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Abstract. We have identified a new coat protein in 
clathrin-coated vesicles from bovine brain by urea- 
SDS gel electrophoresis. The protein was purified 
from Tris-solubilized coat proteins either by combina- 
tion of hydroxyapatite chromatography and gel filtra- 
tion or more rapidly in a single step by im- 
munoaffinity chromatography. The purified protein 
binds to clathrin triskelia and thereby promotes 
clathrin assembly into regular 50-100-nm cages. We 
propose for the new protein the name auxilin (Latin 
auxilium, meaning support). Auxilin migrates as a 
l l0-kD polypeptide in standard type SDS-PAGE, but 
in the presence of 6 M urea shifts to a position corre- 
sponding to 126 kD. Gel filtration in 6 M guani- 
dinium hydrochloride gives a molecular weight of 

'~86,000. The native protein is monomeric in 0:5 M 
Tris. Antigenic reactivity and two-dimensional peptide 
maps gave no evidence of gross similarities between 
auxilin and any of the other known coated vesicle- 
associated proteins. Since the structural organization 
of auxilin does not resemble that of the ubiquitous 
heterotetrameric HA1 and HA2 adaptor complexes, 
that are believed to connect clathrin to receptors, it is 
unlikely that it functions as an adaptor. Immunoblot- 
ting did not reveal the presence of auxilin in tissues 
other than brain. If auxilin and AP 180 are indeed 
both confined to neuronal cells, as the immunochemi- 
cal evidence suggests, it might be inferred that both 
serve to adapt clathrin-coated vesicles to an as yet un- 
disclosed function unique to this cell type. 

C 
LATHRIN-COATED pits and vesicles are known to par- 
ticipate in intracellular transport processes such as 
receptor-mediated endocytosis and in directing lyso- 

somal enzyme receptors from the trans-Golgi network to a 
prelysosomal compartment (for review, see references 7, 21, 
and 23). One strategy employed for investigating the details 
of coated vesicle function consists in the identification, puri- 
fication, and biochemical characterization of coated vesicle 
components. This approach has led to detailed insight into 
the structure and properties of the major coat protein clath- 
rin, which self-assembles to form the polygonal framework 
of coated membranes (12, 20, 34). The interaction between 
clathrin and receptors in the membrane requires the pres- 
ence of tetrameric protein complexes (33, 36), which have 
recently been termed adaptors (22). Two such adaptor com- 
plexes, HA1 and HA2, have been identified in bovine brain 
(24; for different nomenclatures see reference 10). The HAl 
adaptor consists of/3', 3', 47, and 20-kD subunits, and adapts 
clathrin to receptors in the trans-Golgi network, whereas the 
HA2 complex, which is made up of or,/3, 50, and 16-kD sub- 
units, attaches it to receptors in the plasma membrane (3, 
27). The/3 subunit, which is closely related to the/3' subunit 
of the HA1 adaptor, was recently shown to bind to clathrin, 
while the other adaptor-specific subunits were conjectured 
to interact with membranes (1). Moreover, direct interac- 
tions between the HA1 and HA2 adaptors and certain cyto- 
plasmic receptor tails have been demonstrated in vitro (6, 

22). The protein coat of coated vesicles from bovine brain 
additionally contain in their coat besides the adaptor com- 
plexes the protein AP 180 (Assembly Protein 180) (2, 25) 
also referred to as AP3 (10). This protein was shown to in- 
duce in vitro assembly of clathrin under conditions close to 
physiological when it does not polymerize by itself. Al- 
though it has been claimed that AP 180 binds to coated vesi- 
cle membranes (25), it seems unlikely to represent a third 
class of adaptor protein, because its structural organization 
bears no relationship to the known adaptor complexes. 

Here, we report the discovery of a new coat-associated 
protein with clathrin assembly promoting properties. In rec- 
ognition of this property, we propose the name auxilin for 
the new protein, derived from the Latin auxilium, meaning 
support or help. Auxilin, an 86,000-D protein has probably 
escaped previous detection, because it behaves anomalously 
in standard SDS-PAGE and is therefore not readily resolved 
from the/3' subunit of the HAl adaptor. Auxilin is not related 
to any of the known coat-associated proteins, but in its main 
structural features it resembles the protein AP 180 more than 
the adaptor complexes. 

Materials and Methods 

Materials 
Fresh bovine brains were obtained from a local abattoir and processed 
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Within 1 h of slaughter. Superose 6 gel filtration column, protein standards 
for SDS-PAGE, CNBr-activated Sepharose 4B, Ficoll 400, and protein-A 
Sepharose CL-4B were from Deutsche Pharmacia (Freiburg, FRG); EGTA 
was from Serva (Heidelberg, FRG); reagents for SDS-PAGE and urea were 
from LKB Instrument GmbH (Griifelfing, FRG); MES, DTT, and PMSF 
were from Sigma Chemic GmbH (Deisenhofen, FRG); peroxidase- 
conjugated IgGs to mouse and rabbit antibodies were from Dakopatts 
GmbH (Hamburg, FRG); Pansorbin Staphylococcus aureus cells were from 
Calbiochem-Behring Corp. (San Diego, CA); nitrocellulose transfer- 
membranes (BA 83, 0.2 ttm) were from Schleicher & Schiill (Dassel, FRG); 
Centricon microconcentrators were from Amieon GmbH (Witten, FRG); 
and the hybridoma cell line CVC.7 was obtained from American Type Cul- 
ture Collection (Rockville, MD). 

