositions and environmental factors via epigenetics, which is defined
as the changes in gene expression that occur without altering the underlying DNA sequence
but through DNA methylation, histone modifications and microRNAs [32]. Differences
in the DNA methylation level have been reported in temporal arteries of GCA patients
when compared to non-GCA patients for several genes. Indeed hypomethylation, leading
to an increase in the expression of genes, was identified in several pro-inflammatory genes
(IFNG, IL21, IL23R, IL17RA, TNF, IL6, IL1B, IL2, IL18, LTA, LTB, CCR7, CD6, NLRP1),
as well as RUNX3, which is involved in the production of IFN-γ and CD40LG, which
encodes for CD40L, a protein involved in the cross-talk between T and B cells [33,34]. The
hypomethylation of these genes correlated with the activation of T lymphocytes and their
polarization into Th1 and Th17 cells, as previously described in GCA [35–37]. Along this
line, it was demonstrated in the same study [34] that genes encoding for components of
the TCR, for co-stimulatory molecules (CD28) and proteins implicated in T-cell activation
pathways (NFATC1, NFATC2, PPP3CC), were also hypomethylated in GCA arteries when
compared to non-GCA arteries [34].

Age is an essential factor in the onset of GCA, which occurs after 50 years with an
increasing incidence. This could, therefore, naturally be a major etiological factor in the
GCA pathogenesis [38]. The aging process is intimately related to epigenetics. The level of
DNA methyltransferase 1 (DNMT1), which is the enzyme implicated in the maintenance
of DNA methylation at each cell division, declines with age in T cells, causing aberrant
methylation profiles that can lead to malignant transformation or autoimmunity, such as
with myelodysplastic syndromes or VEXAS, which is now the archetype of the acquired
auto-inflammatory disease occurring in elderly men [32,39–41].

Furthermore, the aging process has been associated with modifications to multiple
cells implicated in the immune response and vascular remodeling, such as dendritic cells
(DC), T cells, endothelial cells and vascular smooth muscle cells (VSMC) [38]. In particular,
aging triggers a decrease in the number of naive T cells, increase in memory and effector
T cells, decrease in the diversity of the T-cell repertoire and enrichment in CD4+CD28−

and CD8+CD28− senescent T cells [42–45]. Immune aging also alters the regulation of
immune cells, for instance, by impacting CD8+ Treg [46], thus leading to the production
of pro-inflammatory cytokines (IL-1β, IL-6 and TNF-α) by senescent DCs, macrophages,
endothelial cells and fibroblasts [38,47]. During aging, DCs still express toll-like receptor
(TLR), but their activation and migration abilities are impaired [48,49]. This aging process
might generate chronic inflammation, leading to the occurrence of atherosclerosis and
also autoimmune diseases such as GCA. The aging process also modifies arterial tissue,
the target of GCA, by medial degeneration, calcium deposition, increased stiffness, wall
thickening, elastic fiber fractures and biochemical modifications of matrix proteins [50–53].
Combined with this proinflammatory state, these modifications could trigger immunization
against arterial auto-antigens and lead to the occurrence of vasculitis [38]. Similarly, a recent
study showed that aging and long-term alterations to the immune system are associated
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with susceptibility to developing GCA, which is also suggested by the association between
a history of infections and an increased incidence of GCA [54]. Thus, aging of the immune
system could explain, among other things, the association between GCA and varicella-
zoster virus (VZV) infections without this virus playing a real causal role.

3. Potential Role of Infections in the Initiation of GCA

Several studies have investigated the potential roles of a large number of viruses
and/or bacteria in the pathogenesis of GCA. The condition appears to have a seasonal
variation, suggesting the involvement of an infectious trigger in the induction of this
vasculitis [4,55]. Many case-controlled studies have compared the level of viral or bacterial
DNA in TAB (PCR, immunohistochemistry or in situ hybridization) between patients with
biopsy-proven GCA and controls. These studies found an association between GCA and the
presence of cytomegalovirus, parvovirus B19, herpes simplex virus, human parainfluenza
1 and Chlamydia pneumonia, but neither Epstein-Barr virus nor human herpesvirus 6 [56].
However, the results of these studies often contradicted others and they have never been
confirmed in large cohorts [56]. Recently, VZV has been suggested as a triggering factor
for GCA [57]. VZV is an exclusively human neurotropic virus, which causes chickenpox
and zoster and is also able to replicate in arteries, especially cerebral arteries, thus being
able to induce vasculitis [58]. This vasculitis, the histological appearance of which is very
similar to GCA, affects large and medium arteries and can lead to stenosis, occlusion,
thrombosis or dissection [58,59]. VZV vasculitis can also affect the temporal arteries and
cause GCA-like symptoms [60]. In contrast to earlier research [56,61–66], a recent study
suggested that VZV may be the triggering agent of GCA because the presence of VZV was
detected in 73% of positive and 64% of negative TAB from patients with GCA, compared
to only 22% of negative TAB from controls [67]. Nevertheless, the implication of VZV in
the pathogenesis of GCA remains unclear since these data were not confirmed in a more
recent study [68]. Thus, the occurrence of zoster is infrequent in GCA [69], even when
immunosuppressive therapy is used [70–79]. Plus, the antibody that was used for VZV
staining for immunohistochemistry seemed to lack specificity because it cross-reacted with
antigens expressed by VSMC [80]. Rather than a cause of GCA, the detection of VZV in
TAB from GCA patients could just be related to immune aging that decreases the control of
the replication of this virus.

