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A B S T R A C T

Objective: This study aims at understanding the dynamic functional brain organization in Accelerated Cognitive
Ageing (ACA) in epilepsy. We also assess to which extend the (abnormal) effective connectivity between brain
networks correlates with the (estimated) decline in IQ scores observed in the ACA patients.
Material and methods: Two multi-echo resting-state fMRI scans of 10 ACA patients and 14 age- and education-
matched healthy controls were acquired. A task-based fMRI was acquired in-between those two scans, for
possible cognitive fatigue effects on reserve capacity. Granger causality (GC), a measure of effective connectivity
between brain regions, was applied on 7 major cognitive networks, and group-wise compared, using permutation
testing statistics. This was performed on each of the resting-state sessions independently. We assessed the cor-
relation between the cognitive deterioration scores (representing cognitive decline), and the paired-networks
granger causality values.
Results: The cingulate cortex appeared to be more engaged in ACA patients. Its dynamics towards the right fronto-
parietal cortex, salience network, and the dorsal attention networks (DAN) was stronger than in controls, only in
the first resting-state scan session. The Granger causality from the DAN to the default mode network (DMN) and
from the ventral attention network (VAN) to the left fronto-parietal network (FPL) was also stronger in ACA
patients and again only in the first scans. In the second resting-state scans, only the DMN was more strongly
connected with the cingulate cortex in ACA patients. A weaker GC from DMN to FPL, and stronger GC from the
salience network to cingulate cortex were associated with more decline in the Full-scale IQ and more GC from
DMN to VAN would lead to more decline in the Perceptual Reasoning Index in ACA.
Conclusion: The results are in line with the hypothesis of over-recruitment at low cognitive load, and exhaustion at
higher cognitive load, as shown by the compensation-related utilization of neural circuits hypothesis (CRUNCH)
model for ageing. Moreover, the DMN to VAN directed connectivity strongly correlates with the (estimated)
decline in the Perceptual Reasoning Index, which is also in line with a recent study on ageing with mild cognitive
impairment in elderly, and the posterior-anterior shift in aging (PASA) model. This study therefore supports the
idea that the cognitive decline in our patients resembles the decline observed in healthy ageing, but in an
accelerated mode. This study also sheds light on the directions of the impaired connectivity between the main
networks involved in the deterioration process, which can be helpful for future development of treatment
solutions.
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1. Introduction

Cognitive impairment is a common comorbidity in patients with ep-
ilepsy. It has been estimated that up to 65% of all patients with epilepsy
show cognitive impairment, which also account for about half the burden
of disease [1, 2]. Such impairments have frequently been reported in
literature but only for specific cognitive functions, for specific types of
epilepsy, e.g., memory impairments in temporal lobe epilepsy, or exec-
utive function impairment in frontal lobe epilepsy. Cognitive decline (i.e.
global cognitive deterioration) is less frequently reported [3, 4, 5, 6]. In
addition, more global cognitive decline had been already identified with
the induction of the concept of epilepsy dementia by Growers in 1889
[7]. Research on this epilepsy comorbidity suggests that it almost
exclusively occurs in case of child on-set epilepsy where accumulation of
medication and (tonic-clonic) seizures over decades yield to gradual
decline of higher cognitive functions. Therefore, the decline is viewed as
a ‘chronic accumulation’ model, where the cognitive outcomes of the
patients resembles those in dementia. However, recently we proposed a
new ‘cascadic’model of cognitive decline in epilepsy [4], where patients
display cognitive deterioration but do not meet the criteria of Alzheimer
Disease or the aforementioned epilepsy dementia comorbidity. The
process is seen in adult-onset epilepsy and seem to mimic ‘healthy’ brain
ageing, but at a higher speed. Hence this cognitive decline has been
termed Accelerated Cognitive Ageing (ACA) [4]. As the patients in this
subgroup often suffer other brain pathology before the onset of epilepsy,
the decline is ‘cascadic’ and represents a double hit phenomenon: where
the first ‘hit’ makes the brain vulnerable but still recovers due to cogni-
tive reserve capacity, and the second ‘hit’ irreversibly damages the brain
and its cognitive capacity, and leads to ACA [8]. More specifically a clear
global cognitive deterioration takes place in relatively short period of
time after the (usually late) onset of epilepsy (the second hit) on in-
dividuals with an already reduced reserve capacity from a traumatic
brain injury, or (cardio)vascular diseases (the first hit).