Methods 
Purification of Auxilin. Coated vesicles from bovine brain tissue were pre- 
pared according to Campbell et al. (4). For the purification of auxilin by 
conventional biochemical techniques, 60 mg total coat protein was ex- 
tracted with 0.5 M Tris (pH 7.0), containing 0.1 mM PMSF, 2 mM EDTA, 
and 1 mM DTT (11). To obtain the assembly protein fraction, the extract 
was clarified by ultracentrifugation and then subjected to gel filtration ex- 
actly as described elsewhere (1). The assembly proteins (,~12 mg) were then 
fractionated on hydroxyapatite exactly as described by Ahle and Ungewick- 
ell (1). Auxilin desorbed between 0.10 and 0.15 M phosphate. The major 
contaminant at this stage was AP 180. Fractions that contained auxilin were 
pooled, concentrated by centrifugation in a Centricon 30 microconcentra- 
tor, and then subjected in two to three batches to gel filtration on a 10 x 
300-mm Superose 6 gel filtration column. This procedure yielded ,~200 #g 
auxilin. 

Alternatively, the protein was purified by immunoaffinity chromatogra- 
phy with the auxilin-directed mAb 100/4.40 ml of a crude membrane frac- 
tion (pellets from the first nitracentrifugation in the standard coated vesicle 
preparation of Pearse (20) was diluted to 50 ml with 0.1 M MES, 0.5 mM 
MgCI2, 1 mM EGTA, 0.02% NaN3 (pH 6.5), and then extracted with an 
equal volume of 1 M Tris (pH 7.0), 2 mM EDTA, 0.1 mM PMSF at 4°C. 
Insoluble material was removed by ultracentrifugation for 60 min at 100,000 g. 
The supernatant was passed through a column containing 12 mg of mAb 
100/4 coupled to 4 ml Sepharose 4B at a flow rate of I0 ml/h. The column 
was successively washed with 20 ml of 0.5 M Tris (pH 7.0) (Tris-buffer), 
20 ml of 50 mM "Iris (pH 8.0), 0.1% Triton X-100, and 20 ml of 50 mM 
Tris (pH 8.0). The resin was then removed from the column, washed with 
5 vol Tris-buffer, and recovered by low speed centrifugation. This procedure 
was repeated twice before the resin was returned to the column. Auxilin was 
eluted with 3.5 M MgCI2 at room temperature and immediately desalted 
on a PD10 (Pharmacia Fine Chemicals, Uppsala, Sweden) G25 gel filtration 
column. The PD 10 column was equilibrated in 2 mM Tris, 50 mM NaCl, 
0.5 mM EDTA (pH 8.0), 1 mg of auxilin resulted from 40 ml crude mem- 
branes, corresponding to ,'v24 mg of total protein in the assembly protein 
fraction. The protein was stable at -20°C in 50% glycerol. 

Determination of Stokes Radius and Sedimentation Coe~icient. The 
Stokes radius of auxilin was determined by gel filtration on a 10 x 300-ram 
Superose 12 column, equilibrated with 0.5 M Tris-HCl (pH 7.0), 2 mM 
EDTA, I mM DTT. The column was calibrated with apoferritin (64/~), rab- 
bit immunoglobulin (55/~), aldolase (45/~), BSA (35 A), and ovalbumin 
(29/~). The void volume was determined with intact clathrin cages that had 
been cross-linked with glutaraldehyde and the included volume with ATE 
The flow rate was 0.5 ml/min. Elution volumes of the marker proteins were 
determined by monitoring the eluate at 280 nm. To determine the elution 
volume of auxilin, 0.2 ml of total coat protein was applied to the column 
and 0.25 ml fractions were collected. Auxilin was detected by SDS-PAGE 
and immunoblotting. The Stokes radii were plotted against the inverse error 
function, erf -1 (1 - Kd), yielding a linear calibration (17). To determine 
the subunit molecular weight of auxilin total coat protein was denatured by 
dialysis against 6 M guanidinium chloride, 2 mM EDTA, 1 mM DTT, 20 
mM Tris-HCl (pH 8.0), and then applied to a Superose 6 gel filtration 
column, equilibrated in the same solvent. The column was calibrated with 
myosin, thyroglobulin, ~galactosidase, and rabbit immunoglobulins heavy 
and light chains. Elution volumes for the markers and auxilin were obtained 
as described above. The plot of Kd t/3 versus mol wt 0555 yields a straight 
line from which the molecular weight of auxilin was obtained by interpola- 
tion (17). 