The role of DC in the pathogenesis of GCA suggests a relationship between a potential
infection and the initiation of GCA. It is generally assumed that an infectious agent can
activate adventitial DC and trigger immunologic processes leading to the development
of vasculitis. However, this hypothesis has never been fully resolved, mainly because no
specific pathogen triggering GCA has been identified. Indeed, very recent work analyzing
the microbiome of temporal arteries or thoracic aortic aneurysms due to GCA provided
contradictory and inconclusive results [81,82]. It is quite possible that the precise nature
of this potential infectious agent, providing a danger signal for DC, does not matter but
that, instead, the essential point is that this activation occurs in a predisposed genetic
background favoring the implementation of mechanisms leading to the occurrence of
vasculitis and its persistence due to defects in the regulation of the immune system. This is
a notion to which we will return in this review.

4. Immunopathological Model of GCA

The immunopathological model of GCA can be divided into four main phases (Figure 2).
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Figure 2. Summarized pathogenesis of Giant Cell Arterits (GCA). Step 1: an undefined
danger signal activates vascular dendritic cells (DC) that then acquire a mature phenotype
(CD83+CD80/86+CCR7+MHC-IIhigh) and produce chemokines (CCL18, CCL19, CCL20 and CCL21),
leading to the recruitment of CCR6+CD161+CD4+ T cells. Step 2: CD4+ T cells are activated by DCs
and polarize into Th1 and Th17 cells through the effect of IL-12, IL-23, IL-6 and IL-1β, which are
produced by activated DC. Th1 and Th17 lymphocytes release IFN-γ and IL-17, respectively. Step 3:
IFN-γ induces the activation of vascular smooth muscle cells (VSMC) in the media and enables
them to produce chemokines (CCL2, CXCL9, CXCL10, CXCL11), which trigger the recruitment of
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additional T cells (CD4+ and CD8+) and monocytes. Monocytes differentiate into macrophages
and merge into multinucleated giant cells, the hallmark of GCA. Step 4: vascular remodeling is
characterized by the destruction of the internal elastic lamina and the proliferation and migration
of VSMC into the intima. Macrophages play a key role in this process through the release of
several factors such as Platelet-Derived Growth Factor (PDGF), reactive oxygen species (ROS), Matrix
metalloproteinase-9 (MMP-9), IL-6, IL-1β, Granulocyte-Macrophage Colony-Stimulating Factor (GM-
CSF) and TNF-α, which contribute to tissue damage and intimal hyperplasia. Likewise, VSMCs
and endothelial cells release ET-1, which stimulates VSMC migration and proliferation and thus
induces intimal hyperplasia. Moreover, macrophages and VSMCs also produce vascular endothelial
growth factor (VEGF), which is responsible for neoangiogenesis and promotes a local inflammatory
response. A cellular transition from VSMC to a myofibroblast phenotype is observed, and the
accumulation of these cells in the neo-intima leads to vascular occlusion, which is responsible
for ischemic complications of GCA. (A–E) Mechanisms involved in the maintenance of vascular
inflammation. (A): Programmed death-ligand 1 (PDL-1) defect on antigen-presenting cell surface
leads to the persistent activity of T cells and contributes to hyperplasia and neoangiogenesis. (B): IL-6,
which is a pro-inflammatory cytokine implicated in the GCA pathogenesis, impairs Tregs’ function,
decreases their frequency and promotes the shift to a Treg deficiency in exon 2 of FoxP3 that is
prone to producing IL-17. (C): In addition to their role in the recruitment of monocytes and vascular
remodeling, VSMC differentiate into myofibroblasts, which also participate in the maintenance of Th1
and Tc1 polarizations. Moreover, myofibroblasts have an important capacity to produce extracellular
matrix proteins (COL: collagen, FN: fibronectin) that contribute to the rigidification of the vascular
wall. (D): GM-CSF is produced by CD4 T cells, macrophages, VSMC and endothelial cells. GM-
CSF-Receptor-α is highly expressed in GCA lesions, and an autocrine amplification loop takes place.
GM-CSF is involved in cell differentiation, vascular inflammation and vascular remodeling. (E):
T cells and resident cells of the arterial wall, like endothelial cells, communicate via the NOTCH
pathway. The ligation of Notch 1 to Jagged 1 decreases the polarization Th1/Th17. Otherwise,
in CD8+Treg cells, aberrant Notch 4 signaling drives the suppression of RAB7A involved in the
exosomal release of NOX2.

4.1. Phase 1: Loss of Tolerance and Activation of Resident Dendritic Cells of the Adventitia

Immature myeloid DCs (S100+CD11c+CCR6+CD83−MHC-IIlow) are physiologically
localized in the adventitia where they are involved in immune surveillance [8,83,84]. These
cells can trigger adaptive immunity after detecting danger signals through pattern recogni-
tion receptors (PPRs) such as TLR. By contrast, they induce tolerance in the absence of a dan-
ger signal [85]. The detection of a danger signal via TLR of adventitial DCs induces their acti-
vation, followed by phenotypic modifications (S100+CD11c+CCR7+CD83+CD80/86+MHC-
IIhigh) and the production of cytokines and chemokines responsible for the recruitment
of CD4+ T cells in the arterial wall. Once they are activated, DCs express high levels of
class-II major histocompatibility complex (MHC-II) and co-stimulatory molecules (CD80
and CD86), making them capable of activating CD4+ T cells. In GCA, DCs produce CCL19
and CCL21 chemokines and express their receptor (CCR7) so that they are trapped in
the arterial wall instead of migrating into satellite lymph nodes, as is the case in classical
immune responses [83].