The neurological mechanism of action of ACA is poorly understood.
Functional MRI studies can shed light on such mechanisms and can give
information on which brain areas or networks are involved, by
comparing functional networks in ACA patients to a control group. In our
previous work we showed that Granger causality can be used in neuro-
imaging to assess causality between time series of the fMRI signals (dy-
namic functional connectivity) [9]. Indeed, in several neuropsychiatric
disorders, such as ADHD, autism or depression, effective dynamics
appeared to be a powerful tool in describing neuronal correlates of such
pathology [9, 10, 11]. In the present study, we use the same technique,
i.e. dynamic functional connectivity (Granger causality) in an attempt to
find relevant mechanisms of action of the ACA epileptic co-morbidity,
more specifically in the dynamics between cognitive-related functional
brain networks.

2. Methods

2.1. Participants and cognitive measures

Fourteen adult outpatients with a confirmed diagnosis of epilepsy and
ACA were recruited from the centre for epilepsy Kempenhaeghe (Heeze,
the Netherlands). For a description of the diagnostic process and the
clinical characteristics of the included patients see [12]. The ACA pa-
tients were consecutively age- and education-matched with 16 healthy
controls with no history of neurological or psychiatric illness. This study
was approved by the Local Medical Ethical Committee. All subjects
signed informed consent. 70% of ACA patients had at least one
co-morbidity, in which 57% were cerebrovascular, and 43% cardiovas-
cular co-morbidities.

After checking and pre-processing the fMRI-data, four ACA-patients
and two healthy controls were excluded due to excessive head motion
(n ¼ 3), MRI artefacts (n ¼ 2) and an unexpected detection of a brain
tumour (n ¼ 1). The effective sample therefore consisted of 10 ACA-
2

patients and 14 healthy controls. Main demographic and clinical data
are shown in Table 1. Importantly, deterioration scores were calculated
by subtracting the estimated premorbid IQs (OPIE-IV scores [13]) from
the actual IQs, resulting in three IQ-deterioration scores: det-FSIQ,
det-VCI and det-PRI.
2.2. MRI protocol

T1-weighted anatomical images were acquired using a 3.0 T imaging
system (Philips Achieva) with a 3D Fast Field Echo (FFE) sequence: echo-
time (TE) ¼ 3.8 ms; repetition time (TR) ¼ 8.4 ms; inversion time (TI) ¼
1035 ms; flip angle (FA)¼ 8 deg.; field of view (FOV)¼ 240� 240 mm2,
with 180 sagittal slices; voxel size ¼ 1 � 1 � 1 mm3; and SENSE factor ¼
1.5.

All subjects underwent a series of functional MRI sessions: two
resting-state (RS) fMRI scans and one task-based scan with an activation
paradigm in between (silent word-generation task). The first resting-state
fMRI scan (RS1) provided the baseline functional architecture in both
subject groups. The following task-based fMRI-scan served as a means of
initiating cognitive (task-based) activity. Data of this scan were not
further analyzed. The second resting-state scan (RS2) revealed whether
functional connectivity changed after cognitive effort. FMRI data were
acquired using multi-echo echo-planar imaging (ME-EPI) sequences with
3 echoes: TEs ¼ 12, 35, 58 ms, TR ¼ 2 s; FA ¼ 90 deg.; SENSE factor ¼
2.7; 208 dynamics for a total scan time of 7 min; 27 axial slices (with no
gap), 64 � 64 matrix FOV, with a 3.5 � 3.5 � 4.5 mm3 voxel size.
Figure 1 shows theMRI protocol the participants underwent. In this study
only RS1 and RS2 are analyzed, compared between the groups, and
correlated with ACA psychological deterioration scores, as explain in the
next sessions.
2.3. Preprocessing and resting-state network extraction

First, data were preprocessed to be denoised and normalized. We used
the pipeline of Kundu et al., to clean all fMRI data of each individual and
each session [14]. Briefly, these steps were co-registration to the
T1-weighted anatomical images, followed by a co-registration of MNI152
space. Also slice timing correction, and head-motion correction was
applied. The benefit of using multi-echo being that one can model the
T2* decay. Using this T2* maps, a weighting on each voxel and for each
echo is done and the echoes are then optimally combined. This maxi-
mizes the BOLD SNR. However, noise is still present in these normalized
fMRI data, and non-BOLD signal remains. Hence the multi-echo (ME)
Independent Component Analysis (ICA) cleaning is performed [15]. In-
dependent components are ranked through a goodness-of-fit method, to
be split into BOLD and Non-BOLD components. After regression of the
bad components upon the optimally combined-echo fMRI scans,
multi-echo cleaned resting-state fMRI data are obtained for each partic-
ipant/session [16]. This ME-ICA cleaning has been proven to be the most
robust de-noising methods for resting-state fMRI, and to improve sub-
stantially statistical power [17, 18].