The sedimentation coefficient of auxilin was determiried by sucrose den- 
sity gradient centrifugation in the presence of suitable marker proteins of 
known sedimentation coefficients according to the procedure of Siegel and 
Monty (32). 0.5 ml of total coat protein was loaded together with myoglobin 

(2S), catalase (11.3S), aldolase (7.4S), BSA (4.6S), and clathrin (8.4S) on 
a 4.5-ml 5-20% linear sucrose gradient. The gradient was centrifuged for 
18 h at 45,000 rpm at 4°C in a rotor (SW 60; Beckman Instrmnents, Palo 
Alto, CA). The tube was punctured and 0.175-ml fractions were collected 
manually. The protein composition of each fraction was analyzed by SDS- 
PAGE and by immunoblotting. 

The molecular weight of auxilin was calculated from the equation: 

Mr = 61rNRsSao.J (1 - vO2O, w); 

where Rs is the Stokes radius, $2o.~ the corrected sedimentation coeffi- 
cient, and N the Avogadro number. The partial specific volume v of auxilin 
was taken to be 0.73 ml/g. 

Assembly Experiments. 50 #g clathrin triskelia were dialyzed overnight 
at 4°C either in the absence or presence of auxilin (17 and 34 ttg) against 
0.1 M MES, 1 mM EGTA, 0.5 mM MgC12, pH 6.5. The extent of assem- 
bly was analyzed by sucrose gradient centrifugation, using 4.5 ml gradients 
of 5-30% sucrose made up in 0.1 M MES, 0.5 mM MgCl2, 1 mM EGTA, 
0.02% NAN3, pH 6.5. The gradients were centrifuged for 1 h at 38,000 rpm 
in a rotor (SW 60; Beckman Instruments) at 4°C. Fractions of 0.33 ml were 
collected manually. The protein composition of each fraction was analyzed 
by SDS-PAGE, and the extent of assembly was quantified by densitometry 
of the clathrin zone. Aliquots of the dialysate were also negatively stained 
with uranyl acetate and viewed in a Zeiss EM 109 electron microscope. 

Binding to Preassembled Clathrin Cages. Clathrin triskelia were as- 
sembled into cages by dialysis against 0.1 M MES, 1 mM EGTA, 0.5 mM 
MgCl2, 2 mM CaCI2 (pH 6.5), and then mildly cross-linked with 3,3'- 
dithiobis(sulfosuccinimidylpropionate) as described in reference 29 to pre- 
vent their disintegration upon dilution. Uuassembled clathrin was removed 
by ultracentrifugation. The pelleted cages (preformed cages) were resus- 
pended in 5 mM Hepes, 100 mM potassium tartrate, 0.5 mM EDTA, 0.25 
mM MgCl2, pH 7.2 (binding buffer), and incubated on ice for 0.5 h with 
auxilin. In a typical binding experiment 1.3-8/xg auxilin was incubated ei- 
ther alone, to test for aggregation of anxilin under binding conditions, or 
with 9 #g clathrin cages in a final volume of 0.13 ml binding buffer. The 
extent of binding was analyzed by ultracentrifugation for 15 rain at 45,000 
rpm ("088,000 g) in a centrifuge (TL 100, TLA 100 rotor; Beckman Instru= 
ments). Pellets and supernatants were analyzed by SDS-PAGE and den- 
sitometry. 

Antibody Production. The mAb 100/4 used in this paper was obtained 
from a BALB/c mouse that was immunized three times at intervals of 2 wk 
with 20 t~g of total assembly protein. For three consecutive days before the 
day of the cell fusion, the mouse was boosted intravenously with 10/zg as- 
sembly protein. The fusion routine and tissue culturing were executed ex- 
actly as described previously (3). Supernatants were screened by immuno- 
blotting. Colonies of interest were subcloned twice by limited dilution. For 
large-scale production of monoclonal antibodies, hybridomas were cultured 
in roller bottles as described before (3). 

Protein Concentrations. All concentrations were determined spec- 
trophotometrically. For clathrin, a specific absorbance at 280 run of Eicrnl 
= 11.9 waS USed. The concentration of auxilin was obtained from the absor- 
bance at 205 nm, taking E (1 mg/mi; 1 cm) = 31 (reference 30). The con- 
centrations obtained corresponded to a specific absorbance at 280 nm of 
Elcm l~t = 7.9. 

Peptide Mapping. Two-dimensional peptide analysis of t25I-labeled 
tryptic peptides was performed essentially according to the procedure of 
Elder et al. (5) and as described in detail elsewhere (2). 