Adventitial DCs play an essential role in initiating the GCA pathogenesis. It has been
demonstrated in a model of immunocompromised mice engrafted with temporal arteries
that DC activation, mainly by TLR4 ligands, is needed to trigger the recruitment of T cells
in the arterial wall. A major role of DCs in the GCA pathogenesis was also shown by how
the depletion of CD83 cells (i.e., activated DCs and macrophages) in this model resulted
in a significant decrease in lesions of vasculitis and IFN-γ mRNA expression [84]. The
tropism of GCA for cranial arteries could also be related to characteristics of arterial DCs as
it was demonstrated that TLR expression varied across arterial territories and that the TLR
expression profiles of arteries typically affected by GCA were very similar [86].
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4.2. Phase 2: Recruitment, Activation and Polarization of CD4+ T Cells

CD4+ T cells, which are physiologically absent from the walls of healthy arteries, play
a major role in the pathogenesis of GCA, as highlighted by the fact that their depletion
in immunocompromised mice engrafted with GCA arteries strongly decreases vasculitis
lesions [87]. Studies have also shown a restricted oligoclonal repertoire of T-cell receptors
(TCRs) in the arterial wall, thus indicating an antigen-mediated proliferation of CD4+ T
cells [88–90]. The activation of T cells in GCA is also highlighted by NFAT expression
and its localization to the nuclei of cells in GCA lesions [34]. In GCA, CD4+ T cells
are recruited through the chemokines (CCL18, CCL19, CCL20 and CCL21) produced by
activated DCs [8,56]. Among these chemokines, CCL20 plays a major role as it triggers
the recruitment of CD4+ T cells expressing CCR6, the ligand of CCL20. Interestingly, the
nature of the initial danger signal determines the architecture of the vasculitis. TLR4
ligands trigger the recruitment of CD4+CCR6+ T lymphocytes, a phenotype matching Th17
cells [36,91–93], and then infiltrate all the layers of the artery, leading to panarteritis, which
is characteristic of GCA. By contrast, TLR5 ligands only trigger adventitial vasculitis close
to Vasa vasorum [94].

T cells are thought to be recruited via Vasa vasorum of the adventitia, in which endothe-
lial cells express adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1)
and vascular cell adhesion molecule-1 (VCAM-1) [8,56]. Endothelial cells are a natural bar-
rier between blood and tissues and are involved in the regulation of vasomotion, hemostasis,
angiogenesis and inflammation. In GCA, endothelial cells are activated by the cytokines
produced by mononuclear cells and thus express high levels of adhesion molecules such as
ICAM-1, ICAM-2, P-selectin, E-selectin and VCAM-1, which participate in the recruitment
of additional immune cells [95]. Along this line, the concentration of soluble ICAM-1 in
GCA patients correlates with disease activity [96].

Once recruited in the arterial wall, CD4+ T cells are activated by DCs that present
still unidentified antigen(s). The presence of proinflammatory cytokines (IL-12, IL-18,
IL-23, IL-6 and IL-1β) in the microenvironment polarizes CD4+ T lymphocytes toward Th1
and Th17 cells [36,37,97]. Th1 cells are generated in the presence of IL-12 and IL-18 and
produce IFN-γ, whereas Th17 cells are generated in the presence of IL-6, IL-1β and IL-23
and produce IL-17 [93]. This polarization toward Th1 and Th17 rather than Th2 or Treg
cells is favored by preferential recruitment of CD4+CD161+ T cells, which express CCR6
and are prone to polarize into Th17 and Th1 cells, with a high level of plasticity between
these two subsets that is highlighted by the presence of a high number of double-positive
cells (IFN-γ+IL-17+) [36].

IL-17 production by Th17 is rapidly decreased by corticosteroid treatment [35–37,98],
whereas IFN-γ production by Th1 cells tends to persist, especially at lower corticosteroid
doses [35], which may contribute to the persistence of smoldering vascular inflammation,
explaining the occurrence of relapse in about one in two patients when corticosteroids are
tapered [99].

Therefore, therapeutic strategies targeting Th1 cells more specifically seem to be re-
quired to improve the treatment of GCA. This could be achieved by therapeutic strategies in-
hibiting intracellular cytokine signaling such as Janus kinase (JAK) inhibitors. Environment-
cell communications rely on cytokine signals that trigger the JAK and signal transducer
and activator of transcription (STAT) pathway. Th1 lineage commitment is strictly linked to
STAT1- and STAT4-mediated gene induction, and STAT3 is considered the master regulator
for Th17 cell differentiation. The effect of tofacitinib, a JAK3 and JAK1 inhibitor, has been
studied in immunocompromised mice engrafted with temporal arteries and reconstituted
with T cells and monocytes from GCA patients. The authors showed that, compared to
healthy arteries, GCA arteries were characterized by an increased expression of STAT1- and
STAT2-targeted genes, thus highlighting the activation of the IFN-γ pathway. Furthermore,
pharmacologic inhibition of JAK3 and JAK1, the latter being involved in the IFN-γ pathway,
effectively decreased vascular inflammation, the Th1 immune response, neoangiogenesis
and intimal hyperplasia [100].



J. Clin. Med. 2022, 11, 2905 8 of 22

The implication of Th17 cells, the proportion of which is increased in the blood of
GCA patients and that infiltrate GCA arteries [35–37], contrasts with a quantitative defect
of circulating Treg (CD4+CD25highFoxP3+) and the low expression of FoxP3 in the arteries
of GCA patients [36,101]. These data support the concept of a Th17/Treg imbalance
in GCA [92] and are consistent with the implication of IL-6 in the pathogenesis of this
vasculitis. IL-6, which is produced in GCA lesions [98] and the concentration of which in
the serum correlates with disease activity [7,36], physiologically controls the Th17/Treg
balance since IL-6 and transforming growth factor-beta (TGF-β) trigger Th17 polarization,
whereas TGF-β alone leads to the generation of Treg [102].

