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Abstract

Background

Ethiopia has low malaria prevalence compared to most other malaria-endemic countries in

Africa. However, malaria is still a major public health problem in the country. The binary

logistic regression model has been widely used to analyse malaria indicator survey (MIS)

data. However, most MIS have a hierarchical structure which may result in dependent data.

Since this model assumes that conditional on the covariates the malaria statuses of individu-

als are independent, it ignores potential intra-cluster correlation among observations within

a cluster and may generate biased analysis results and conclusions. Therefore, the aim of

this study was to quantify the variation in the prevalence of malaria between sample enu-

meration areas (SEAs) or clusters, the effects of cluster characteristics on the prevalence of

malaria using the intra-class correlation coefficient as well as to identify significant factors

that affect the prevalence of malaria using the multilevel logistic regression modelling in

three major regions of Ethiopia, namely Amhara, Oromia and Southern Nations, Nationali-

ties and Peoples’ (SNNP).

Methods

Dataset for three regional states extracted from the 2011 Ethiopian National Malaria Indica-

tor Surveys (EMIS) national representative samples was used in this study. It contains 9272

sample individuals selected from these regions. Various multilevel models with random

sample SEA effects were applied taking into account the survey design weights. These

weights are scaled to address unequal probabilities of selection within clusters. The spatial

clustering of malaria prevalence was assessed applying Getis-Ord statistic to best linear

unbiased prediction values of model random effects.

Results

About 53.82 and 28.72 per cents of the sampled households in the study regions had no

mosquito net and sprayed at least once within the last 12 months, respectively. The results
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of this study indicate that age, gender, household had mosquito nets, the dwelling has win-

dows, source of drinking water, the two SEA-level variables, i.e. region and median altitude,

were significantly related to the prevalence of malaria. After adjusting for these seven vari-

ables, about 45% of the residual variation in the prevalence of malaria in the study regions

was due to systematic differences between SEAs, while the remaining 55% was due to

unmeasured differences between persons or households. The estimated MOR, i.e. the

unexplained SEA heterogeneity, was 4.784. This result suggests that there is high variation

between SEAs in the prevalence of malaria. In addition, the 80% interval odds ratios (IORs)

related to SEA-level variables contain one suggesting that the SEA variability is large in

comparison with the effect of each of the variable.

Conclusions

The multilevel logistic regression with random effects model used in this paper identified five

individual / household and two SEA-level risk factors of malaria infection. Therefore, the

public health policy makers should pay attentions to those significant factors, such as

improving the availability of pure drinking water. Further, the findings of spatial clustering

provide information to health policymakers to plan geographically targeted interventions to

control malaria transmission.

Introduction

The estimated malaria cases in Ethiopia has declined from about 7.7 to 2.4 millions and esti-

mated deaths due to malaria has declined from 14,424 to 4,757 between 2010 and 2018. The

country has low malaria prevalence compared to most other malaria-endemic countries in

Africa (e.g. Burkina Faso, Cameroon, the Democratic Republic of the Congo and Ghana) [1].

However, malaria is still a major public health problem in Ethiopia [2].

The estimated deaths due to malaria also globally declined from 585 000 to 405 000 cases

between 2010 and 2018. According to the latest World Health Organization (WHO) Report

2019, the highest reduction in malaria deaths occurred in African region, which was from 533

000 cases in 2010 to 380 000 cases in 2018 [1]. However, according to the same report, the rate

of reduction of malaria mortality was slower in the period 2016–2018 than in the period 2010–

2015. In year 2018, there were an estimated 228 million cases of malaria occurred worldwide,

compared with 251 million cases in 2010 and 231 million cases in 2017 [1].

In most malaria indicator surveys (MIS), the survey designs organize the study populations

into clusters such as districts, villages or enumeration areas. Then select households within the

clusters to collect data (e.g. see [3, 4]). The data generated from these surveys have a hierarchi-

cal or multilevel structure, where individuals in sampled households are nested within enu-

meration area or cluster and the surveys result in dependent data. Since households that live in

the same clusters share similar environment and the public health service facilities in the area,

they are likely to resemble each other with respect to the effects from these. Thus, individuals

from two randomly selected households from the same cluster or enumeration area, they may

have similar malaria status (tested positive or negative) than the malaria status of individuals

from two randomly selected households from different clusters, even when the measured

household or individual-specific characteristics of the selected households are identical to one

another.
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Traditionally, the standard binary logistic regression model has been widely used to analyse

malaria status data. However, because this model assumes that conditional on the covariates

the malaria status of individuals are independent, it disregard potential intra-cluster correla-

tion among observations within a cluster and therefore may generate biased results and con-

clusions [5, 6]. This model also prevents to study the association between specific cluster

characteristics and the individual outcome [7] and ignores the hierarchical structure of the

data. The intra-cluster correlation can serve as a meaningful information that can have impli-

cations for health care policy makers. Multilevel models incorporate cluster-specific random

effects that account for the dependency of the observations by partitioning the total individual

variance into variation due to the clusters and the individual-level variation that remains [8–

11]. Since the multilevel models take into account the clustered nature of the data, they can

correctly estimate standard errors and lead to more accurate inferential decisions and allow to

investigate sources of variations within and across clusters.

Multilevel logistic regression models allow analysts to take into account the clustered nature

of the data, to investigate sources of variations within- and between-clusters, to describe which

variables predict individual differences and to describe which variables predict cluster-level

differences. There are two multilevel studies in Ethiopia, Peterson et al. [12], included village

as a cluster and concluded that village-level effects were important and Woyessa and Deressa

[13] considered household as a cluster and investigated individuals and household effects but

their study was conducted within one city in Oromiya region. The studies in Peru [14] and

Cambodia [15] also included household as a cluster in their multilevel analyses. The later

showed the importance of household-level risk factors in explaining differences in infection

prevalence between households and between villages. Whereas, the former compared risk fac-

tors in community-specific models and reported malaria prevalence differences between com-

munities were influenced by individual and household variables but variances of the random

household-level effects were too small. Recently [16, 17] have also applied the multilevel

modelling to malaria survey data, however, the former used the sample weight to compute

descriptive statistics not for modelling and the later also fitted unweighted multilevel models.