Second, in order to extract resting-state networks (RSNs), we
temporally concatenated all the aforementioned ME-ICA cleaned scans
(all participants and sessions), and applied the group-ICA method [19]
implemented in FSL (https://fsl.fmrib.ox.ac.uk/fsl). The multi-echo
cleaning preprocessing, described in the previous paragraph, found in
average (among all participant/scans) 18 activity-related independent
component (or networks). Therefore, we chose 18 degrees-of-freedom for
our group-ICA decomposition, to extract 18 group-RSNs. After the
group-ICA, dual-regression is used to obtain the subject-specifics com-
ponents (RSNs) and their time series associated [20]. After matching our
RSNs maps with Smith and colleagues’ brain template of the 10 most
relevant resting-state networks, and after visual inspection, we selected
14 effective networks and 4 artefactual ones (see Figure 2A) [21,22].

https://fsl.fmrib.ox.ac.uk/fsl


Table 1. Demographic, clinical, and psychological characteristics of included
subjects.

ACA Healthy controls

Age in years M
(SD) range

61.3 (8.9)
50-74 y

62.2 (9.8)
47-79 y

Gender 70.0% male 35.7% male

Handedness 100.0 % right-
handed

92.9% right-
handed

Age at epilepsy
onset M (SD) þ range

35.0 (14.6)
15-59 y

-

Duration of
epilepsy M (SD) þ range

22.3 (15.2)
1-50 y

-

Type of epilepsy 40.0% cryptogenic
localization-related
40.0% symptomatic
20.0% idiopathic

-

Dominant seizure typea 10.0% simple partial
20.0% complex partial
20.0% absence
0.0% tonic-clonic
50.0% seizure free

-

Status epilepticus 50.0% yes

Seizure frequency 50.0% seizure (sz) free
0.0% < 1 sz/y
20.0% 1–5 sz/y
20.0% 1 sz per 2 months
0.0% monthly sz
10.0% weekly sz
0.0% daily sz

-

Drug loadb 1.5 (0.4) -

WAIS-IV
indexes
FSIQ
VCI
PRI
WMI
PSI

76.7 (8.7)*
94.7 (10.6)
75.8 (6.9)*
79.6 (10.0)*
67.0 (14.4)*

108.4 (13.4)
106.2 (12.2)
103.2 (13.8)
104.9 (13.3)
114.6 (8.7)

Deterioration
scoresc

Det-FSIQ
Det-VCI
Det-PRI

-22.1 (5.0)*
-0.5 (8.9)
-21.0 (4.5)*

-1.3 (8.2)
0.2 (6.0)
0.0 (8.7)

Memory scores
Auditory
Visual
Delayed memory

93.9 (9.7)*
92.7 (7.0)
93.5 (8.4)*

109.9 (12.6)
102.8 (10.9)
106.3 (10.9)

Note: * ¼ p < 0.01 sign. difference between groups. WMI: Working Memory
Index. PSI: Processing Speed Index.

a Dominant seizure type is determined for the two years preceding neuropsy-
chological assessment.

b The prescribed daily dose of antiepileptic medication divided by the defined
daily dose.

c Deterioration scores ¼ [WAIS-IV (actual) IQ-scores - OPIE-IV (pre-morbid)
IQ-scores].

A. Bernas et al. Heliyon 6 (2020) e03951
2.4. Granger causality and statistical analyses

The selected RSNs have a time-series associated. These time courses
are used to apply Granger causality (GC) for all pairs of RSNs under
consideration. One signal Y is said to Granger cause another signal X, if
the past of Y and X can better predict the future of X rather than with the
past of X only [23]. The estimation of the F-statistics of GC strength, that
describes directed functional connectivity, i.e. causality, between two
Figure 1. MRI
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networks time-series, were extracted using the MVGC toolbox [24]. This
was applied on all participants' scan sessions. The terms ‘causal’,
‘directed’, ‘dynamic’, or ‘effective’ (functional) connectivity, represent
the same concept of pairwise (between-network) GC, and are here
interchangeable.

