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Local regulation of vascular tone plays an important role in cardiovascular control of blood pressure. Aside from chemical or
hormonal regulations, this local homeostasis is highly regulated by fluid-shear stress. It was previously unclear how vascular
endothelial cells were able to sense fluid-shear stress. The cellular functions of mechanosensory cilia within vascular system have
emerged recently. In particular, hypertension is insidious and remains a continuous problem that evolves during the course of
polycystic kidney disease (PKD). The basic and clinical perspectives on primary cilia are discussed with regard to the pathogenesis
of hypertension in PKD.

1. Introduction

The changes in blood vessel diameter serve as an important
physiological regulator of blood flow. These changes, caused
by contraction and relaxation of vascular smooth muscle, can
be regulated centrally and locally. The central regulation of
cardiovascular function is achieved through neuronal control
through complex projections from central and peripheral
neurons [1–3]. The density of this neuronal innervation on
the adventitial layer of blood vessels varies from tissue to
tissue and among different vascular structures [4–6]. Thus,
local regulation of the blood vessel becomes important,
especially in vessels with less abundant innervation or central
regulation.

The mechanism involved in local regulation of blood
vessels is termed autoregulation. It is required to achieve an
immediate control of blood flow within a specific region in
the tissue. Autoregulation is an effective and efficient way to
control the amount of blood flow locally without altering the
neighboring systems significantly [7]. In an isolated blood
vessel, it has been shown that a sudden increase of transmural
pressure reduces vessel diameter [8–10], while a faster flow
(higher shear stress) increases vessel diameter [9, 11–13]. All
in all, the endothelial cells lining the lumen of the vessel

have the ability to sense pressure and blood flow, and they
are capable of transducing changes in mechanical forces into
changes of vascular smooth muscle tone [14, 15]. Thus,
endothelial cells are able to decrease and increase arterial
diameter by altering contraction and relaxation behaviors of
smooth muscle cells in the artery.

Biophysically, mechanical forces in the blood vessel can
be observed in the forms of stretch due to distention of
surrounding muscle, cyclic strain due to the pulsatile nature
of blood flow, compression due to differential pressure along
the vascular system, pressure due to surface force of the sys-
tolic blood flow, and shear stress due to drag force generated
by the blood flow (Table 1). These forms of mechanical
forces may be physiologically impossible to differentiate in
vivo because of the complex nature of the cardiovascular
system [16]. Yet, these forces are known to be distinct
from one another in cell culture or ex vivo studies [17–20].
Understanding the short-term and long-term effects of each
individual force can therefore provide a better understanding
of cardiovascular response, remodeling, adaptation, and
disease. Of the mechanical forces mentioned above, we will
discuss biophysical shear stress, which is probably one of the
most studied biophysical forces.
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Table 1: Mechanical forces in the blood vessel.

Types of force Definitions

Stretch Distention force by surrounding muscle

Cyclic strain Pulsatile force by turbulent flow of blood

Compression
Contractile force by differential pressure in the
vessel

Pressure
Systolic force on intima surface by kinetic flow of
blood

Shear stress
Drag force along intima surface by kinetic flow of
blood

Table 2: Five distinct domains of a cilium.

Domains Functions

Ciliary
membrane

Localization of chemo- and mechanosensory
proteins

Soluble
compartment

Localization of signaling molecules

Axoneme Structural protein to support ciliary transport

Ciliary tip Localization of specialized signaling molecules

Basal body Network foundation for structural ciliary protein

2. Primary Cilia as Fluid-Shear
Stress Sensors

Primary cilia are usually classified as non-motile organelles
with microtubules arranged in “9 + 0” fashion. It has been
suggested that, like the nucleus, mitochondria, golgi, and
other intracellular organelles, a primary cilium can also be
viewed as a separate entity within a cell (Table 2) [21]. A
cilium can be studied as an organelle with five distinct
domains: (1) the ciliary membrane, a specialized domain
composed of a protein and with a lipid composition different
from that of the rest of the plasma membrane; (2) the soluble
compartment, also known as the matrix compartment or
cilioplasm; (3) the axoneme, composed of nine pairs of
microtubules with a highly structured transport motor
cytoskeleton; (4) ciliary tip, housed specialized proteins
whose roles are still to be explored further; (5) basal body,
a “mature” or “mother” centriole from which the primary
cilium is projected.