In addition to IL-6, IL-21, a pro-inflammatory cytokine mainly produced by follicular
helper T cells (TFH) [103], is also produced in GCA lesions. The proportion of CD4+IL-21+

T cells is increased in the blood of GCA patients and correlates with the levels of Th1 and
Th17 cells. Moreover, IL-21 increases Th1 and Th17 polarization, whereas it decreases Treg
differentiation in vitro [37].

Interestingly, the predominant cytokine profile could play a role in the emergence of
the various histological patterns of GCA [104,105]. It was reported that IL-17 overexpression
was observed mainly in arteries with transmural inflammation and vasa vasorum vasculitis,
whereas IL-9 and Th9 polarization was predominant in cases of transmural inflammation
and small-vessel vasculitis [106].

4.3. Phase 3: Recruitment of CD8+ T Cells and Monocytes

The strong infiltration of Th1 and Th17 cells into the arterial wall is responsible for the
production of large amounts of IFN-γ and IL-17, respectively. IFN-γ induces the production
of several chemokines (CCL2, CXCL9, CXCL10 and CXCL11) by VSMCs [107]. CXCL9,
CXCL10 and CXCL11 trigger the recruitment of additional Th1 and also CD8+ T cells
expressing CXCR3 [108]. As was demonstrated for CD4+ T cells, we showed that the reper-
toire of circulating CD8+ T cells is also oligoclonal, thus supporting their antigen-driven
activation. Furthermore, CD8+ T cells infiltrate the arterial wall and produce cytokines
(IL-17 and IFN-γ) and cytotoxic molecules (granzymes and perforin) [108]. Through the
production of cytotoxic molecules and IFN-γ, CD8+ T cells could be of particular impor-
tance for initiating vascular remodeling pathways, as supported by the fact that strong
CD8+ T cell infiltration into temporal arteries is associated with more severe disease [108].

Monocytes are precursors of tissue macrophages. There are different subsets of
monocytes, which differ in their phenotype, function and chemotaxis pathway. Recruit-
ment of classical monocytes (CD14brightCD16neg) mainly depends on the CCR2-CCL2 axis,
while that of non-classical monocytes (CD14dimCD16+) depends on the CX3CR1-CX3CL1
axis [109]. In the blood of GCA patients, the dynamics and distribution of monocyte
subsets are altered [110,111]. In GCA lesions, IFN-γ induces the production of CCL2
by VSMC, which leads to the recruitment of monocytes that express its receptor (CCR2)
and then merge to form multinucleated giant cells, the hallmark of GCA [107]. Along
this line, macrophages with a phenotype resembling the classical monocyte subset and
expressing CCR2 were detected in the vessel wall of GCA patients [109,111]. However,
other studies have qualified this hypothesis by showing that the majority of macrophages
infiltrating temporal arteries of GCA patients resemble non-classical monocytes with CD16
and CX3CR1 expression, but often lack CCR2 expression [111,112], suggesting that both
classical and non-classical monocytes are involved in GCA and that further studies focusing
on monocytes and macrophages are needed.

4.4. Phase 4: Vascular Remodeling

Ischemic signs of GCA are related to the progressive narrowing of vascular lumen in
affected arteries, which is the consequence of the remodeling process involving the arterial
wall. This process is characterized by the destruction of the media and the emergence of a
neo-intima made of myofibroblasts and extracellular matrix proteins, resulting in intimal
hyperplasia and vessel occlusion (Figure 1) [4].
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Macrophages play a major role in vascular remodeling through their ability to produce
enzymes, growth factors and other mediators. Two types of macrophages are usually
distinguished. M1 macrophages, which express CD64, are induced by IFN-γ and exert
pro-inflammatory functions thanks to the production of proinflammatory cytokines, growth
factors, matrix metalloproteinases (MMP) and reactive oxygen species (ROS). In contrast,
M2 macrophages, which express CD206 and FRβ, have anti-inflammatory and tissue-
repairing functions. Like T cells, macrophages are highly plastic, and their heterogeneous
phenotype has been reported in GCA [112,113]. It is important to note that the distinction
between M1 and M2 macrophages is based on in vitro data and that under pathological
conditions, this distinction is not as clear-cut. In addition, cytokines produced by T cells,
such as IFN-γ, IL-17 or GM-CSF, can affect the phenotypes of macrophages, with more
complex phenotypes appearing than just M1 and M2 [112]. IFN-γ primes pro-inflammatory
macrophages that produce IL-1β, IL-6, TGF-β1 and PDGF. IL-17 induces CD163 expression,
which is indicative of M2-type polarization. GM-CSF can skew macrophages toward
CD206+ ones that produce YKL-40, MMP-9 and M-CSF [112].

Macrophages play a critical role in vascular remodeling by promoting angiogenesis,
intimal hyperplasia and tissue destruction. A recent study investigated the special distribu-
tion of different macrophage phenotypes in GCA arteries and showed that CD206+MMP-9+

macrophages are located at the site of tissue destruction, whereas FRβ+ macrophages
are located in the inner intima of arteries with degrees of intimal hyperplasia, and that
this pattern was specific to GCA lesions and not seen in atherosclerotic lesions. Further
experiments showed that GM-CSF upregulated CD206 expression, whereas FRβ was in-
creased in M-CSF-skewed macrophages [114]. This led the authors to hypothesize that,
once recruited in the arterial wall, monocytes are exposed to GM-CSF produced by T and B
lymphocytes and endothelial cells, and thus differentiate into CD206+ macrophages that
produce MMP9 involved in the destruction of the arterial wall. These CD206+ macrophages
can also produce M-CSF, which induces the expression of FRβ that produce mediators,
mainly PDGF-AA, promoting myofibroblast migration and proliferation and thus intimal
hyperplasia, leading to ischemic signs of GCA [114].

