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Security evaluation of quantum key 
distribution with weak basis‑choice 
flaws
Shi‑Hai Sun1*, Zhi‑Yu Tian1, Mei‑Sheng Zhao2 & Yan Ma2

Quantum key distribution (QKD) can share an unconditional secure key between two remote parties, 
but the deviation between theory and practice will break the security of the generated key. In this 
paper, we evaluate the security of QKD with weak basis-choice flaws, in which the random bits used by 
Alice and Bob are weakly controlled by Eve. Based on the definition of Li et al. (Sci Rep 5:16200, 2015) 
and GLLP’s analysis, we obtain a tight and analytical bound to estimate the phase error and key rate 
for both the single photon source and the weak coherent source. Our approach largely increases the 
key rate from that of the original approach. Finally, we investigate and confirm the security of BB84-
QKD with a practical commercial devices.

Based on the principle of quantum mechanics, “quantum cryptography” is a possible means of implementing 
unconditional secure communication. One famous quantum cryptography approach is quantum key distribution 
(QKD) combined with One-Time pad. Since the proposal of the first QKD protocol BB841, QKD has attracted 
much interest. The unconditional security of QKD had been proven in both perfect2 and imperfect3,4 devices. 
QKD has also been experimentally demonstrated in fibers5,6, free space7,8, and satellites9,10. Multi-user quantum 
networks based on these results have become available in many countries11–14.

However, because practical devices are imperfect, some assumptions of the theoretical analysis may be vio-
lated in practical situations. If the gap between theory and practice is exploited by an eavesdropper (Eve), 
the security of the final key may be broken. In fact, many loopholes have been discovered in practical QKD 
systems15–21. These loopholes are closed by two main approaches: device-independent QKD protocols and secu-
rity patches. The former include full-device-independent QKD22,23, measurement-device-independent QKD24–26, 
and semi-device-independent QKD27. Security patches account for the parameters of practical devices (as many 
as possible) in the security model. Although device-independent QKD can remove all or a portion of the loop-
holes, the task remains technologically challenging, especially in practical commercial QKD networks. Thus, 
most practical QKD systems implement security patches.

In the BB84 protocol, both Alice and Bob must determine how to prepare and measure the quantum states. 
For this purpose, they require random bits. In practical situations, the random bits may be weakly known or 
controlled by Eve, and the security of the generated key is compromised. A typical attack that exploits the weak 
randomness of QKD is wavelength attack16,17. The security of QKD with weak randomness was first studied 
by Li et al.28, and has since been applied to different cases29,30. In Li’s analysis, if the legitimate parties use the 
“one-step post processing method” to distill the final key, even a small degree of non-randomness will rapidly 
reduce the final key rate. The key rate can be improved if the legitimate parties adopt the “two-step post process-
ing method”, or biased basis protocol, in which Alice and Bob distill the key from the rectilinear and diagonal 
bases, respectively. However, to maximize Eve’s information, they must perform global optimization, which is 
hampered by at least two disadvantages: large time cost and convergence to a local optimum. The time cost is 
incurred by the complexity or cost of post processing, and local (rather than global) optimization compromises 
the security of the generated key.

To mitigate these problems, we develop an analytical formula that estimates the key rate for both the single 
photon source (SPS) and the weak coherent source (WPS). In numerical simulations, our method significantly 
increased the key rate over the original method of Li et al.28. For example, the original method of Ref.28 can gener-
ate no secure key for a SPS with a basis-choice flaw of 0.1 when the bit error rate exceeds 3.4%, but our method 
achieves a final key rate of 0.45 under these conditions. Furthermore, to evaluate the performance of QKD under 
wavelength attack, we also estimate the key rate of a practical QKD system with a passive basis-choice.
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Results
Weak randomness and one‑step post processing.  This section briefly reviews the analysis of Ref.28. 
Alice determines her quantum state from two random bits: x0 for bit and x1 for basis. Meanwhile, Bob chooses 
his basis from a random bit, y. As the final key is distilled only when Alice and Bob choose the same basis 
( x1 = y ), the following analysis is limited to the case x1 = y . In a practical QKD system, x0 ( x1 ) may be weakly 
controlled by Eve with a hidden variable �0 ( �1 ). Setting k and k′ = [0, 1] as the values of x0 and x1 , respectively, 
the probabilities of obtaining x0 = k and x1 = k′ are respectively given by

Here 
∑

i p�0=i =
∑

j p�1=j = 1 . Due to the existence of the hidden variable �0 , we cannot guarantee that 
p(x0 = 0|�0 = i) = p(x0 = 1|�0 = i) = 1/2 holds for all i, even if p(x0 = 0) = p(x0 = 1) = 1/2 holds. The same 
conclusion is reached for p(x1 = k′) . To evaluate the weak randomness of x0 and x1 , the deviations is defined as

respectively. Here, 0 ≤ ε0, ε1 ≤ 1 define the amount of prior information known to Eve.
When the hidden variables �0 = i and �1 = j are given, the quantum state shared by Alice and Bob can be 

written as28

with

Here, µ, ν ∈ {0, 1} , and qµ,ν is the probability that Eve performs different operators on the quantum state |ϕ��0=i . 