As micro-sensory compartments, cilia have functions
that depend on mechano-proteins such as polycystin-1 and
polycystin-2 (Figure 1). Thus, the overall functions of the
sensory compartments depend on both functional and struc-
tural cilia proteins. Within a blood vessel, an abrupt increase
in blood pressure or shear stress can be detected by
these sensory proteins localized in the cilia [16, 24]. With
cilium functioning as a local regulatory mechanism, the
extracellular fluid mechanics can then be transduced and
translated into a complex of intracellular signaling, which
in turn would activate eNOS—an endothelial enzyme that
synthesizes nitric oxide (NO) gas. In particular, shear stress-
induced calcium and NO signaling has been reported in
many endothelial cells [25]. The released NO will diffuse
from endothelial cells to the neighboring smooth muscle
cells, thereby promoting vasodilation [26–28]. The overall
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Figure 1: Mechanosensory cilia as microcompartments. Primary
cilia are mechanosensory compartments that house many sensory
proteins. Activation of these compartments through the sensory
machineries will generate a cascade of various proteins activation,
which results in nitric oxide production. CaM, calmodulin; PKC,
calcium-dependent protein kinase; eNOS, endothelial nitric oxide
synthase. Figure was adapted from [22].

effects of cilia function are thus to decrease total peripheral
resistance, therefore lowering the blood pressure.

The presence of primary cilia in vascular endothelia
has been reported in human arteries [29–31] and has been
observed in cultured human cells [16, 32, 33] and adult
vascular system in vivo [34–38]. Of particular interest is a
high level of polycystin expression in endothelial cells, which
is required for the structural integrity of blood vessels [39–
44]. The expression of polycystins in human endothelial cilia
provides a critical link between cilia and the vasculature
[16, 32, 33]. Interestingly, the function of polycystin-1 as a
mechanosensory molecule can be inactivated by proteolytic
cleavage after exposure to high fluid-shear stress. This
indicates that cilia function can also be regulated through
modification of polycystin-1 via a high shear stress [24].
This further suggests that in patients with high blood
pressure, that is, high shear stress, cilia would very likely be
unable to sense minute changes in blood pressure, which
might result in failure to autoregulate the local circulatory
system. This might increase the possibility of localized blood
vessel injuries, such as aneurysm, atherosclerosis, dissection,
edema, hemorrhage, and vascular ectasia, among others.
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Figure 2: Mechanosensory cilia and nitric oxide production. The
presence of cilia in vasculature plays an important role in the
biochemical production of a potent vasodilator, nitric oxide (NO).
The figure depicts the production of NO in an artery. Increases
in blood pressure, which are translated to higher vascular shear
stress, will be sensed by mechanosensory cilia. Bending or activation
of the cilia involves mechanosensory polycystin-1 and polycystin-2
complex and a cascade of biochemical synthesis of NO. The cascade
will further involve extracellular calcium influx (Ca2+), followed
by activation of various calcium-dependent proteins, including
calmodulin (CaM) and protein kinase C (PKC). Akt/PKB, CaM,
and PKC are important downstream molecular components to
activate endothelial nitric oxide synthase (eNOS). This figure is
reproduced with permission [23].