In addition, the same group demonstrated an increase in YKL-40 produced by the
CD206+MMP9+ macrophage subset in GCA inflamed temporal arteries [115]. Consistent
with their previous results, they showed in vitro that GM-CSF increased the production
of YKL-40 more than M-CSF in macrophages from GCA patients, but not from healthy
controls. Functional experiments showed that knockdown of YKL-40 with siRNA led to a
significant reduction in MMP-9 production by macrophages. In contrast, YKL-40 increased
neoangiogenesis as assessed by tube formation by HUVECS. Taken together, these results
suggest that targeting GM-CSF, YKL-40 or its receptor (IL-13Rα2) is promising to control
vascular remodeling in GCA [115].

MMPs are also key players in vascular remodeling. MMP-2 and MMP-9 produced by
VSMCs and macrophages degrade elastin and destroy cellular matrix proteins, causing
the destruction of the media and digestion of the internal elastic lamina [56,116]. MMP-2
and MMP-9 are the main MMP detected in GCA lesions, essentially in macrophages and
giant cells adjacent to the internal elastic lamina [113,117,118]. As mentioned before, recent
studies indicate that MMP-9 is mainly produced by CD206+YKL-40+MMP-9+ macrophages
localized in the media and media borders where elastic lamina degradation takes place,
and that these cells support tissue destruction and neoangiogenesis [112,115]. MMP-9 also
plays a major role in large-vessel vasculitis by controlling the access of monocytes and T
cells to the vascular wall since T cells depend on MMP-9 producing monocytes to pass
through collagen IV membranes. This major role of MMP-9 in GCA was confirmed using
a human artery-SCID-mouse model in which wall inflammation was induced in human
vessels engrafted to immunodeficient mice that were immunoreconstituted with PBMC
from patients with GCA. In this model, mice receiving anti-MMP-9 treatment for two
weeks had a dramatic decrease in all vasculitis processes (T-cell and monocyte infiltration,
neoangiogenesis, neointimal growth) [119].
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Current knowledge also suggests that IFN-γ, which is produced by Th1 cells, is the
main lymphocytic cytokine inducing vascular remodeling. IFN-γ-activated macrophages,
giant cells or injured VSMCs produce growth factors, essentially platelet-derived growth
factor (PDGF) and vascular endothelial growth factor (VEGF) [120]. PDGF is implicated
in the activation and proliferation of VSMCs and their migration toward the intima, thus
resulting in intimal hyperplasia. In GCA, VSMCs are injured by mediators released by
mononuclear cells, which have accumulated in the media, and acquire pro-inflammatory
properties [121]. Activated macrophages and VSMCs themselves produce several growth
factors (PDGF, TGF-β, endothelin-1 [ET-1], NGF and BDNF neutrophins [98,121–123]), thus
inducing the migration of VSMCs into the intima and their differentiation into myofibrob-
lasts, which synthesize matrix proteins. This process finally leads to intimal hyperplasia
and vascular occlusion. VSMCs also produce MMP-9 and especially MMP-2, which allow
them to destroy the media and the internal elastic lamina [94,124], thus facilitating their
migration into tissues. Furthermore, the blockade of the PDGF receptor with imatinib re-
sults in a significant decrease in the proliferation of VSMCs from ex vivo cultured temporal
arteries [121]. ET-1 has also been shown to be implicated in vascular remodeling during
GCA. In normal conditions, ET-1 is produced by endothelial cells and VSMCs. In GCA,
the ET-1 pathway is upregulated since ET-1 is expressed by leukocytes and VSMCs and as
there is upregulation of the expression of receptors A and B of ET-1 by VSMCs [125,126].
The blockade of ET-1 receptors (A and/or B) decreases the migration [126] and prolifer-
ation [125] of VSMCs, thus demonstrating that the ET-1 pathway is also implicated in
remodeling processes leading to vascular occlusion.

VEGF is responsible for neoangiogenesis, which increases the recruitment of other
immune cells in the arterial wall [127]. Illustrating this neoangiogenesis process, vasa
vasorum, which are physiologically restricted to the adventitia, are observed in the media
and intima of arteries affected by GCA and correlate with internal elastic lamina digestion
and infiltration by giant cells. IL-33, which is an alarmin belonging to the IL-1 family, is
overexpressed in GCA arteries and also involved in angiogenesis [128].

5. Role of B Cells

In GCA, B cells are much rarer than T cells in the arterial wall. They are localized in the
adventitia and the media next to CD3+ cells in structures defined as artery tertiary lymphoid
organs (ATLOs) [129]. Studies showed an association with ectopic expression of CXCL13
and B-cell activation factor (BAFF), which increases after in vitro stimulation of temporal
arteries with IL-6 [130]. Furthermore, a recent study showed that chemokines CXCL9 and
CXCL13 are increased in the circulation of untreated GCA and PMR patients and that
peripheral CXCR3+ and CXCR5+ switched memory B cells are significantly reduced in
GCA and PMR compared to healthy controls and inversely correlate with the serum levels
of their complementary chemokines CXCL9 and CXCL13. Suggesting the implication of
these chemokines in the recruitment of B cells in the arterial wall, CXCR3+ and CXCR5+ B
cells were observed in areas with high expression levels of CXCL9 and CXCL13 [131].