Quantitative lmmunoprecipitation. 1 g of bovine brain was homoge- 
nized in 1 ml of 0.1 M MES, 0.5 mM MgCI2, 1 mM EGTA, 0.02% NaN3 
(pH 6.5), and the suspension clarified by centrifugation for 0.5 h at 7,000 g. 
The supernatant was then centrifuged for 0.5 h at 100,000 g in an ultracen- 
trifuge (TL 100; Beckman Instruments). The volumes of pellets and super- 
natants were first adjusted with 0.1 M MES, 0.5 mM MgCI2, 1 mM EGTA, 
0.02% NaN3 (pH 6.5), to 1 ml, before 1 ml of I M Tris (pH 7.0), was added. 
Both samples were again ultracentrifuged as described above, and the super- 
natants, which contained soluble coat proteins were saved. Auxilin was 
quantitatively removed from the supernatants by a 2-h incubation with 50 
/~g of mAb 100/4, coupled to a Sepharose matrix. After extensively washing 
the Sepharose with 0.5 M Tris (pH 7.0), and PBS, the amount of auxilin 
bound to the antibody and was quantified by SDS-PAGE. By immunoblot- 
ting, it was ascertained that all the auxilin present in the Tris-extracts was 
adsorbed by the antibody. 

Miscellaneous Techniques. Free flow electrophoresis of coated vesicles 
was performed essentially as described previously (18). In brief, 10-20-mg 
coated vesicles obtained by differential centrifugation according to Camp- 
bell et al. (4) were further purified by electrophoresis in a Hirschmann 
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Figure 1. Identification of a new protein (auxilin) in the assembly protein fraction. Total assembly proteins obtained by gel filtration of 
Tris-solubilized coat proteins were analyzed by SDS-urea-PAGE (a) and Laemmli type (standard) SDS-PAGE (b). (Lanes I and 7) Coomas- 
sie blue-stained protein zones; (lanes 2 and 8) immunoblot stained with antiauxilin (mAb 100/4); (lanes 3 and 9) immunoblot stained 
with anti-fl type adaptor subunit (mAb 100/1); (lane 4) immunoblot stained with anti-c~ type adaptor subunit (mAb 100/2); (lane 5) immu- 
noblot stained with anti--y type adaptor subunit (mAb 100/3); (lanes 6 and 10) immunoblot stained with anti-AP 180. The arrows denote 
auxilin. 

Figure 2. Co-migration of auxilin with clathrin-coated vesicles in free flow electrophoresis. Coated vesicles were purified by the method 
of Campbell et al. (4) and then subjected to free flow electrophoresis. Fractions were analyzed by SDS-urea PAGE and immunoblotting. 
The starting material (S) is in the lane on the far left. (a) Coomassie-stained gel of the fractions; (b) relevant part of an immunoblot stained 
with antiauxilin (mAb 100/4); (c) relevant part of an immunoblot stained with a monpclonal antibody (CVC.7) against a light chain (LCA) 
of clathrin (13). Note that the distribution of auxilin follows that of clathrin and the light chain. 
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Figure 3. Hydroxyapatite chromatography of assembly proteins. Protein-containing column fractions were electrophoresed in urea-SDS 
polyacrylamide gels and either stained for protein with Coomassie blue (a) or transferred to nitrocellulose paper and probed with antibodies 
against auxilin (b). The lane on the far left shows the starting material (S). Fractions are indicated at the top of the gel and corresponding 
phosphate molarities beneath. 

VAP 5 apparatus at 900 V (200 mA). The buffer was 19 mM MES, 0.5 mM 
EGTA, 0.25 mM MgCI2, pH 6.4, with a conductivity of 1,000 #Siemens. 
The electrode buffer was 0.1 M MES (pH 6.4). SDS-PAGE was performed 
according to Laemmli (16). SDS-Urea PAGE was performed in 7.5 % acryl- 
amide minigel slabs (7.5 x 8.0 × 0.075 cm), containing 0.1% SDS, 6 M 
urea, and 2 mM EDTA in the separation gel. Electrophoresis was performed 
in a Hoefer Mighty Small II unit. The gels were either stained with Coomas- 

sie brilliant blue or electroblotted onto nitrocellulose paper for probing with 
monoclonal antibodies. Coomassie binding to auxilin and clathrin was 
quantified by applying protein loads of 1-5 #g in duplicate to 10% mini gel 
slabs. The gels were stained with Coomassie blue, destained, and densitom- 
etered in a Camag instrument. Areas under zone profiles were plotted 
against the amount of protein. 

Figure 4. Final purification step of 
auxilin by gel filtration. Auxilin, ob- 
tained by hydroxyapatite chromatog- 
raphy (fractions 13-16 in Fig. 3), 
was concentrated and then subjected 
to gel filtration on Superose 6 to re- 
move AP 180 and low molecular 
weight contaminants. Fractions were 
analyzed by standard SDS-PAGE. 
Fractions 24 and 25, which contain 
almost pure auxilin, were pooled. 
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Figure 5. Purification of auxilin by affinity chromatography. A Tris extract of crude membranes from bovine brain was passed through 
an affinity column, containing immobilized monoclonal antibody against auxilin (mAb 100/4). (a) Coomassie-stained gel showing mem- 
brane extract before (track 1) and after passage (track 2) through the affinity column. (Track 3), Auxilin eluted with 0.35 M MgC12. 
(Track 4) Auxilin remaining bound to the antibody after elution with magnesium. (b) Corresponding immunoblots stained for auxilin with 
mAb 100/4. The dense protein zones at 50 and 25 kD in track 4 are antibody molecules, released from the Sepharose beads with residual 
auxilin by 0.1% SDS. 