Although there are various studies reported in literatures using MIS data, the multilevel logistic

regression models are rarely applied (e.g. see [18–24]). Some of these studies apply either the

generalized linear mixed model by introducing random effects to take into account the within-

cluster correlation only (e.g. see [18, 20]) or the generalized estimating equation (GEE) (e.g.

see [19, 23, 24]), by considering the intra-cluster correlation in order to improve estimates of

the fixed effects and their standard errors. Rodriguez and Goldman [25], however emphasized

that the estimation of similarity of observations within a cluster or group is not only improve

these two estimates but also for yielding important substantive information, in particular by

introducing individual level or cluster-level factors as a set of control variables, the analysis

may provide information on how the cluster level factors influence the individual characteris-

tics or vice versa. Unlike multilevel models, GEE [26, 27] had been developed to handle corre-

lated data without explicitly accounting for heterogeneity across clusters and it does not

provide direct estimates of the variance structure, but treat these as nuisance parameters [28].

Also, it does not allow analysts to examine the influence of individual-level or cluster-level fac-

tors on between cluster variation, and sources of intra-cluster correlation [29].

The main objective of the current study is to quantify the variance component of survey

enumeration areas (SEAs) or cluster effects and SEAs characteristics on individual malaria

rapid diagnostic test (RDT) outcome. In addition to quantifying the variation, we are also

interested to identify significant factors that affect the malaria RDT outcomes of household

members or the prevalence of malaria in three major regions of Ethiopia. The methods used in

this study will allow to make comparisons of the prevalence of malaria between different SEAs
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whose characteristics differ from one another and to quantify the heterogeneity in these char-

acteristics. In this study, survey enumeration area (SEA) was considered as a cluster and SEA

and cluster, and the malaria RDT outcomes and the prevalence of malaria used interchange-

ably throughout the paper.

The rest of the paper is organized as follows. The data and the statistical methods used for

analyses of these data are introduced in “Materials and methods” section. The results from

applying these methods on the study data are discussed in “Results” section. Finally discussion,

and conclusions and pointers for future study are given in “Discussion” and “Conclusion” sec-

tions, respectively.

Materials and methods

Study data

The data used in this study were obtained from the 2011 Ethiopia National Malaria Indicator

Survey (EMIS). The survey was conducted by the Ethiopian Health and Nutrition Institutes

and its partners, the Ethiopian Ministry of Health in collaboration with the Central Statistics

Agency (CSA), US President’s Malaria Initiative (PMI), United Nations Children’s Fund

(UNICEF), Malaria Control and Evaluation Partnership in Africa (MACEPA/PATH), Malaria

Consortium, The Carter Center (TCC), World Health Organization (WHO), and Interna-

tional Center for AIDS Care and Treatment Programs (ICAP).

The EMIS was a large nationally representative survey designed to cover key malaria con-

trol interventions, treatment-seeking behavior, malaria prevalence; and also to assess anemia

prevalence in children under 5 years of age, malaria knowledge among women, and indicators

of socioeconomic status [3]. The survey consisted of a two-stage sample design. The first stage

involved selecting clusters from a list of SEAs covered in the 2007 Population Census, these

areas made up the primary sampling units (PSUs). Data from three major regional states

namely Amhara, Oromia and Southern Nations, Nationalities and Peoples’ (SNNP) were used

in this study. A total of 335 SEAs where 93 from Amhara, 154 from Oromia and 88 from

SNNP regions were included in the analyses. The choice of these three regions was driven by

the data-sharing limitations imposed by the Ethiopian Public Health Institute, the owner of

the data. However, these regions had covered 77.5% of the national enumeration areas ana-

lyzed for the survey report. During the survey, blood samples were taken from all children

under five years of age in every sampled household and from persons of all ages in every fourth

household per WHO guidelines. The blood sample of a child was taken after obtaining consent

from residents and assistance of the parent/guardian of the child. Then malaria parasite testing

was done using CareStart™ RDT.

Response and explanatory variables

The dependent or response variable in this study was an indicator of whether an individual

had malaria infection (i.e. tested positive for malaria), where 1 signifies tested positive and 0

for tested negative. The covariates or explanatory variables used to explain the malaria RDT

outcomes are defined at two levels, as an individual (and household) characteristics, and SEA

or cluster characteristics. As individual level characteristics, we used age and gender with a

household background variables. The selected household background variables were based on

previous studies (e.g. see [18, 20–22, 30, 31]) and included number of household members,

whether household had mosquito nets that can be used while sleeping or not which was a

dichotomous variable with the categories yes or no; the number of months since the household

sprayed interior walls of the dwelling against mosquitoes; number of sleeping rooms in the

dwelling, the dwelling has windows which was a dichotomous variable with categories yes and
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no; main source of drinking water which was a three-category variable with the categories

unprotected, protected source and piped water; main material of the house wall which was a

three-category variable with the categories other type, wood and finished wall (e.g. bricks);

main material of house floor which was a three-category variable with the categories earth plas-

tered by dung, rudimentary and finished floor (e.g. cemented); main material of the house

roof which was a three-category variable with the categories natural (e.g. thatch / leaf), corru-

gated iron and wood; household toilet facility which was a three-category variable with the cat-

egories no facility, pit latrine and flush toilet; and household wealth index which was a five-

category variable with the categories poorest, second, middle, fourth and richest. A SEA level

characteristics are region which was a three-category variable with the categories Amhara,

Oromiya and SNNP regional states; and median altitude in meters. The SEA was used as a

cluster, i.e. level 2, variable and the individual and household variables as level-1 characteris-

tics. The malaria indicator survey data also include sampling weights for survey design at

level-1.

The median altitude of a SEA may be a marker for cluster-level factors potentially related to

malaria infection, such as climate or environmental conditions, and these factors may affect

everyone in the SEA. Note that except for very few SEAs, the SEAs of the above three regions

in the Ethiopian National Malaria Indicator Survey overlap with “Kebele” which is the smallest

administrative unit of Ethiopia, similar to a neighbourhood or a localized and delimited group

of people. As it was discussed by Duncan, Jones and Moon [32], the notions of compositional

and contextual effects apply not only when the focus is upon context as geographical setting

but also it can be applied when context is seen in terms of administrative setting. In Ethiopia,

the public service delivery is under the jurisdiction of the regional states. The regional health

bureaus are responsible for administration of public health while the districts are responsible

for planning and implementation of services. So, public health administrative processes that

had been taken by district or regional authorities to control malaria transmission in the SEAs

might affect the positive malaria RDT outcomes of individuals living within a particular SEA.

Therefore, in this study we defined the individual and household characteristics or covariates

as composition effects whereas the SEA (or cluster) level characteristics, i.e. median altitude of

a SEA and region where a SEA belongs as contextual effects.