These probabilities satisfy 
∑

µ,ν qµ,ν = 1 . I is the unity matrix, X and Z are Pauli matrices, and H = 1√
2

[
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1 − 1

]

.

In the following, we first discuss the case of SPS, then expand our results to WPS. In SPS, the total key rate 
is given by

The key rate for a given i, j is

where ei,jbit ( ei,jphase ) is the bit error (phase error) of the given i, j. Because an experiment reveals only the total bit 
error ebit =

∑

i,j p�0=ip�1=je
i,j
bit , Eq. (5) can be rewritten as

Here ephase is the total phase error, and the second inequality uses the Jensen inequality because H(x) is concave. 
Before obtaining the lower bound of the key rate, we should estimate the upper bound of ephase . The authors of28 
proved that for the density matrix given by Eq. (3), the upper bound of the phase error can be written as
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The final key rate of a SPS (Eq. 7) is then rewritten as

In this expression, the superscript o distinguishes the original method from our proposed method, which is 
introduced later. Most practical QKD systems use a WPS. Following GLLP’s analysis31, the key rate of Eq. (5) is 
then written as

Here the subscript s denotes the key generated from the signal state with intensity s. Qi,j
s  ( Ei,js,bit ) is the total 

gain (bit error) for a given i,  j, and Qi,j
s,1 ( ei,j

1,bit ) is the yield (bit error) of the single photon pulse for the 
given i,  j. The terms Qs =

∑

i,j p�0=ip�1=jQ
i,j
s  ( Qs,1 =

∑
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i,j
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i,j
1,bit ) are the total gain and error, respectively, for all i, j. f (Es,bit) = f (E

i,j
s,bit) = 1.22 is 

the efficiency of the error correction, which can be considered constant. In the third inequality, we recognize 
that Qs ≥ Q

i,j
s ≥ 0 and Qs,1 ≥ Q

i,j
s,1 ≥ 0 for all i, j. The gain Qs and error Es,bit in the equality can be directly 

measured in experiments, and the contributions of the single photon pulse ( Qs,1 and e1,bit ) should be estimated 
by the decoy state method32–34.

Our method with one‑step post processing.  In this section, we show that the upper bound of the 
phase error (Eq. 8) is suboptimal, and that the key rate can be improved by imposing a tight bound. Given the 
density matrix ρi,j

AB (Eq. 3), the bit error rate and phase error rate are respectively written as
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the four Bell states. Thus we have

where δ0 is defined in Eq. (9), and 0 ≤ qµν ≤ 1 for all qµν . Thus, the upper bound of the phase error can be 
written as

Submitting the above inequality into Eq. (5) and applying the method described in “Weak randomness and one-
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Figure 1 compares the numerical simulation results of the method in Ref.28 (Eqs. 10, 11) and our method 
(Eq. 15). Our method significantly improved the key rate for both SPS and WPS (the simulation method is given 
in “ Formulations of simulation”. For example, in the SPS case with ε0 = ε1 = 0.1 , the maximal tolerable error 
rate was only 3.4% in the method of Ref.28, but was increased to 8.5% by our method. In the WPS case with 
ε0 = ε1 = 0.1 , no secure key was generated by the method in Ref.28, but a final key of fiber length 132 km was 
generated by our method.

To evaluate the security of practical QKD with weak randomness flaws, we test the performance of com-
mercial BS which may suffer from the wavelength attack. The experimental scheme and results are given in 
“Formulations of simulation”, and the estimated key rate is listed in Table 1.

Biased base QKD protocol.  In some practical QKD systems, two bases (Z and X) can deliver different gain 
or error rate performances. Therefore, to improve the total key rate, we let Alice and Bob observe bases Z and X, 
respectively. In this section, we analyze the security of biased base QKD with weak randomness. When Alice and 
Bob distill the key from their respective bases, the key rate becomes

Here ebrec and eprec ( ebdia and epdia ) are the bit error and phase error rates, respectively, in the rectilinear (diagonal) 
basis. Their values are given by
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Table 1.   Key rates estimated by our method. Here γ = (Rideal − Rprac)/Ridealdefines the practical key rate 
( Rprac ) relative to the ideal key rate without basis-choice flaws ( Rideal ). In the simulations, we set ε0 = 0 , and 
the other parameters were those assumed in Fig. 1.
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Figure 1.   Key rates in the original analysis28 (red lines) and the method proposed in this paper (blue lines). 
Results are plotted for SPS (left) and WPS (right). The black solid line is the result of the ideal case without 
basis-choice flaws. To simplify the simulation, we assume ε0 = ε1 and infinite decoy states. The WPS case 
employs the experimental results of GYS31; thus, the signal state intensity is s = 0.48 and the other parameters 
are set as follows: dark count rate Y0 = 1.7× 10

−6 , background error rate e0 = 0.5 , fiber loss 0.21 dB/km, Bob’s 
transmittance ηBob = 0.045 , and error rate of optical devices edet = 3.3% . The method of Ref.28 generates no key 
in the case of WPS with ε0 = ε1 = 0.1.
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In these expressions, eb00 and eb01 ( eb10 and eb11 ) are the bit error rates in the rectilinear and diagonal bases, 
respectively, given a hidden variable �1 = 0 ( �1 = 1 ). prec and pdia are the probabilities that Bob obtains the 
outcome in the rectilinear and diagonal bases, respectively. They are calculated as

r e s p e c t i v e l y ,  w h e r e  prec1 = p�1=0p(x1 = 0|�1 = 0)   ,  prec2 = p�1=1p(x1 = 0|�1 = 1)   , 
pdia1 = p�1=0p(x1 = 1|�1 = 0) , and pdia2 = p�1=1p(x1 = 1|�1 = 1).