Throughout the cardiovascular system, patterns of fluid
dynamics change considerably due to continuous vascular
remodeling and patterning for microadaptation purposes
[43, 45, 46]. The changes in the fluid dynamics generate
differential biomechanical forces. These forces can initiate
a complex of gene expressions [5, 7] which may also alter cilia

function or structure in endothelial cells [24]. Consistent
with this idea, it has been shown that not all vasculatures
have cilia [38, 47, 48]. Only arteries with low fluid shear
or high fluid turbulence have cilia, particularly longer, well-
developed cilia. Because prolonged exposure to high fluid-
shear stress would induce cilia to disassemble [33], it is
possible that cilia may not be needed to sense high shear
stress. Rather, endothelial cells may have other mechanisms,
such as glycocalyx, to sense much higher mechanical forces
[49, 50].

3. Converting Mechanical Sensor to
NO Production

To test the hypothesis that cilia are mechanosensitive
organelles, endothelial cells without cilia were isolated and
generated from Tg737 mouse. To further confirm that
polycystin-1 and -2 are sensory proteins in cilia, endothelial
cells derived from mouse and human with polycystic kidney
were used. Ciliary polycystin-1 and/or -2 are absent from
the primary cilia in these cells. In Tg737 endothelial cells,
polycystins are concentrated in the base of the primary
cilia. Functional assays were carried out by challenging
these cells with various magnitudes of fluid-shear stress
(0.5–50 dyne/cm2). While shear-induced cytosolic calcium
increase is observed in normal endothelial cells, neither
endothelial cells’ isolated mutants nor diseased arteries
exhibit this calcium response to shear stress [16, 24].

To validate cilia roles in fluid sensing, endothelial cells
or arteries were subject to various mechanical stimulations
(Table 1). The specificity of cilia function is confirmed when
the shear-insensitive cells or arteries could respond to other
mechanical stimulation. Most important is that PKD cells
and arteries fail to produce nitric oxide (NO) in response to
fluid-shear stress.

To understand how ciliary polycystins are required to
activate a biochemical cascade for NO production, various
inhibitors were utilized to block the molecular functions
[16]. Removing extracellular calcium with EGTA abolished
both calcium and NO production in normal endothelial
cells. Furthermore, L-NAME, an eNOS inhibitor, could block
shear-induced NO biosynthesis, but not cytosolic calcium
increase. This indicates that extracellular calcium influx is
an upstream and prerequisite event. To explore calcium-
dependent mechanisms of NO production, the roles of
protein kinase C (PKC) and calmodulin were investigated
with calphostin C and W7, respectively. Possible downstream
effectors, including Akt, PKB, and PI3K, were examined with
pharmacological blockers Akt inhibitor II, LY-294,002, and
wortmannin. Interestingly, only Akt/PKB, but not PI3K, is
involved in shear-induced NO production (Figure 2).

4. Pathogenesis of Hypertension in PKD

Polycystic kidney disease (PKD) is characterized by bilateral
enlarged cystic kidneys, which have been associated with
primary cilia dysfunction [22, 51, 52]. PKD is also character-
ized by various cardiovascular abnormalities. These abnor-
malities may include hypertension, cerebral and coronary
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Table 3: Pathogenesis of hypertension in PKD.

Theories Descriptions

Inherent cardiovascular
dysfunction (Figure 2)

(i) Ciliopathy
(ii) Endothelial dysfunction
(iii) Nitric oxide synthase dysfunction
(iv) Increased sympathetic nerve
activity

Secondary to renal cystic
formation (Figure 3)

(i) Compression of renal vasculature
releases renin
(ii) Renin converts angiotensinogen to
angiotensin
(iii) Activation of angiotensin receptor
will induce:

(1) Vasoconstriction

(2) Sensitivity to catecholamines

(3) Salt retention, and so forth.

artery aneurysms, mitral valve prolapse, aortic root dilation,
dissection of the thoracic aorta, aneurysm formation in the
abdominal aorta, vascular ectasia, and abnormal function of
the microvascular bed [53–56]. Furthermore, the frequencies
of cardiovascular complication in PKD patients are very
high [57]. These include hypertension (78%), cardiac valve
disorders (25%), and intracranial aneurysms (10%).