Statistical methods

Multilevel logistic regression model with random effects. Malaria prevalence is likely to

vary in different geographical location either due to environment or lack of public health facili-

ties and these effects enable us to include these unknown variations in the model using random

effects. Furthermore, individuals living in the same SEA may be more similar to each other

than individuals living in other SEA as they share similar environment, public health facilities

in the area and other area characteristics that may condition similar malaria RDT outcome. In

addition, there is correlation among malaria status of individuals living in the same house-

holds. These introduce intra-class correlation, which is a measure of the degree of similarity

among malaria status of members of the same cluster, i.e. SEA or household. However, in the

dataset used in this study only one member per household was tested for malaria from 47.12%

households in the sample. This could introduce large number of missing cases if a within

household variation considered. Therefore, this study employed the multilevel logistic regres-

sion model with SEA specific random effects to account for the intra-class correlation and

hence quantify the variation in a malaria RDT outcome that is accounted for by the SEA

variances.
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Let yij denote the malaria outcome of the ith individual in the jth SEA or cluster identified

by the CareStart™ rapid diagnostic tests (RDT) with probability πij, where yij = 1 denotes the

individual tested positive, while yij = 0 denotes the individual tested negative for malaria. A

multilevel logistic regression model with random effects for the outcome yij is given by

Zij ¼ gðmijÞ ¼ X0ij βþ Z0j α þ bj; i ¼ 1; . . . ; nj; j ¼ 1; . . . ;m; ð1Þ

where g(�) is the link function, Xij = (1, x1ij, . . ., xpij) is vector of p explanatory variables or

covariates measured on the i individual and Zj = (z1j, . . ., zqj) is vector of q covariates measured

on the j SEA (cluster), β and α are vector of fixed regression coefficients or parameters and bj
is a random effect varying over SEAs. It is assumed that bj is independently and normally dis-

tributed with mean zero and variance s2
b, in short bj � Nð0; s2

bÞ. The conditional expectation

μij = E(yij|Xij, Zj, bj) is linked to the linear predictor ηij via a link function g(�) and the condi-

tional distribution of yij belongs to the exponential family.

Sampling weights. The MIS data used in this study include a single overall level-1 weight-

ing variable that incorporates level-2 design issues and the weights account for unequal proba-

bility of selection given different population sizes within enumeration areas. The multilevel

model can be extended to accommodate weights at different levels (e.g. see [33]) using a

pseudo-maximum-likelihood approach. Such an approach is very useful in analyzing survey

data that arise from multistage sampling. In addition, in these sampling designs, survey

weights are often constructed to account for unequal sampling probabilities, non-response

adjustments, and post-stratification. When the sampling weights associated with level-1 units,

they could lead to bias in variance components estimators if they are large [34]. Therefore, to

correct the weights and reduce bias they were scaled using the two methods, called method 1

and method 2 (e.g. see [33, 35]). Let nð1Þj denote the number of level-1 units in the level-2 unit j
and let wi|j denote the weight of the ith level-1 unit in level-2 unit j. Method 1 scales the weights

so that the new weights sum to the effective cluster size [33, 35],

X
nð1Þj

i¼1

lwijj ¼
ð
Pnð1Þj

i¼1 wijjÞ
2

Pnð1Þj
i¼1 w2

ijj

;

where λ is the scale factor and it becomes

l ¼

Pnð1Þj
i¼1 wijj

PnðnÞj
i¼1 w2

ijj

:

Whereas Method 2 scales the weights so that the new weights sum to the cluster sample size

[33, 35]. So that the scale factor is

l ¼
nð1Þj

Pnð1Þj
i¼1 wijj

:

As the study data do not have specific weight for level-2, here we did not weight level-2 in

the analyses. However, as Rabe-Hesketh and Skrondal [33] indicated scaling level-2 weights

has little practical effect. The weighted analyses results across the fixed and variances of the

random effects from the two scaling methods were almost identical at two decimal places.

Even though the results obtained slightly different between these methods, we had the same
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inferential decisions for household- and cluster-level characteristics in each of the fitted

model, therefore for brevity we reported here the results from scaling method 1.

The following three weighted multilevel logistic regression models with SEA-specific ran-

dom effects were fitted to the MIS data. The first was the null model, denoted by M0, which

had only cluster-specific random effects bj and did not contain any individual / household or

SEA characteristics, that is

logitðpijÞ ¼ b0 þ bj;

where β0 is identical for all the SEAs and bj quantify differences between what is measured on

average in the study area and what is measured in each SEA. It was fitted to verify if there is

indeed variation between SEAs in individuals malaria RDT outcomes. The second model

ncorporated included the individual / household-level explanatory variables, called M1, i.e. it

has a form

logitðpijÞ ¼
Xp

k¼0

bk xkij þ bj;

where the coefficients βk, k = 1, . . ., p, where p is the total number of coefficients which

depends on number of categories of predictors in the model, are fixed effect parameters, x0ij =

1 and bj is as defined in model M0. The third model defined using both individual / house-

hold-level and two enumeration area / cluster-specific predictor variables, i.e. it was M1 with

two enumeration area / cluster-specific predictor variables (region and median altitude of

SEA), called M2 and has a form

logitðpijÞ ¼
Xp

k¼0

bk xkij þ
Xq

l¼1

al zljk þ bj;

where αl, l = 1, . . ., q, where q is the total number of coefficients for SEAs level predictors and

it depends on number of categories of predictors, are the fixed effects for SEAs-level predictors

and zljk is the kth observed value of the lth predictor at the jth SEA. Note that the regression

coefficients or fixed effects βk and αl in the above models represent the study area average

effects whereas the SEA-level variance s2
b provides an estimate of what could be explained by

each SEA-level.

Population-average regression coefficients and odds ratios. The interpretations of the

fixed effects parameters in models M1 and M2 can be done via odds ratio using the population-

averaged interpretation and the subject-specific interpretation. The odds ratios from these

models give SEA or cluster-specific measures of associations which are adjusted for the unob-

served SEA effect bj. Their interpretations natural for individual / household level covariates,

however since there is no within SEA variation in the given SEA characteristic in model M2,

i.e. region and median altitude of SEA, these odds ratios are not clear for SEA-level variables

[11]. The population-average odds ratio, which can be produced from the generalized estima-

tion equations coefficient estimate, is an alternative method to compare risk of malaria infec-

tion between two persons from two different SEAs who are identical in other characteristics

apart from the covariate of interest [36]. Under the normality assumption of the random

effects bj, the population-average regression coefficients, denoted by âðPAÞl for SEA
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characteristic in model M2, can be approximated from the multilevel analyses results of M2

[37] as

âðPAÞl ¼
â lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 162 �
3

ð15pÞ
2

 !