Results 

Identification of a New Coated Vesicle Component 

Coat proteins were extracted from purified clathrin-coated 
vesicles with 0.5 M Tris and then subjected to gel filtration 
to separate clathrin from the adaptors and the assembly pro- 
tein AP 180. When a pool of fractions, containing the HA1 
and HA2 adaptor complexes, protein AP 180 and other mi- 
nor components (previously described as assembly protein 
fraction [11]) was analyzed by SDS-PAGE in the presence of 
6 M urea, we noted a polypeptide of Mr ~126,000, which 
was not resolved from other components in the 100-116 kD 
molecular mass range in the standard system of Laemmli 
06) (Fig. 1). This polypeptide was not stained on immuno- 
blots by monoclonal antibodies directed against the previ- 
ously characterized subunits of the two adaptor complexes 
or against AP 180 (2, 3). However, our repertoire of mono- 
clonal antibodies that were elicited in mice by injection with 
total coat proteins, contained one antibody (mAb 100/4), 
which reacted exclusively with the new polypeptide (Fig. 1; 
lanes 2 and 8). Immunoblotting showed that this species mi- 
grates on standard SDS-PAGE in a position corresponding 
to Mr ,x,110 kD, which is very close to the/~ and/3'-type 
adaptor subunits. A major proteolytic fragment of AP 180, 
which migrates close to the new polypeptide in urea- 
SDS-PAGE (Fig. 1, lane 6) does not accompany it in stan- 
dard SDS-PAGE (Fig. 1, lane 4). To avoid ambiguity in 
designating the new protein in terms of an apparent molecu- 
lar mass, we shall henceforth refer to it as auxilin. 

To show that auxilin is a component of clathrin-coated 
vesicles and not a contaminant originating from unrelated 
membranes, we purified coated vesicles by differential cen- 
trifugation followed by free flow electrophoresis (18). Frac- 

tions obtained from the latter were analyzed by urea-SDS- 
PAGE and immunoblotting with monoclonal antibodies against 
auxilin and against known constituents of clathrin-coated 
vesicles. The result shows that auxilin copurifies with clath- 
rin and with a light chain of clathrin (LCD in free flow 
electrophoresis and is thus very likely to be associated with 
clathrin coated vesicles (Fig. 2). 

Purification of Auxilin 

We undertook the purification of auxilin, starting from the 
assembly protein fraction, initially by conventional chro- 
matographic methods such as hydroxyapatite chromatogra- 
phy and gel filtration. The fractions from the hydroxyapatite 
column were analyzed by urea-SDS-PAGE and the presence 
of auxilin was confirmed by immunoblotting. Auxilin de- 
sorbed from the column between 0.1 and 0.15 M phosphate 
together with AP 180 and traces of the HA1 adaptor (Fig. 
3). Fractions containing auxilin were then chromatographed 
on a Superose 6 gel filtration column to remove AP 180 and 
other minor contaminants (Fig. 4). Although it proved possi- 
ble to remove AP 180 and other minor polypeptides from 
auxilin by gel filtration, the yield and purity of auxilin ob- 
tained in this way was generally less than satisfactory. At- 
tempts to purify auxilin by Mono Q ion exchange chroma- 
tography instead of gel filtration were frustrated by high 
losses of the protein and were therefore abandoned. We 
therefore explored the possibility of immunoadsorbing auxi: 
lin from the 0.5 M Tris extract of a crude membrane fraction. 
In pilot experiments, it was established that the mAb 100/4 
binds strongly to auxilin in 0.5 M Tris and that this interac- 
tion was effectively dissociated by high concentrations of 
MgCI2. >70% of the auxilin was eluted from the affinity 
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Figure 6. Auxilin-induced assembly of clathrin cages. 50 #g clathrin triskelia were dialyzed into 0.1 M MES, 0.5 mM MgCI2, 1 mM 
EGTA, 0.02% NAN3, pH 6.5, with 34/~g auxilin, and in a control experiment, 50 #g clathrin was dialyzed in the absence of auxilin. To 
assess assembly, aliquots of the samples were sedimented through 5-30% sucrose gradients. Fractions from the gradients were analyzed 
by electrophoresis in 10% Laemmli-type polyacrylamide gels, which were stained for protein with Coomassie. (a) Sucrose gradient frac- 
tions of clathrin-auxilin complexes; (b) sucrose gradient of unpolymerized clathrin triskelia; lanes on the far left (P) show aggregated mate- 
rial, which was pelleted by low speed centrifugation in a bench top centrifuge. 