Hypertension, in particular, has been a continual risk fac-
tor for other cardiovascular complications in PKD. Similar to
cystogenesis, pathogenesis of hypertension in PKD has also
been associated with primary cilia dysfunction. Within the
context of clinical hypertension, there are two theories that
could help describe the pathogenesis of hypertension in PKD
(Table 3). The first theory points to inherent cardiovascular
dysfunctions as the primary cause of hypertension; the
second theory brings about the cystic kidney itself as the
origin for hypertension.

4.1. Cardiovascular Dysfunction as a Primary Factor. In an
observational study of 312 children with PKD, it is reported
that high blood pressure promotes faster renal volume
growth. PKD children with high blood pressure have faster
renal growth than those with lower blood pressure. This
suggests that hypertension is a risk factor independent from
kidney function in PKD [58]. Consistent with this view, it
has been suggested that high blood pressure can actually
promote faster cyst growth [59, 60].

Of note is that hypertension occurs at a much earlier
age in patients with PKD than in the general population
[61]. The median age for hypertension in PKD patients is
about 30 years, compared with a median age of 45–55 years
in patients with essential hypertension [62]. Hypertension
occurs in children even before they are diagnosed with PKD
[63–66] or before any substantial reduction in glomerular
filtration rate is observed [67, 68].

To examine endothelial function in PKD, the plasma
concentrations of vasodilator nitric oxide were measured
in PKD patients and healthy controls. In this study,
the plasma concentration of nitric oxide was reduced in
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Sodium
retention
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H2O
retention

Vaso
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↑

↑Angiotensin II

Angiotensinogen
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Figure 3: RAAS regulation in polycystic kidney disease. Renal
cysts are thought to compress and disrupt the vascular network
in the kidney. The kidney would then become ischemic, which
would induce renin release from the juxtaglomerular apparatus.
The increase in renin secretion could accelerate the conversion
of angiotensinogen to angiotensin I, which is converted by
angiotensin-converting enzyme (ACE) to angiotensin II. Activation
of angiotensin receptor (AT1) would initiate cascades of physiologi-
cal responses that would lead to hypertension.

PKD patients, confirming an association between PKD
and endothelial dysfunction [69]. The endothelial dys-
function in PKD may thus be associated with abnormal
cilia role in sensing fluid-shear stress and other down-
stream signaling mechanisms (Figure 2). To further sub-
stantiate the endothelial dysfunction in PKD, levels of
ADMA (a marker of an inhibitor of nitric oxide syn-
thase) were significantly increased in patients with early
PKD compared to healthy age-matched individuals [70].
Although the significance of ADMA in PKD is not im-
mediately understood, endothelia-dependent vasodilation
offers substantial evidence which is too important to ignore.

Although ciliary therapy does not exist today, it is appeal-
ing and tempting to speculate the possibility of treatment for
localized blood vessel injuries such as aneurysm, atheroscle-
rosis, dissection, edema, hemorrhage, and vascular ectasia,
among others in PKD. In particular, endothelium-dependent
relaxation is impaired, and endothelial nitric oxide syn-
thase activity is decreased in patients with PKD [71–73].
The endothelial dysfunction due to impaired release of NO
in PKD patients becomes a crucial pathogenesis of hyper-
tension. The imbalance in endothelium-derived vasoactive
mediators might therefore need to be considered seriously in
PKD patients [74, 75].

4.2. Cystic Kidney as a Primary Factor. It is believed that as
renal cysts progress, the cysts will cause structural damage in
the nephrons, which leads to distortion of the renal architec-
ture (Figure 3). Such a distortion would compress the renal
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vasculature and attenuate the renal vessels, causing intrarenal
ischemia and activation of the renin-angiotensin-aldosterone
system (RAAS). Thus, as cysts enlarge, the RAAS is activated
[76–78]. Not surprisingly, several studies have shown that
the ACE-I (angiotensin-converting enzyme inhibitor) or the
ARB (angiotensin receptor blocker) is effective in lowering
blood pressure in PKD [79, 80].