As the bit error rates ebrec and ebdai can be directly measured in experiments, we need only to estimate the upper 
bounds of the phase error rates eprec and epdai . Using Eq. (17), the phase error eprec becomes

By the above method, we also obtain

Here we assume that the bit weak randomness in Z-basis is the same as that of X-basis, thus the same δ0 is used 
in the equations above. But, by considering δ0 in the bases respectively, our analysis is also valid for the QKD 
system with different bit weak randomness.Then Eq. (16) can then be written as

Applying the method above and GLLP’s analysis, the key rate given by Eq. (21) can be expanded to the WPS 
case as follows:

where Qs,rec ( Qs,rec ) and Ebs,dia ( Ebs,dia ) denote the total gain and bit error rate, respectively, in the rectilinear 
(diagonal) base, and Q1,rec ( Q1,rec ) and eb

1,dia ( eb
1,dia ) are the gain and bit error rate, respectively, of a single photon 

pulse in the rectilinear (diagonal) base.

Discussion
We evaluated the security of QKD with weak basis-choice flaws. The previous analysis of Li et al.28 was extended 
by applying a tight analytical bound for estimating the phase error. The final key rate was significantly improved 
by the proposed approach. For example, when ε0 = ε1 = 0.1 and the bit error rate exceeded 3.4%, no final key 
was generated by the previous method, but a final key rate of 0.45 was achieved by our method. Applying our 
analysis, we evaluated the security of a practical QKD system in which Bob passively chooses his basis with a 
BS. In experiments using a practical BS with typical parameters, the key rate was reduced by less than 6%. Thus, 
the proposed method improves the QKD performance even in weak randomness scenarios.

Note that, although we analyze the weak randomness of basis-choice in this paper, there are other imperfec-
tions in source and detection. Thus, how to take all of these imperfections in one general mode is still an open 
question, and we will discuss it in our further works.
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Methods
Formulations of simulation.  This Appendix shows the simulation formulations of Fig. 1 and Table 1. In 
the absence of Eve, the total gain and error rate are respectively written as

Here, ω ∈ {s} and ω ∈ {d} are the intensities of the signal state (s) and decoy state (d), respectively, Y0 is the 
dark count of the single photon detector, and e0 is the background error rate. η is the total transmittance of the 
system, which is given by

In this expression, ηBob is the transmittance of Bob’s optical devices and the efficiency of single-photon detec-
tors, and α is the channel loss. In QKD with a weak coherent source, photon-number-dependent attacks (such 
as photon-number splitting attacks) must be removed by the decoy state method. Assuming that Alice and Bob 
use infinite decoy states, the gain and quantum bit error rate of a single photon pulse are respectively given by

Experiment.  In some practical QKD systems, Bob passively chooses his measured basis with a BS. Because 
this scheme requires no active modulator, it enables high-speed, low-cost, and low-complexity operations. How-
ever, (as is well known) the transmittance of the BS may depend on the wavelength of the light, opening a 
potential loophole for wavelength attack by Eve16,17. In this section, we evaluate the performance of QKD with a 
passive BS by the above analysis.

The experimental scheme is shown in the left panel of Fig. 2. The BS was encased in a temperature box that 
controlled its working temperature. The input of the BS was a tunable laser (model JW3113; province, country), 
and the light output was measured by a dual-channel power meter (model JW8103D, province, country). In a 
perfect BS, the measured power of both power meters is identical. The performance of a real BS is defined by its 
deviation ratio as follows:

Here, P0 and P1 are the powers of the light measured by the two optical power meters, T is the working tempera-
ture of the BS, and � is the wavelength of the input light.

The measured deviation ratio of the BS was measured at different wavelengths of the input light and different 
working temperatures. The results are shown in the right panel of Fig. 2. From the experimental results, the weak 
randomness in Bob’s basis-choice can be estimated as

The estimated key rates in the SPS and WPS cases are listed in Table 1 (see main text). At communication dis-
tances smaller than 100 km, the key rate was reduced by less than 6%. Topical subheadings are allowed. Authors 
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Figure 2.   Experimental scheme (left) and measured deviation ratio (right) of a practical commercial BS that 
evaluates the key rate under a weak measured basis flaw. The deviation ratio is determined by Eq. (26) and T is 
the working temperature of the BS, which is controlled by the temperature box.
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must ensure that their “Methods” section includes adequate experimental and characterization data necessary 
for others in the field to reproduce their work.
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