� ŝ2
b

v
u
u
t

;

where â l and ŝ2
b are the estimated conditional or SEA-specific regression coefficient and the

estimated SEA variance in model M2, respectively. Zeger et al. [37] have developed the above

formula to equate coefficients between the cluster (i.e. SEA)-specific and population average

models under normality assumption of the random effects. Observe from the above formulae

that the SEA-specific regression coefficient is shrink by a factor 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 162 � 3

ð15pÞ2

� �
� ŝ2

b

r

,

which is called a shrinkage factor [38].

Interval odds ratio. Recall that model M2 contains individual-level (level 1) and cluster-

level (level 2) covariates. Since for the cluster-level variables, i.e. region and median altitude of

SEA, we are comparing two individuals from different clusters, the effects of these variables

have different random effects. Due to this, the usual odds ratio interpretations conditioning on

all the covariates in the model and random effect bj are inappropriate for the cluster-level vari-

ables as their corresponding odds ratio are random variables. Therefore, in this study the

authors applied the interval odds ratio (IOR) to unify the interpretations of fixed and random

effects in a subject-specific approach [11, 38, 39] for the cluster-level independent variables.

The IOR is briefly discussed in the following paragraphs, for mathematical derivations of the

formula see [38].

The IOR is a measure for quantifying the effect of cluster-level variables when using multi-

level logistic regression models [39]. Consider the distribution of the odds ratio comparing

two persons whose values of the given SEA level covariate differ by one unit, e.g. median alti-

tude, but who have identical values for the other SEA level covariates and of the individual /

household level covariates. The IOR is defined as the interval covering the central 80% of odds

ratios between two persons from different SEAs and with different values of SEA-level charac-

teristics. The lower, IORL and upper IORU bounds of this interval are given by

IORL ¼ expðal þ
ffiffiffiffiffiffiffiffi
2 ŝ2

b

p
� F� 1ð0:10Þ

and

IORU ¼ expðal þ
ffiffiffiffiffiffiffiffi
2 ŝ2

b

p
� F� 1ð0:90Þ;

where αl, l = 1, . . ., q is the estimated regression coefficient associated with the lth SEA-level

covariate, ŝ2
b is the estimated variance of the distribution of the random effects, whileF−1(0.10)

= −1.282 and F−1(0.90) = 1.282 denote the 10th and 90th percentiles of a standard normal dis-

tribution, respectively. Observe from the above formula that, wide IOR indicates that the vari-

ability between enumeration areas, i.e. ŝ2
b is large relative to the effect of the SEA-level

covariate. A narrow IOR suggests less variability between SEAs. If the IOR contains one, then

the SEA variability is large in comparison with the effect of the SEA-level covariate. If the IOR

does not contain one, then the effect of the SEA-level covariate is large in comparison with the

unexplained between SEA variation [38].

Quantifying variation: Variance partition coefficient and median odds ratio. The odds

ratio and the IOR allow to measure the association between the odds of the occurrence of the

malaria RDT outcomes and individual / household and SEA-level explanatory variables. They
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do not provide a measure of the effect of SEA on malaria outcomes, also called general contex-

tual effects. Therefore, to estimate the SEA effects on malaria RDT outcomes and to quantify

the variation in the malaria RDT outcomes between SEAs, we applied the variance partition

coefficient (VPC) and the median odds ratio (MOR), respectively.

The effect of the general contextual effects is measured by the VPC or the intra-class corre-

lation coefficient (ICC) [11]. The VPC measures proportion of the total observed individual

variation in the outcome that is explained by the between SEA (i.e. cluster) variation. The VPC

requires an estimate of the variance at the individual level (level-1) and for the standard logistic

distribution this variance is equal to p2

3
[10]. Therefore, in the multilevel logistic regression

models M1 and M2 with a logit link the VPC or ICC is approximated by

VPC ¼
ŝ2

b

ŝ2
b þ

p2

3

;

where ŝ2
b is the estimated enumeration area variance. The higher the VPC, the higher is the

general contextual (i.e. SEA) effects. For further discussion on VPC see Chapter 14 in [10] or

Chapter 4 in [9].

The MOR measures how much variability in the malaria RDT outcomes exists between

SEAs by comparing two persons from two randomly chosen, different SEAs [38, 39]. Consider

two persons chosen randomly from two different SEAs but with the same values of covariates

in the model. The MOR is the median odds ratio between the person at SEA with higher risk

of malaria infection and the person at SEA with lower risk of malaria infection. It is a function

of the estimated SEA, i.e. cluster, variance ŝ2
b and is given by

MOR ¼ expð
ffiffiffiffiffiffiffiffi
2 ŝ2

b

p
� F� 1ð0:75ÞÞ;

where F(�) is the cumulative distribution function of the standard normal distribution, F−-

1(0.75) is the 75th percentile, and exp(�) is the exponential function [38, 39]. Observe from the

above formula that the differences in risk entirely quantified by the cluster-specific random

effects and MOR is always greater than or equal to 1, equal to 1 when ŝ2
b ¼ 1. For a theoretical

derivation of the formula for MOR see [38].

All the multilevel logistic regression models with random effects were fitted with the PROC

GLIMMIX in SAS. Since PROC GLIMMIX in SAS uses the weights provided in the data set

for analysis, to use the scaled weights the scaled weights should be provided in the data set

[40].

Results

Individual, household and cluster characteristics

In this study, there were 9272 individuals who tested for malaria infection. Of these individu-

als, 2384 (25.74%), 4583 (49.43%) and 2302 (24.83%) of them were from Amhara, Oromiya

and SNNP regions, respectively, and of these 47.09 per cent were male (Table 1). The overall

mean (SD) age of the individuals, number of household members, number of sleeping rooms,

number of months since the household sprayed indoor residual and median altitude were

14.33 (17.25), 5.44 (1.93), 1.31 (0.59), 0.88 (1.97) and 1966.57 (379.75), respectively. In the

study regions, about 40.79 per cent of individuals were lived in dwellings that had at least one

window. Over half of the sampled households (53.82%) in the study regions had no mosquito

net, however about 73.44 per cent of sampled households in Amhara regions had mosquito

net. Information about indoor residual spraying (IRS) of interior walls of the dwelling against
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mosquitoes within the last 12 months prior to the survey was also collected. Only 28.72 per

cent of the sampled households had sprayed at least once within the last 12 months. About

57.93 per cent of the sampled household had unprotected source of drinking water whereas

18.71 and 23.36 per cents of them had protected and pipped sources of drinking water, respec-

tively. Almost 80.68 per cent of sampled households had either bamboo / wood with mud or

stone with mud as main material of their dwellings wall, 12.65 per cent of the households had

finished wall and 6.67 per cent of households’ dwellings either had no wall or uncovered abode

or bamboo / reed or carton as main material of their dwellings wall. The finished wall group

Table 1. Descriptive statistics for variables used in the study by region.