Nevertheless, the humoral immune response does not appear to play as important
a role in GCA as in Takayasu arteritis, which is the other primary large-vessel vasculitis.
Indeed, a recent study found an increased TFH signature in both circulating and aortic CD4
T cells in Takayasu arteritis but not in healthy controls or GCA patients. This highlights
that the cooperation between T and B cells is probably more critical in Takayasu arteritis
than in GCA [132]. Another study that analyzed the involvement of mammalian target of
rapamycin (mTOR) in large-vessel vasculitis suggested that humoral immunity plays an
important role in Takayasu arteritis but not GCA [133]. Indeed, this study demonstrated
that mTOR complexes were activated in endothelial cells from Takayasu patients but not
GCA patients, and that there were higher levels of antibodies binding to endothelial cells
in Takayasu patients compared to GCA. Purified antibodies from Takayasu patients caused
mTOR activation and significant endothelial cell proliferation, which was not the case with
antibodies from GCA patients [133].
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6. Mechanisms Involved in Maintaining Inflammation

As discussed above, the mechanisms involved in inflammation and vascular remod-
eling are becoming better understood and are promising therapeutic targets. In addition,
some mechanisms allow inflammation to become chronic, which could also represent
interesting therapeutic targets to replace glucocorticoids.

6.1. Defect in Immune Checkpoints Inhibitors

Programmed death-1 (PD-1) is a surface protein expressed by activated T cells, and
its ligation to PD-L1 or PD-L2, which are expressed by antigen-presenting cells, induces
T-cell apoptosis, T-cell anergy and the production of IL-10 by T cells or their polarization
into Treg. By contrast, PD-1−/− mice, in which the PD-1/PD-L1 pathway was lacking,
displayed elevated Th1 and Th17 levels [134]. In GCA, a defect in the immunoprotective
PD-1/PD-L1 immune checkpoint has recently been reported. This deficit relates to the lower
expression of PD-L1 by vascular DCs, which sustain IL-17-, IL-21- and IFN-γ-producing
PD-1+ T cells and the emergence of typical lesions of GCA, such as intimal hyperplasia and
neoangiogenesis [135]. Along this line, it was shown that the proportions of PD-1+ and
VISTA+ (a negative immune checkpoint V-domain immunoglobulin-containing suppressor
of T cell activation) T cells were decreased in the blood of GCA patients because they were
recruited in GCA lesions. However, contrasting with PD-1/PDL-1, VISTA-Ig engagement
failed to suppress Th1, Th17 and TFH lineage development in GCA [136].

The implication of immune checkpoints in the GCA pathogenesis was also highlighted
by the recently demonstrated efficacy of abatacept for the treatment of GCA [137]. Abata-
cept is a fusion protein composed of cytotoxic T-lymphocyte-associated protein 4 (CTLA4)
and the fragment crystallizable region of a human IgG1. Due to the competitive binding
of CTLA4 to CD80/CD86, abatacept dampens T-cell activation by impeding the interac-
tion between CD28 and CD80/86. In contrast, the occurrence of PMR/GCA has recently
been reported in patients treated with antagonists of CTLA-4 or PD-1 used in metastatic
melanoma, ipilimumab and nivolumab [138,139].

6.2. Defect in Regulating T Cells (Tregs)

Tregs are major actors in immune tolerance and protect patients from inflammation
and autoimmunity [140]. Our team reported a quantitative defect in circulating Tregs
(CD4+CD25highFoxP3+) together with their absence from arterial lesions of GCA [36]. The
Treg population is heterogeneous and they are best defined by their functional activ-
ity [141]. Confirming the role of a defective T regulatory response in GCA, two studies
recently demonstrated that GCA patients had a Treg compartment enriched in IL-17 se-
creting a Treg (Th17-like Treg) with an impaired suppressive capacity, which was mainly
related to the expression of a hypofunctional isoform of FoxP3 lacking exon 2 (FoxP3∆2),
which is required for the antagonization of RORγt and RORα, the main transcriptional
factors controlling the production of IL-17 [101,142]. The blockade of the IL-6 pathway
with tocilizumab normalized the population of FoxP3∆2 Treg, thus suggesting that IL-6 is
involved in this defect [101]. In addition, we demonstrated that, unlike healthy controls,
Tregs from GCA patients increased the polarization of T cells toward Th17 cells, which was
corrected after in vitro treatment with tocilizumab [101]. Another study compared the tran-
scriptomic signatures of Tregs from healthy controls and GCA patients in the active phase
or in remission. The results, which were confirmed by functional experiments, showed that
the calcium influx and glycolysis were severely impaired in Tregs from GCA patients, that
these abnormalities correlated with Treg dysfunction in GCA and that tocilizumab could
not correct this defect in the calcium influx [143].

As for CD4+ T cells, a defect in CD8+ regulatory T cells was also reported in GCA [46].
CD8 Tregs, which are defined by a CD8+CCR7+FoxP3+ phenotype, control the proliferation
and activation of CD4+ T cells through the production of exosomes containing NADPH
oxidase 2 (NOX2). These exosomes are captured by neighboring CD4+ T cells, in which
NOX2 disrupts activation, survival and proliferation pathways [46]. Interestingly, aging is
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associated with a progressive loss of the expression of NOX2 by CD8 Treg; this decrease is
even more important in GCA and not corrected by glucocorticoids [46].