column by 3.5 M MgC12 (Fig. 5). By this means, we usu- 
ally obtained ,,ol mg auxilin from 40-ml pelleted crude 
membranes, containing some 24 mg total assembly protein. 
Compared to the biochemical procedure described above, 
immunoaffinity purification yielded ,02.5 times more auxi- 
lin and was therefore routinely employed. In electrophoresis 
in standard SDS gels, the purified protein appears as a rela- 
tive broad zone, which may reflect some microheterogeneity 
(Fig. 5). The nature of this effect has not been further ex- 
plored. It may arise from proteolysis and/or posttranslational 
modifications. In addition, immunoblots almost always showed 
two to three satellite bands. Proteolysis of auxilin could be 
inhibited, but never completely eliminated by addition of 
protease inhibitors to the Tris-extraction buffer. Upon elu- 
tion of the auxilin from the affinity column, care was taken 
to reduce the high salt concentration rapidly by gel filtration. 
Auxilin could be stored in 50% glycerol at -20°C without 
any detectable loss of activity (see below). 

Functional Characterization of  Auxilin 

The definitive identification of auxilin as a structural compo- 
nent of the coated vesicle must rest on a demonstration of 
saturable binding to clathrin or one of its associated proteins. 
Binding of AP 180 and of the HA2 adaptor complex to 
clathrin triskelia induces their assembly into cagelike struc- 
tures. To investigate whether auxilin has similar properties, 
we dialyzed clathrin triskelia alone and in the presence of 
auxilin against a buffer known to support only assembly 
protein-dependent polymerization of clathrin. The dialyzed 
samples were briefly spun in a table top centrifuge to remove 
large aggregates and then fractionated by centrifugation on 
sucrose gradients. The distribution of clathrin and auxilin 
was determined by SDS-PAGE and densitometry. As ex- 
pected, in the absence of auxilin all of the clathrin remained 
unassembled in the top fractions of the sucrose gradient (Fig. 
6 b). However, upon addition of auxilin, up to 45 % of the 
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Figure 7. Electron microscopy of reassembled cages. Clathrin triskelia were assembled either in the presence of AP 180 (a) or of auxilin 
(b). Note that auxilin-induced cages are less uniform in diameter. 

clathrin sedimented together with auxilin in the position ex- 
pected for clathrin cages (Fig. 6 a). 31% of the clathrin re- 
mained unassembled, while 24% formed large aggregates 
that were pelleted by low speed centrifugation. 64 % of auxi- 
lin sedimented with clathrin in the position of cages, and 
28 % were found in the low speed pellet. The remainder was 
recovered from the top of the gradient. 

Electron microscopy of negatively stained aliquots of the 
dialysate confirmed that auxilin functions as a clathrin as- 
sembly protein (Fig. 7). Compared to the very homogenous 
population of AP 180-induced cages, 85 % of which have a 
diameter in the range of 60-79 nm, the size distribution of 
auxilin induced cages was much broader (Fig. 8). Only 55 % 
of the cages were within the 60-79-nm range. Auxilin-induced 
cages also appeared to be more obviously filled or decorated 
with protein. In this respect, they resemble the cages assem- 
bled in the presence of the HA2 adaptor (see Fig. 7 in refer- 
ence 22). We also investigated the binding of auxilin to 
clathrin cages, preassembled in the presence of 2 mM cal- 
cium. Since auxilin proved to be exceptionally prone to 
aggregation below pH 7.0, the binding experiment was per- 
formed at pH 7.2 in a Hepes/Tartrate buffer. A constant 
amount of clathrin cages (9/~g) were incubated with increas- 
ing amounts of auxilin for 30 min on ice and then ultracen- 
trifuged to separate bound from unbound auxilin. Pellets and 
supe.rnatants were analyzed by SDS-PAGE (Fig. 9). In the 
absence of clathrin, auxilin does not sediment under the con- 
ditions employed for the binding assay (compare tracks 19 
and 20 in Fig. 9). Densitometric analysis of the titration ex- 
periment shows that binding of auxilin to clathrin cages satu- 
rates at three auxilin molecules per clathrin triskelion, corre- 
sponding to one auxilin per clathrin heavy chain (Fig. 10). 

Structural Characterization of  Auxilin 

To determine whether auxilin is structurally related to the 
two other known clathrin-binding constituents, AP 180 and 
the ~-subunit of the HA2 adaptor complex, peptide maps (5) 
of the three were compared. Auxilin and AP 180 were 
purified by immunoprecipitation and SDS-PAGE. The 
subunit was obtained by electrophoresis of the HA2 adaptor 
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Figure 8. Histogram of coat diameters. Cages were reassembled ei- 
ther in the presence of auxilin (top) or of AP 180 (bottom). 
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Figure 9. Interaction of auxilin with preformed clathrin cages. 1.6-7.6 #g of auxilin was incubated in binding buffer either alone or with 
9 #g clathrin cages and then centrifuged for 15 min at 88,000 g in an ultracentrifuge (TL-100; Beckman Instruments). The protein content 
of pellets and supernatants was analyzed by SDS-PAGE. Odd numbers denote tracks of supernatants and even numbers denote the tracks 
of the corresponding pellets. Note that auxilin did not sediment when clathrin was omitted (lane 20). 

in urea-containing SDS gels. All proteins were iodinated in 
the gel and eluted after digestion with trypsin. The iodinated 
peptides were analyzed by two-dimensional peptide mapping 
on thin layer plates (Fig. 11). As with the immunological 
criterion, there is no extensive structural similarity between 
AP 180, auxilin and the/~ subunit of HA2, although we can- 
not totally exclude a limited homology of peptides in the part 
of the map bracketed in Fig. 11. We also mapped the 64 and 
43 kD polypeptides, which copurified with auxilin. Both 
maps were very similar to that of auxilin, which confirms 
their identity as proteolytic fragments of auxilin (data not 
shown). 