Variables Region Total

Amhara Oromiya SNNP

Number of individuals N (%) 2384 (25.74) 4583 (49.43) 2302 (24.83)

Age mean (SD) 16.148 (18.31) 13.688 (17.17) 13.74 (16.10) 14.33(17.25)

Number of household members mean (SD) 5.19 (1.88) 5.47 (1.92) 5.65 (1.98) 5.44 (1.93)

Number of sleeping rooms mean (SD) 1.23 (0.47) 1.34 (0.63) 1.34 (0.61) 1.31 (0.59)

Number of months since sprayed mean (SD) 0.69 (1.71) 0.82 (1.93) 1.18 (2.24) 0.88 (1.97)

Median altitude mean (SD) 2091.15 (379.49) 1916.00 (374.14) 1938.06 (361.89) 1966.57 (379.75)

Rapid diagnostic test (RDT) result Positive, N (%) 65 (2.72) 56 (1.22) 105 (4.56) 226 (2.44)

Negative, N (%) 2322 (97.28) 4527 (98.78) 2197 (95.44) 9046 (97.56)

Gender Male, N (%) 1119 (46.88) 2154 (47.00) 1093 (47.48) 4366 (47.09)

Female, N (%) 1268 (53.12) 2429 (53.00) 1209 (52.52) 4906 (52.91)

Availability of windows No, N (%) 1367 (57.27) 2841 (61.99) 1282 (55.69) 5490 (59.21)

Yes, N (%) 1020 (42.73) 1742 (38.01) 1020 (44.31) 3782 (40.79)

Household uses mosquito nets No, N (%) 302 (26.56) 1398 (65.36) 629 (59.85) 2329 (53.82)

Yes, N (%) 835 (73.44) 741 (34.64) 422 (40.15) 1998 (46.18)

Household used IRS No, N (%) 871 (77.08) 1534 (71.95) 667 (63.65) 3072 (46.18)

Yes, N (%) 259 (22.92) 598 (28.05) 381 (36.35) 1238 (28.72)

Main source of drinking water Unprotected, N (%) 1262 (52.87) 2931 (63.95) 1178 (51.17) 5371 (57.93)

Protected, N (%) 560 (23.46) 693 (15.12) 482 (20.94) 1735 (18.71)

Piped water, N (%) 565 (23.67) 959 (20.93) 642 (27.89) 2166 (23.36)

Main material of house wall Other, N (%) 6 (0.25) 338 (7.38) 274 (11.90) 618 (6.67)

Wood wall, N (%) 2100 (87.98) 3774 (82.35) 1607 (69.81) 7481 (80.68)

Finished wall, N (%) 281 (11.77) 471 (10.28) 421 (18.29) 1173 (12.65)

Main material of house roof Natural roof, N (%) 809 (33.89) 2128 (46.43) 1056 (45.87) 3993 (43.07)

Wood material, N (%) 263 (11.02) 775 (16.91) 715 (31.06) 1753 (18.91)

Corrugated iron & Other, N (%) 1315 (55.09) 1680 (36.66) 531 (23.07) 3526 (38.03)

Main material of house floor Plastered by dung, N (%) 2228 (93.34) 4339 (94.68) 1994 (86.62) 8561 (92.33)

Rudimentary floor, N (%) 146 (6.12) 168 (3.67) 206 (8.95) 520 (5.61)

Finished floor, N (%) 13 (0.54) 76 (1.66) 102 (4.43) 191 (2.06)

Type of toilet facility No facility, N (%) 853 (35.74) 1933 (42.18) 214 (9.30) 3000 (32.36)

Pit latrine, N (%) 954 (39.97) 2263 (49.38) 1360 (559.08) 4577 (49.36)

Flush & hanging toilets, N (%) 580 (24.30) 387 (8.44) 728 (31.62) 1695 (18.28)

Household wealth status Poorest, N (%) 357 (14.96) 1276 (13.76) 247 (10.73) 1880 (20.28)

Second, N (%) 514 (21.53) 956 (20.86) 546 (23.72) 2016 (21.74)

Middle, N (%) 425 (17.80) 745 (16.26) 587 (25.50) 1757 (18.95)

Fourth, N (%) 595 (24.93) 853 (18.61) 393 (17.07) 1841 (19.86)

Richest, N (%) 496 (20.78) 753 (16.43) 529 (22.98) 1778 (19.18)

https://doi.org/10.1371/journal.pone.0273147.t001
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included cement walls, walls made with stones and cement and bricks. Large per cent (43.07)

of the sampled households’ dwellings had natural roof, that is either thatch / leaf or rustic mat

/ plastic sheet as their main roof material, 38.03 per cent of them had either corrugated iron or

calamine / cement fiber or cement / concrete and 18.91 per cent of the households’ dwellings

had either sticks and mud or reed / bamboo or wood planks or wood or roofing shingles as

their main roof material. The majority (92.33%) of the households’ dwellings had earth / sand

or dung plastered floor, 5.61 per cent of the households’ dwellings had either wood planks or

palm / bamboo as their main floor material and only 2.06 per cent of the households’s dwell-

ings had a finished floor which were either ceramic tiles or cement or carpet. Of the sampled

households, 49.36 and 18.28 per cents of them had pit latrine and flush toilet facilities in their

dwellings, respectively, whereas 32.36 of the households had no toilet facility. The wealth index

used in this survey serves as an indicator of level of wealth of a household that is consistent

with expenditure and income measures [3]. Of the sampled households 20.28, 21.74, 18.95,

19.86 and 19.18 per cents of them were in the poorest, second poorest, middle, fourth and the

richest (or highest) wealth quintile, respectively (Table 1).

Fitted multilevel models

Before fitting the models M1 and M2, we have used the stepwise variable selection technique to

determine the covariates to be included in these models. Then we have checked for the pres-

ence of multicollinearity among the selected covariates using the variance inflation factors

(VIF), excluding those with a VIF greater than 5. Then the covariates for the final M1 and M2

models were selected by eliminating those implausible applying the likelihood ratio tests, the

Akaike Information Criteria (AIC) and the Bayesian Information Criteria (BIC). Accordingly,

of the thirteen individual / household characteristics covariates considered, only seven (age,

gender, household had mosquito nets, the number of months since the household sprayed

interior walls of the dwelling against mosquitoes, the dwelling has windows, main source of

drinking water, household toilet facility) were selected for M1, and the two SEA level character-

istics (region and median altitude) and the seven covariates of model M1 were selected for M2.