6.3. Implication of Other Subsets of T Cells

Our team recently investigated the implication of mucosal-associated invariant T cells
(MAIT) in GCA. MAIT cells are innate-like lymphocytes characterized by the expression of
a semi-invariant T-cell receptor (TCR) composed of a constant α chain (TCRVα7.2-Jα33)
and a β chain (among a limited number of variants, often Vβ2 and Vβ13). Interaction
between the two is restricted to major histocompatibility complex (MHC)-related protein 1
(MR1). MAITs display an immediate effector function on stimulation, and they have a high
clonal volume [144]. It has also been established that MAIT cells are activated during viral
infections by a TCR-independent pathway [145–147]. This particular means of activating
MAIT cells involves IL-12 and IL-18 [148], two cytokines that are highly expressed in GCA
lesions [84,148], which led us to hypothesize that MAIT cells could be involved in the
GCA pathogenesis, as is the case in ANCA-associated vasculitis [149]. MAIT cells were
found in the arterial wall of GCA temporal arteries but were absent from healthy arteries.
The MAIT frequency was similar in the blood of patients and controls, but the level of
expression of IFN-γ was increased in MAIT cells from GCA patients, and when they were
stimulated with IL-12 and IL-18, MAIT from GCA patients produced very high levels of
IFN-γ and displayed stronger proliferation compared to MAIT from controls. Thus, MAIT
could be involved in the maintenance of the inflammatory response during GCA through
its ability to be activated by IL-12 and IL-18 without TCR signaling, especially since these
two cytokines are present in GCA lesions [84,150].

Another study also suggested a role of tissue-resident memory T cells (TRMs) in
chronic inflammation. Specialized to remain resident in the tissue microenvironment,
TRMs are thought to provide rapid and effective immune responses when they re-encounter
antigens, and they are considered pathogenic in chronic inflammatory diseases. They have
a pro-inflammatory effector function and secrete pro-inflammatory cytokines such as IFN-γ,
IL-17, IL-9 and TNF-α. In GCA arteries, there is a population of CD4+CD103+ memory T
cells that are barely detectable in the peripheral blood. This TRM population is sustained
by IL-7, IL-9 and IL-15, which are present in the tissue microenvironment of GCA lesions.
TRMs require JAK3/1-dependent signaling through γc chain-containing cytokine receptors
to survive. Along this line, researchers demonstrated that the inhibition of JAK1/3 activity
with tofacitinib minimized the in situ proliferation of CD4+CD103+ TRM. The persistence of
vascular wall inflammation in GCA arteries may, therefore, also depend on a small, highly
specialized population of CD4+CD103+ TRMs characterized by their ability to survive in
the tissue microenvironment [100].

6.4. Role of VSMCs

VSMCs are major components of the vessel wall. They are characterized by contractile
functions, a synthetic function that produces components of the extracellular matrix and
they are also involvement in tissue repair through their ability to migrate and prolifer-
ate [94]. In GCA, VSMCs are not only targets but also actors in the inflammatory response.
In addition to their ability to migrate and proliferate, which are fundamental to vascular
remodeling, when exposed to IFN-γ, these cells produce chemokines that enhance the
recruitment of new T cells and monocytes [107]. This sets up an amplification loop that
will contribute to the development of vascular inflammation. In addition to this function,
we have data in the process of publication showing that myofibroblasts can interact with T
cells and maintain their Th1 polarization.

6.5. Implication of the NOTCH Pathway

The interplay between T cells and resident cells of the arterial wall also involves the
NOTCH pathway, a highly conserved cell-signaling system that is important for cell-cell
communication, gene regulation mechanisms controlling cell differentiation processes
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during embryonic and adult life, and the development of blood vessels. NOTCH receptors
and their ligands (Jagged and Delta) are transmembranous proteins. The ligation of NOTCH
to Jagged or Delta ligands triggers proteolytic events leading to the translocation of the
intracellular domain of NOTCH into the nucleus, where it interacts with transcription
factors regulating the destiny of cells [151,152]. Several NOTCH receptors and their ligands
are expressed in healthy arteries where they regulate differentiation, along with plasticity
of the VSMC phenotype, and facilitate the cross-talk between VSMCs and endothelial
cells [153]. VSMCs and endothelial cells express NOTCH receptors and their ligands, as
well as CD4+ T cells that express Notch 1 and Jagged 2 [154]. In GCA, abundant VEGF in the
blood upregulates the expression of Jagged 1 by adventitial microvascular endothelial cells,
allowing effector T-cell induction via the Notch-mTORC1 pathway. CD4 T cells in GCA
patients differentiate into Th1 and Th17 effector cells through the NOTCH pathway, and
in an in vivo model of large-vessel vasculitis, exogenous VEGF functioned as an effective
amplifier to recruit and activate vasculitogenic T cells [155]. Furthermore, Notch 1 was 20
times higher in T cells from GCA patients than those from healthy controls, which allowed
them to interact with DCs, macrophages, VSMCs and endothelial cells expressing Notch 1
ligands [156]. The blockade of the NOTCH pathway with γ-secretase treatment in a mouse
model of GCA strongly depleted Th1 and Th17 cells from the vascular infiltrates, thus
showing the implication of this pathway in the GCA pathogenesis [156]. Furthermore,
a recent paper showed that in GCA, the molecular defect of malfunctioning CD8+Treg
cells lies in aberrant Notch 4 signaling that deviates endosomal trafficking and minimizes
exosome production. By transcriptionally controlling the profile of RAB GTPases, Notch 4
signaling restricts the vesicular secretion of the enzyme NADPH oxidase 2 (NOX2) [157].