Molecular mass determinations of polypeptides by SDS- 
PAGE sometimes give erroneous results (31). This is true of 
AP 180, which migrates as a 180-kD polypeptide in SDS- 
PAGE (2, 34), but was shown by three other methods to have 
a molecular mass of 'o120,000 (2, 25). We therefore deter- 
mined the molecular mass of the reduced and unfolded auxi- 
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Figure 10. Binding of auxilin to preformed clathrin cages is satura- 
ble. Binding data were obtained from densitometry of SDS-PAGE 
lanes such as those shown in Fig. 9. The data from two independent 
titration experiments are shown. 

lin by gel filtration on a calibrated Superose column in 6 M 
guanidinium hydrochloride (17). The elution volume corre- 
sponded to a protein of 86,000 mol wt (Fig. 12). We also 
deduced the molecular weight of native auxilin from its Stokes 
radius and sedimentation coefficient. For the determination 
of the Stokes radius, auxilin was chromatographed on a cal- 
ibrated Superose 12 gel filtration column equilibrated in 0.5 
M Tris. The Stokes radius was found to be 62/k (Fig. 13), 
which is close to that of the HA2 adaptor, but much smaller 
than that of AP 180 (81 /~,, reference 1). By centrifugation 
in calibrated sucrose gradients, we obtained a sedimentation 
coefficient of 3.2 S (not shown). Assuming a partial specific 
volume of 0.73 ml/g, we obtain a molecular weight of 84,000, 
in good agreement with the value from gel filtration of the 
unfolded chain. Thus, the value determined by SDS gel elec- 
trophoresis is wrong and, in 0.5 M Tris, auxilin is like AP 
180 released as a monomer from the coated vesicle membrane. 

Distribution of Auxilin 

Bovine brain, liver, and adrenal gland were examined by im- 
munoblotting for the presence of auxilin. Immunologically 
detectable amounts of auxilin were found only in brain 
homogenates (Fig. 14). Thus, it seems likely that auxilin like 
AP 180, is confined to neuronal tissue (3, 19). This conclusion 
is also supported by our failure to detect auxilin in coated 
vesicles from placenta and adrenal gland by biochemical 
means (data not shown). Quantitative immunoprecipitation 
of auxilin in brain homogenates showed that ,,045 % of auxi- 
lin is associated with membranes while 55 % was found in 
the cytosolic fraction. This ratio is similar to that obtained 
for the adaptors in brain (data not shown). 

Discussion 

With the aid of electrophoresis methods and a panel of mono- 
cional antibodies against coated vesicle coat proteins, we dis- 
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Figure 11. Autoradiographs of two-dimensional peptide maps of ~25I-labeled tryptic peptides from auxilin, AP 180, and the ~ subunit of 
the HA2 adaptor. Tryptic peptides were separated on cellulose thin layer plates by electrophoresis at pH 3.5 in the first dimension and 
ascending chromatography in the second. Brackets indicate peptides that could be common to all three proteins. 
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Figure 12. Molecular weight of auxilin. Total coat protein unfolded 
in 6 M guanidinium-HCl, 2 mM EDTA, and 1 mM DTT was ap- 
plied to a calibrated Superose 6 gel filtration column. The elution 
volume of auxilin which was determined by SDS-PAGE and immu- 
noblotting (see Materials and Methods for details) corresponded to 
a molecular weight of 86,000. The column was calibrated with myo- 
sin (210 kD), thyroglobulin (165 kD), B-galactosidase (116 kD), 

covered a new 86,000 D coat protein, which we have named 
auxilin. We have identified it as a component of clathrin- 
coated vesicles on the grounds that it co-migrates with them 
in differential centrifugation and in free flow electropho- 
resis and moreover that it interacts stoichiometrically with 
clathrin in vitro. Auxilin is a peripheral membrane protein, 
which is extracted from the coated vesicle membrane with 
0.5 M Tris together with clathrin, the adaptor complexes and 
AP 180. Auxilin represents in coated vesicle from brain tis- 
sue "~9 % of the total 100-120-kD polypeptides. This corre- 
sponds to one auxilin per HAl adaptor, to three molecules 

rabbit immunoglobulins heavy (55 kD), and light chains (25 kD). 
The arrow denotes the elution position of auxilin. Kd, Partition 
coefficient of the protein between the mobile and stationary phases. 
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Figure 13. Stokes radius of auxilin in 0.5 M Tris. The apparent 
Stokes radius of auxilin (IL) was determined by gel filtration on a 
calibrated Superose 12 column in 0.5 M Tris, 2 mM EDTA, pH 7.0. 
The column was calibrated with apoferritin (64/~,), rabbit immu- 
noglobulin (55/~), aldolase (45/~), BSA (35/~), and ovalbumin 
(29/~). The elution volume of auxilin, which was determined by 
immunoblotting, corresponded to a Stokes radius of 62/~,. The ar- 
row denotes the elution volume of auxilin. Kd, Partition coefficient 
for the protein between the mobile and stationary phases. 