The model selection process is provided in the Tables A and B in S1 File. We have also fitted

standard logistic regression models ignoring the cluster information or multilevel structure

entirely using M1 and M2 variables (see Table C in S1 File). These models were fitted for com-

parison purpose, otherwise they are completely not suitable for the data in this study. The fit

statistics indicate a substantial improvement in the multilevel version of M1 and M2 compared

to the logistic regression models (see Table 2 and Table C in S1 File), implying the multilevel

models were preferred over the logistic regression models for the study data. Note also that, as

discussed in the Background section, the logistic regression resulted in incorrect inference

results, for example the coefficient for number of months since sprayed is statistically signifi-

cant in the logistic regression models but non-significant in the multilevel models.

The asymptotic chi-square mixture distribution [41] test statistic for testing H0 : s2
b ¼ 0

against H1 : s2
b > 0 in models M0, M1 and M2 takes the values 339.01, 242.19 and 168.87,

Table 2. Fit statistics for models with cluster-specific random effects bj only (M0), with the individual / household-

level predictors and bj (M1), and M1 with cluster-specific predictors (M2).

Fit statistics Fitted models

M0 M1 M2

-2 log(Lik) 1703.19 1661.00 1617.74

AIC (smaller is better) 1707.19 1683.00 1645.74

BIC (smaller is better) 1714.81 1724.96 1699.14

https://doi.org/10.1371/journal.pone.0273147.t002
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respectively with p-value<0.0001 in all the three tests. The large value of the test statistic or a

very small p-value strongly suggests a rejection of the null hypothesis H0 : s2
b ¼ 0 that no clus-

ter-specific random effects should be included in the model. Therefore, these results imply the

need for the SEA (cluster)-random effects in the model.

The estimated intercept for model M0 was −5.468 (with a standard error = 0.255), while the

estimated variance of the SEA-specific random effects was 4.041 with a standard error of

0.695. Thus, the probability for a person who lived in any SEA of the three regions where the

study conducted tested positive for malaria was 0.42% given that the random effect of the SEA

was equal to zero on the logit scale. Thus, taking the inverse logit transformation of the interval

for β0, for 95% SEAs, the SEA-specific probability of a person who lived in the areas had tested

positive for malaria would lie in the interval (0.003, 0.007). Note that because some of bj may

not be equal to zero, the average SEA predicted probability of a person is tested positive for

malaria may differ from the average SEA-specific probability of malaria infection.

The fit statistics or model selection criteria for fitted M0, M1 and M2 were displayed in

Table 2. The values of these criteria suggest that M2 is a preferred model to fit the study. There-

fore, in what follows, we only report results based on M2.

The estimated regression coefficients associated with the individual / household and SEA-

level characteristics (i.e. b̂k and â l with corresponding standard errors in brackets), the p-val-

ues to test βk = 0 and αl = 0, and odds ratio with their 95% confidence intervals (CI) in brackets

for model M2 are given in Table 3. The estimates of odds ratio (OR) of individual tested

Table 3. Estimated odds ratios (95% confidence intervals) for model M2.

Independent variables Estimate (SE) χ2 p-value Odds ratio (95% CI)

Age -0.014 (0.006) 0.0254 0.986 (0.975, 0.997)

Gender, Female -0.328 (0.149) 0.0278 0.720 (0.538, 0.965)

Windows exist, Yes 0.687 (0.197) 0.0005 1.988 (1.351, 2.925)

Number of months since sprayed 0.019 (0.036) 0.6060 1.019 (0.950, 1.093)

Mosquito nets, Yes 0.444 (0.246) 0.0710 1.559 (0.963, 2.525)

Drinking water (Ref Unprotected) 0.0389

Protected source -0.655 (0.295) 0.520 (0.291, 0.927)

Piped water -0.134 (0.236) 0.874 (0.551, 1.389)

Toilet facility (Ref No facility) 0.2284

Flush toilet 0.601 (0.298) 1.825 (1.018, 3.270)

Pit latrine 0.161 (0.258) 1.174 (0.708, 1.947)

Region (Ref Amhara) <0.001

Oromiya -1.045 (0.362) 0.352 (0.173, 0.715)

SNNP 0.258 (0.361) 1.294 (0.637, 2.627)

Median Altitude -0.002 (0.0004) < 0.001 0.998 (0.997, 0.998)

Variance of random effects
s2
b 2.693 (0.643)

VPC or ICC 0.450

Median odds ratio 4.784

Interval odds ratio

Region

Oromiya versus Amhara (0.018, 6.884)

SNNP versus Amhara (0.066, 25.335)

Median Altitude (0.051, 19.535)

https://doi.org/10.1371/journal.pone.0273147.t003
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positive for malaria relative to an appropriate reference group was obtained by taking expo-

nential of the estimates (i.e. expðb̂kÞ and expðâ lÞ).

The p-values show that four of the seven individual / household characteristics, namely age,

gender, household had mosquito nets, the dwelling has windows and source of drinking water

were significantly associated with the odds of malaria infection of individuals living in the

study area. Furthermore, the two SEA-level characteristics, region and median altitude were

also strongly statistically significant (p-value < 0.001).

The results in Table 3 revealed that the odds of malaria decreased as the age of a person

increased (OR = 0.986 with 95% CI: 0.975, 0.997). The OR of positive malaria RDT outcome

for female person relative to male person was 0.720 with 95% CI (0.538, 0.965). Since these

95% confidence intervals do not contain one, they are suggesting that the odds of positive

malaria RDT outcome was significantly decreasing as a person gets older and there was a sig-

nificant difference between male and female groups. However, female person was less likely

infected by malaria in the study area. Individuals who lived in houses with windows were

1.988 times more likely to have had malaria than those lived in houses without windows (95%

CI: 1.351, 2.925). As the number of months since the household sprayed interior walls of the

dwelling against mosquitoes increased the positive malaria RDT outcome was slightly

increased but this increase was statistically nonsignificant (OR = 1.019, 95%: 0.950, 1.093). A

person who lived in dwellings with mosquito net was 1.559 times more likely to had malaria

than those lived in dwellings without mosquito nets (OR = 1.559, 95% CI: 0.963, 2.525).