Activation of the RAAS, which is well documented in the
clinical course of the disease [81] and in PKD mouse models
[82, 83], has been proposed to contribute to hypertension
seen in PKD patients. RAAS activation has also been found
in normotensive and hypertensive PKD patients, regardless
of their blood pressure and renal function [84]. It is
believed that the high level of circulating angiotensin II
in PKD patients also contributes to the development of
vascular hypertrophy, which is further implicated in vascular
remodeling [85]. Changes in the vasculatures during the
course of the PKD progression have therefore been observed
in both human [86–90] and animal [91–95] studies.

It was also reported that the sympathetic nerve activity
is increased in hypertensive patients with PKD, regardless of
renal function [96, 97]. This suggests that sympathetic hyper-
activity could contribute to the pathogenesis of hypertension
in PKD. However, it is not immediately understood whether
the sensitivity to sympathetic nerve activity is a secondary
effect due to an increase in RAAS system. In a 3-year pro-
spective randomized double-blind study, ACE-I ramipril and
the beta-blocker metoprolol were both effective for use as a
first-line therapy in hypertensive PKD patients [98]. How-
ever, it was suggested that aggressive blood pressure control
with these agents is necessary in order for them to be
beneficial for PKD patients [99]. Of apparent complexity
is that angiotensin can stimulate the sympathetic nervous
system and that sympathetic nerve activity can also stimulate
RAAS [100, 101]. At least in murine models of PKD, bilateral
renal denervation could reduce cystic kidney size, cyst vol-
ume and most importantly, systolic blood pressure [102]. It
is therefore very likely that sympathetic nerve activity would
activate RAAS system, which would increase blood pressure.

Since cardiovascular abnormalities are thought to initiate
from the cystic kidneys in PKD, there has been a great interest
in studying the outcomes after renal transplantation in these
individuals. Interestingly, renal transplant recipients with
PKD still showed an increase in cardiovascular morbidity as
seen in non-PKD transplant recipients [103]. In a different
report of eleven transplant cases in hypertensive PKD,
only six patients showed improved blood pressure after
transplantation [104]. Improved blood pressure was defined
as the ability to reduce antihypertensive drug treatment after
renal transplantation. These results suggest that while renal
transplantation seems to have some beneficial outcomes, it is
not sufficient to eradicate the hypertension in PKD patients.

5. Concluding Remarks

Primary cilium dysfunction has been associated with PKD,
and primary cilia have also been proposed to regulate blood
pressure. We believe that because our knowledge on cilia
biology is still relatively limited compared to other organelles

within a cell, there are certainly many more questions than
answers that we could provide at present. In order to better
understand the relationship between cilia and pathogenesis
of hypertension, we need to understand the physiological
roles of cilia in more detail and in many other organ systems.
For example, vascular endothelial cilia have recently been
proposed to regulate cell division [105] and endothelial-to-
mesenchymal transition [106]. In addition, the presence of
cilia in vascular smooth muscle cells has also been report-
ed, and sensory polycystin-1 and polycystin-2 complex is
localized in these cilia [107, 108]. Although their roles are
not clear at present, the vascular cilia are positioned in such
a way that they maintain a specific alignment with respect
to the lumen of the artery. Further studies of the role of this
alignment may be necessary to shed light on their possible
functions with regard to vascular hypertension.

Whether or not dysfunction in primary cilia causes hy-
pertension in PKD, there is certainly much work remaining.
We are on the verge of applying our concept and understand-
ing of PKD to better clinical practice and patient outcomes.
Nonetheless, early and effective treatments of hypertension
are clinically very important to decrease the morbidity and
mortality of patients with PKD.
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