of AP 180, or to five molecules of the HA 2 adaptor. Thus, 
auxilin cannot be regarded as a particular minor component 
of coated vesicles. Auxilin supports assembly of clathrin into 
polygonal cages that are similar in size to those induced by 
AP 180. The mechanism by which auxilin induces clathrin 
assembly has not been investigated, but it could be related 
to its tendency to self-associate under conditions that also fa- 
vor clathrin assembly. For example, if clathrin-bound auxilin 
were able to form dimers, cross-linking of adjacent triskel- 
ion legs would result. The ratio of one auxilin per clathrin 
heavy chain found in cages is compatible with a model of this 
kind. 

Auxilin is immunologically unrelated to any of the other 
proteins in clathrin coated vesicles. Peptide mapping has ex- 
cluded any major similarity to the /3 subunit of the HA2 
adaptor and AP 180, which are both known to interact 
directly with clathrin(1, 2, 25), although we clearly cannot 

entirely rule out limited homologies between these proteins. 
Unless the three proteins bind to different sites on clathrin, 
local homologies would not be unexpected, but, apart from 
a set of two to three poorly resolved peptides, which may be 
common to all three proteins, we do not yet have any indica- 
tions to this effect. Furthermore, peptide maps of ~ and 3' 
subunits of the adaptors (see Figs. 5 and 6 in reference 3) 
show no significant homologies to auxilin. 

The purification of two presumably different polypeptides 
with clathrin assembly promoting properties in the molecu- 
lar mass range of 100-110 kD (as judged by their mobility 
on standard SDS-PAGE) has been described in reports by 
Edelhoch and his co-workers (8, 26). Based on the available 
information, however, it is difficult to relate them unambigu- 
ously either to the subunits of the adaptor complexes or to 
auxilin. Both proteins were exposed to 2 or 3 M urea during 
purification, conditions known to cause dissociation of adap- 
tor subunits (1). However, on the basis of physical properties 
such as sedimentation constants and molecular weight, it ap- 
pears very unlikely that the l14,000-D protein, which was 
studied by Prasad and colleagues in 3 M urea (26), is auxilin. 
A 110-kD polypeptide, extracted with 2 M urea from bovine 
brain-coated vesicles and then purified on lysine-Sepharose 
was not further characterized, and could thus have been a 
liberated adaptor subunit, auxilin, or an unrelated species (8). 

Although distinct proteins, AP 180 and auxilin have more 
in common with each other than with the structurally more 
complex adaptors. Both appear to be restricted to neuronal 
tissue (3, 19); they are released from coated vesicles by 0.5 
M Tris as monomers (2), behave anomalously in SDS gel 
electrophoresis (2, 25, 35), are very susceptible to proteo- 
lytic attack (2), and have very low sedimentation constants, 
suggestive of an extended structure for both. We therefore 
hesitate to equate auxilin and AP 180 with additional adap- 
tors. The apparent restriction of both proteins to neuronal 
tissue implies that coated vesicles from other tissues function 
without them. This then affords another example of the adap- 
tation of coated vesicles to specific requirements of neuronal 

Figure 14. Tissue specificity of auxilin. Crude 
membranes from brain (a), liver (b), and adrenal 
gland (c) were extracted with 0.5 M Tris and then 
fractionated by SDS-PAGE. Nitrocellulose replicas 
of the gel were reacted with antibodies against the 
/~ and/~' adaptor subunits (tracks 1, 4, and 7), an- 
tiauxilin (tracks 2, 5, and 8), and anti-AP 180 
(tracks 3, 6, and 9). Note that auxilin and AP 180 
immunoreactivity appears only in brain tissue. 
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cells. The light chains and the ~ subunit of the HA2 adaptor 
have already been shown to contain brain-specific inserts (9, 
14, 15, 28). The functions of auxilin and AP 180 are unlikely 
to be restricted to promoting clathrin assembly. This prop- 
erty might be only a reflection of their preference for assem- 
bled over free clathrin. The substoichiometric amounts of 
both proteins in coated vesicle preparations (relative to clath- 
rin) suggests a restriction to subpopulations of coated vesi- 
cles, in which either occurs in stoichiometric amounts. We 
hope to prove the existence of these with available monoclo- 
nal antibodies either by immunopurification of a subpopula- 
tion of coated vesicles or by immunoelectronmicroscopy. 
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