Compared to persons who were living in dwellings that had unprotected source of drinking

water, the ORs positive malaria RDT outcomes for those in households that had protected

source and piped water as the main sources of drinking water were 0.520 (95% CI: 0.291,

0.927) and 0.874 (95% CI: 0.551, 1.389), respectively. The results also show that those individu-

als residing in households with flush and pit toilets had a higher risk of malaria infection, with

ORs 1.825 (95% CI: 1.018, 3.270) and 1.174 (95% CI: 0.708, 1.947), respectively.

Quantify variation: Variance partition coefficient and median odds ratio. From

Table 3, the estimated between-SEA variance for model M2 was 2.693, which corresponds to

VPC of 0.450. This implies that of the residual variation in malaria RDT outcomes of persons

that were observed after adjusting for seven individual / household and two enumeration area

characteristics, 45.0 per cent was due to systematic differences between SEAs, while the

remaining 55.0 per cent was due to unmeasured differences between persons or households.

The estimated MOR, i.e. the unexplained SEA heterogeneity, was 4.784. This result suggests

that there is high variation between SEAs in malaria RDT outcomes.

To explore the unexplained heterogeneity further and to identify the hot-spots survey enu-

meration areas or districts in the three regions for targeted interventions, we applied the Getis-

Ord G�i statistic [42] to best linear unbiased prediction (BLUP) values of the SEAs’ random

effects (or model random effects). The BLUP values of random effects were obtained after

accounting for the covariates. Fig 1 displays the three regions (with other regions) covering the

study area (panel a) and map showing hot-spots for the SEAs’ random effects (panel b). The

plot in panel (b) shows that there were hot-spots in each of the three regions, for example, in

Amhara region there were hot-spots in Lay Gayint, Mirab Este, Simada, Machakel, Debre

Elias, Anded, Semen Achefe and Chilga districts; in Oromiya region in Dera, Begi, Guto Gida,

Sasiga, Merti, Shala, Qercha, Tero Afeta, Dire and Nono districts, whereas in SNNP region in

South Ari, Shebedino, Chuko, Misha, Lanifaro and Kindo Koyisha districts.

Population-average regression coefficients and odds ratios for SEA-level characteris-

tics. The odds ratios in Table 3 give SEA or cluster-specific measures of associations which

are adjusted for the unobserved SEA effect bj. As discussed in the methodology section, their
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Fig 1. The three regions covering the study area (panel a) and spatial clustering of the BLUP SEAs’ random effects

using the Getis-Ord G�i statistic. (a) Ethiopia map, (b) Hot-spots.

https://doi.org/10.1371/journal.pone.0273147.g001
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interpretations are natural for individual / household level explanatory variables, but these

odds ratios are not clear for SEA-level variables. In such case, one can use the population-aver-

age odds ratio to compare risk of malaria infection between two persons from two different

SEAs who are identical in other characteristics apart from the covariate of interest [36].

Since the estimated variance of the random effects for model M2 is ŝ2
b ¼ 2:693, the corre-

sponding shrinkage factor is 0.720. Since the shrinkage factor is smaller than one, the popula-

tion-average regression coefficients and their corresponding population-average odds ratios

are different from that of the SEA-specific regression coefficients and corresponding odds

ratios given in Table 3. In particular, the population-average odds ratios for the SEA character-

istics, Oromiya region versus Amhara region, SNNP region versus Amhara region and median

altitude of SEA are 0.471, 1.204 and 0.999, respectively. These are different from the SEA-spe-

cific odds ratios displayed in Table 3. These odds ratios are for comparisons of persons of the

same individual / household-level characteristics living in different enumeration areas.

Interval odds ratio. Recall from Table 3 that the SEA explanatory variables coefficients in

model M2 are -1.045, 0.258 and -0.002 and SEA-specific variance is 2.693. Therefore, the 80%

IORs for the two SEA-level characteristics (region and median altitude) are (0.018, 6.884) for

Oromiya region versus Amhara region, (0.066, 25.335) for SNNP region versus Amhara region

and (0.051, 19.535) for median altitude. These results, for example, imply that if one is ran-

domly selecting two persons with identical characteristics, one from SNNP region and one

from Amhara region and comparing their odds of having malaria infection, the odds ratios of

malaria infection will lie within the interval (0.066, 25.335) in 80 per cent of such comparisons.

Since all three intervals contain one, therefore the enumeration area variability is large in com-

parison with the effect each of the two SEA-level variables. This supports the observation made

from the MOR. The intervals also imply that these characteristics do not account for a substan-

tial amount of the SEA heterogeneity. In addition, the intervals, in particular those of SNNP

region versus Amhara region and median altitude are wide, indicating that the variability

between SEAs is large relative to the effects of region and median altitude. These wide intervals

are reflecting a large amount of unexplained variation between SEAs in the malaria RDT out-

comes and suggesting other SEA-level variables are needed to explain the SEA heterogeneity.

Discussion

This paper attempts to provide multilevel logistic regression models with random effect as the

best alternative to analyze the malaria indicator survey data compared to statistical techniques

that researchers commonly use for correlated data, e.g. the generalized estimating equation

(GEE). The GEE does not explicitly account for heterogeneity across SEAs, i.e. between cluster

variation or provide direct estimates of the SEAs variance structure rather it consider these as

nuisance parameters. Furthermore, unlike the multilevel logistic regression models with ran-

dom effect with the GEE one cannot assess the effect of individual / household-level or SEA-

level factors on the SEA-level variation.

The results of this study clarified the association between the malaria RDT outcomes of

individuals and their age and gender, that their vulnerability to malaria infection decreases sig-

nificantly with increasing age. Females were less likely infected by malaria in the study area.

The result on age agrees with the findings of [19, 20, 31, 43–46] and the gender finding is simi-

lar to those of Baragetti, et al [21, 46, 47], Roberts and Matthews [19] and Ugwu and Zewotir

[20].

The household characteristics, specifically socio-economic factors such as whether the

dwelling had windows or not and the household main source of drinking water were signifi-

cantly positively associated with household member’s malaria infection. The positive
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association of positive malaria RDT outcomes with the dwelling had windows could be that

windows created more entry points for the mosquito if these windows were not closed prop-

erly or during peak biting times.

The number of months since the household sprayed interior walls of the dwelling against

mosquitoes before the survey was positively associated with an individual’s malaria RDT out-

come but the association was statistically nonsignificant. The positive association implies that

the shorter the period since a household sprayed the lower the risk of malaria infection.

Researches show that the indoor residual spray (IRS) associated with reduced malaria risk [48,

49]. The nonsignificant association result in the current study could be due to low per cent of

the sampled households (28.72%) had sprayed at least once within the last 12 months (i.e.