6.6. Role of Granulocyte-Macrophage Colony-Stimulating Factor (GM-CSF)

Emerging as a key cytokine in inflammation, granulocyte-macrophage colony-stimulating
factor (GM-CSF) may play a role in promoting inflammation in GCA. GM-CSF contributes to
the pathophysiology of GCA by regulating inflammatory macrophages, DCs and Th1 and Th17
cells and is involved in angiogenesis and vascular remodeling [112,158–161]. A recent study
demonstrated that GM-CSF and GM-CSF receptor α (GM-CSFRα) transcripts and proteins were
highly expressed in GCA vascular lesions and that macrophages and pericytes were the main
sources of GM-CSF in GCA lesions [160]. Moreover, signaling pathways activated by GM-CSF
(JAK2, STAT5A) were shown to be activated in GCA lesions [160]. Using a model of an ex vivo
culture of temporal arteries treated with GM-CSF or anti-GM-CSF (mavrilimumab), researchers
showed that GM-CSF increased the activation of macrophages (expression of IL-1β, IL-6, TNF-α,
CD83 and HLA-DR), Th1 cell polarization, angiogenesis and tissue injury (MMP9/TIMP1
ratio) [160]. These results led a phase-2, randomized, placebo-controlled therapeutic trial to be
conducted, the results of which strongly suggest the efficacy of mavrilimumab, a fully human
IgG4 monoclonal antibody targeting GM-CSF, in the treatment of GCA [162].

6.7. Role of Interleukine-6 (IL-6)

IL-6 is produced by many cells, especially monocytes and macrophages, and has
pleiotropic effects. IL-6 signaling depends on gp130, a transmembranous glycoprotein that
triggers the phosphorylation of STAT3. Gp130 is activated through its ligation to a complex
composed of IL-6 and its receptor, either membranous (mIL-6R) or soluble (sIL-6R). While
the expression of gp130 is ubiquitous, the expression of mIL-6R is restricted to hepatocytes,
monocytes, macrophages, a few B and T cells, megakaryocytes and endothelial cells [163].
Classical signaling of IL-6 involves mIL-6R, whereas trans-signaling involves sIL-6R, the
latter being of particular importance among the pro-inflammatory functions of IL-6 [163].

In GCA, the concentration of serum IL-6 is very high and correlates positively with
disease activity [7,36]. The major role of IL-6 in the GCA pathogenesis is demonstrated by
the dramatic efficacy of tocilizumab for the treatment of GCA [78,164]. Furthermore, the
Th17/Treg imbalance observed in GCA [36] is controlled by IL-6, which increases Th17
polarization and decreases Treg differentiation [102]. IL-6 is also involved in the recruitment
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of leukocytes in the arterial wall. When they are exposed to IL-6, endothelial cells that
express mIL-6R and gp130 express adhesion molecules such as VCAM-1 and ICAM-1,
thus leading to the recruitment of leukocytes expressing VLA-4 and LFA-1 by increasing
their attachment and transendothelial migration [165]. Furthermore, the intercellular IL-
23p19 peptide, produced in endothelial cells in GCA and promoted by pro-inflammatory
factors (LPS, TNF-α and IFN-γ), stimulates the gp130-dependent activation of STAT3 by
its association with the cytokine receptor subunit gp130, thus leading to an increase in
intercellular adhesion molecules at the cell surface. Therefore, IL-6 triggers the amplification
of the inflammatory processes involved in the GCA pathogenesis [165]. In contrast, IL-6
does not appear to be involved in vascular remodeling. A recent study demonstrated
that despite an increase in VEGF after IL-6 treatment of temporal artery explants from
GCA patients, there was no increase in myofibroblast proliferation or migration after IL-6
treatment [166].

7. Conclusions

Knowledge of the mechanisms involved in the pathogenesis of GCA has improved con-
siderably in recent years, leading to the identification of new therapeutic targets to improve
patient treatment and reduce the use of glucocorticoids. The most recent work also showed the
involvement of processes leading to the amplification and/or maintenance of inflammation
and vascular remodeling, such as regulatory T response defects (regulated by IL-6), GM-CSF
and the roles of macrophages and NOTCH, along with probably a major role of arterial wall
resident cells. These mechanisms identify targets for the development of new therapeutics
such as tocilizumab [77], and more recently, mavrilimumab [162], secukinumab [167], JAK
inhibitors [168], abatacept [137] and ustekinumab [169–171] (Figure 3) [172].J. Clin. Med. 2022, 11, 2905 15 of 23 
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Figure 3. Therapeutic strategies in GCA. Steps 1–4 show the pathogenesis of the GCA physiopathology:
1—activation of dendritic cells; 2—activation, proliferation and polarization of T cells toward Th1 and
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Th17 cells; 3—effect of interferon-gamma (IFN-γ) on vascular smooth muscle cells (VSMCs) leading
to the recruitment of additional CD4 T cells together with CD8 T cells and monocytes; 4—production
of mediators implicated in vascular remodeling: neoangiogenesis (VEGF), migration, proliferation
and differentiation of VSMCs into myofibroblasts, leading to hyperplastic neointima. The main drugs
approved or under evaluation for the treatment of GCA are shown in the figure with their main
therapeutic targets. Steroids inhibit T-cell activation, proliferation and polarization into Th17 cells. In
addition, they trigger a decrease in the level of serum IL-6. Abatacept blocks T-cell activation through
its ability to prevent interaction between CD28 and CD80/86. Methotrexate inhibits the proliferation
of T cells and their ability to produce cytokines. Ustekinumab targets the p40 subunit, which is shared
by IL-12 and IL-23. Guselkumab targets the p19 subunit of IL-23. Tocilizumab targets the receptors
of IL-6. Mavrilimumab targets GM-CSF and should, therefore, impact vascular remodeling. Janus
kinase inhibitors (JAKi) block the signaling pathways of several cytokines such as IL-6, IL-12 and
IFN-γ and can thus theoretically inhibit the Th1 and Th17 pathways, to inhibit vascular inflammation
and remodeling. DC: dendritic cells; VSMC: vascular smooth muscle cells; Mono: monocytes; MΦ:
macrophages; PDGF: platelet-derived growth factor; VEGF: vascular endothelial growth factor; ET-1:
endothelin-1; GM-CSF: granulocyte-macrophage colony-stimulating factor.
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