Household used IRS in Table 1) and in the study data, for individuals from households which

had not sprayed indoor residual, the number of months since the household sprayed interior

walls before the survey was captured as zero month. However, the variable Household used

IRS was not included in the fitted models because it had high correlation with some of the pre-

dictor variables. Although, it was non-significant, the positive association of the number of

months since the household sprayed interior walls of the dwelling against mosquitoes before

the survey with an individual’s malaria RDT outcome in the current study supports the find-

ings of the above researches.

The current study showed that there was a positive association between household has mos-

quito nets and the prevalence of malaria in the study regions, this contradicts results reported

in malaria literature. However, this association was statistically nonsignificant. The positive

associate of having mosquito nets with the prevalence of malaria could be because mosquito

nets are delivered to areas with high malaria burden or due to either households did not treat

the nets with insecticide or inappropriate use of the nets or perhaps an individual or a house-

hold member was exposed to mosquito bites during other times of the day or evening when

the net was not in use. This also could be due to household members did not get proper train-

ing on how to use the nets from local public health workers. In addition, less than half of the

sampled households in the study regions had no mosquito nets, this may increase the vulnera-

bility of individuals living in the households which had no mosquito nets to malaria infection.

Therefore, the regional government should frequently provide IRS to households and mos-

quito nets to those households which do not have in malaria hot-spots areas and the popula-

tion at risk, and further educate people about their advantages. The results also showed that

good quality source of drinking water was associated with a lower risk of malaria compared to

unprotected source. This result similar to the results of [17, 50] showing there was a significant

association between unprotected water sources and malaria prevalence. The unprotected

sources such as irrigation ditches / channels, or dam can create breeding sites for larvae [51].

This may suggest that the regional governments should expand the provision of protected

water sources or piped water to malaria hot-spots areas [17]. There was a significant negative

association between positive malaria RDT outcomes and median altitude, which showed that

the odds of malaria for individuals in the study regions decreased with an increase in median

altitude. This agrees with the studies conducted in Ethiopia [16], Kenya [52], Uganda [19] and

Ghana [17].

Beside identifying significant risk factors associated with malaria infection, the analyses

allowed us to quantify heterogeneity in odds ratio scale by using characteristics from the odds

ratios between pairs of randomly selected persons from different SEAs. The SEA-level variance

decreased as the individual / household- and SEA-level characteristics were introduced in the

fitted models suggesting that when accounting for the individual / household- and SEA-level

characteristics, part of the variability which is relevant at the SEA-level (level-2) becomes

lower. This also means that the SEA-level variance quantifies part of the variability which is
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relevant at SEA-level but not explained by SEA-level characteristics or factors introduced in

the model.

The 80 per cent IORs for the SEA-level characteristics in model M2 contain one implying

these characteristics do not account for a substantial amount of the SEA heterogeneity. The

intervals are wide, indicating that the SEA variability is large in comparison with the effect

each of the two SEA-level explanatory variables. Even though the MOR reduced when the SEA

explanatory variables introduced in model M2 compared to other fitted models, but its value

was high. Hence, still there is a large amount of unexplained variation between SEAs in the

malaria RDT outcomes. Overall this suggests that other SEA-level variables are needed to

explain the SEA heterogeneity. Furthermore, the presence of hot-spots in the spatial patterns

of SEAs’ random effects imply that not all of the SEA-level heterogeneities in malaria preva-

lence in the study regions were explained by the individual / household and SEA characteris-

tics. The spatially heterogeneity in malaria prevalence indicates an imperative for more regular

surveillance to detect emerging and existing malaria hot-spots areas for targeted health inter-

ventions by authorities to prevent malaria transmission, especially in settings where there are

limited resources.

Conclusion

In the present study, the multilevel logistic regression with random effects allowed us to

describe the effects of the different sources of heterogeneity and associations between malaria

RDT outcomes. The models yield odds ratios that have SEA-specific, which have within SEA

interpretation. The methods used in this study, such as the estimator of population-average

effect of SEA characteristics and IOR, which is the summary measure of the effects of these

characteristics have allowed to make comparisons of malaria RDT outcomes between different

SEAs whose characteristics differ from one another and to quantify the heterogeneity in these

effects. The VPC or ICC and the MOR have allowed us to quantify the magnitude of the effect

of SEA or the general contextual effect, by quantifying the magnitude of the variation in

malaria RDT outcomes between SEAs. Further, the spatial clustering analysis on the BLUP of

model random effects help to verify that there is unexplained heterogeneity in malaria preva-

lence in the study regions and to identify malaria hot-spots. Such approach yield more

extended information that can be helpful in public health policy, for example, estimation of

the extent to which individuals within a given SEA are correlated with one another in relation

to malaria RDT outcome, i.e. estimation of VPC (or ICC), may provide information about the

efficacy of focusing intervention on SEAs instead of individuals. Beside quantifying the varia-

tion, the models used allowed us to identify significant risk factors associated with malaria

infection. Therefore, the public health policy makers should pay attentions to those significant

factors, such as improving the availability of pure drinking water. In addition, they should pro-

vide households mosquito nets and IRS, and should train households to spray the interior

walls of their dwellings against mosquitoes more frequently. The results also show regional

variation in malaria infection prevalence, thus special attention should be given to those people

living in districts that were identified as hot-spots.

Malaria presence depends mainly on climatic factors such as temperature, humidity, and

rainfall. Malaria is transmitted in tropical and subtropical areas, where Anopheles mosquitoes

can survive and multiply, and where malaria parasites can complete their growth cycle in the

mosquitoes. Human behavior factors, often dictated by social and economic reasons, can influ-

ence the risk of malaria for individuals and communities. For example, human activities can

create breeding sites for larvae such as standing water in irrigation ditches and burrow pits;

and population movement and migration [53]. In this study, however the general contextual
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factors were defined at the SEA level where the individual / household resided. Therefore, rela-

tive to people activities and mobility, this level could hide part of the environment. As many

dimensions and determinants of environment interrelated, interpretation of results concern-

ing area factors is usually complex [54]. The differences between SEAs could be due to bio-eco-

logical or human factors. Further, the climate could affect the malaria cycle and vector

development. The inclusion of these factors in the multilevel models may explain some of the

SEA heterogeneity, but these were not introduced in the models because the MIS data do not

contain these measurements. However, these factors are strongly correlated with altitude,

which synthesizes climatic and vegetal conditions. Therefore, part of the altitude influence cer-

tainly reflects the influence of climatic factors on malaria. In this paper, our analysis was done

using data extracted from EMIS for three regions, therefore the results should be interpreted

with caution. The findings are limited to these regions and not necessarily generalizable to the

country.
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