After obtaining each participants' GC adjacency matrix, where each
entry represents a directed pairwise causal connection, a group com-
parison can be conducted. Since F values from GC were not normally
distributed, we applied an exact (permutation) statistical testing, in order
to find differences between ACA and Controls in their brain network
causality. For all participants and the RSNs we applied 5000 permuta-
tions followed by 2-samples 1-sided t-tests. If our ‘true’ (ACA vs CON) T-
score is greater than the 97.5 percentile of all the other T-scores, we can
affirm significances in the difference between the cohorts (similar to
having an alpha ¼ 0.025 in a parametric 2 sample 1-sided t-tests). This
was repeated for both sides, to see when ACA > CON and when CON >

ACA in the between-networks causality strengths; and for the two
resting-state scans (RS1 and RS2), to see differences or similarities be-
tween the two sessions, and get insights on the effect of the task-based
fMRI that was acquired in-between.

Finally, we also correlated the psychological deterioration (det-)
scores with the aforementioned GCs for all ACA participants. Deteriora-
tion scores are negatively signed, hence a positive correlation between
det-scores and GC values would mean that with higher causality between
two networks, the less deterioration is observed. Conversely, the more
causality, the more deterioration, would be shown by a negative corre-
lation. This correlation analysis was also performed on a setupwherein IC
time-series from RS1 and RS2 were normalized and concatenated before
undergoing the GC analysis described above. If effective connectivity of a
pair of RSNs correlates with a deterioration score in all of the 3 setups
(RS1, RS2, and RS1/RS2 concatenated), we have strong evidence that the
pairwise directed connectivity is associated with the accelerated cogni-
tive decline, no matter the resting states the participants are experiencing
(pre-task RS1, or post-task RS2). Hence, consistent results of significant
correlations ensure reproducibility and independency of the results to the
cognitive load or brain exhaustion state, making them strong predictors,
or biomarkers of the ACA phenomenon.

3. Results

3.1. Resting-state networks selection

Using the group-ICA decomposition of FSL, we extracted 14 effective
subject-specific spatial maps (RSNs) and their associated time series. Out
of these 14 networks, 7 were relevant for our study. We retained the
cognitive-related networks and removed sensory motor cortices and vi-
sual system networks. Furthermore, cerebellar networks were excluded.
The 7 aforementioned networks used in our study are presented in
Figure 2, and are comprised of the Default-mode network (DMN), the
fronto-parietal right and left (FPR, FPL) networks, the Cingulate cortex
network (CING), the Ventral and Dorsal Attention Networks (VAN, DAN)
and the Salience Network (SN).
3.2. Granger causality differences

Using the 7 relevant networks we applied Granger causality for all
(42) pairs of networks and compared the strength of the effective con-
nectivity between the groups. Figure 3 shows the results of the statistical
comparison, for each resting-state scan separately.
protocol.



Figure 2. A) Networks extracted from group-ICA, the ‘good’ networks on the left, and the ‘bad’ networks (noise) on the right; B) Cognitive-related networks wherein
their time series (network fluctuations) are used for the Granger (dynamics) analysis.
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In RS1, the ACA group displayed a stronger causal connectivity as
compared to controls. For 3 directed effective connections from the
cingulate cortex: CING - > FPR, and CING - > SN, CING - > DAN; for an
effective connectivity from the ventral attention network: VAN - > FPL;
and for the pair DAN - > DMN. Also, in RS1, the ACA group showed a
weaker dynamic connectivity for the directed connectivity DAN - > FPR.

Regarding the second resting-state session ACA were significantly
stronger in their effective connectivity only for the pair: DMN - > CING.
We summarized our strongest (lowest p-values) evidence of group dif-
ference results in pairwise granger causalities, involving the cingulate
cortex, in Figure 5A.
Figure 3. Pairs of networks that showed differences in causality strength between
direction of the causal connectivity between networks.

4

3.3. Correlation between Granger causality and deterioration scores (in
ACA)

In a post-hoc analysis we calculated the (Pearson) correlations be-
tween the Granger causality values between pairs of networks, and their
deterioration scores. Figure 4 depicts the statistically significant results
(correlation p-value < 0.05), per resting-state session. This was only
performed for the ACA patients as deterioration scores in the controls
were approximately 0. The effective connectivity FPR - > SN, and SN - >
CING correlated negatively with the deterioration in full scale IQ in RS1,
whereas in RS2, DMN< -> FPL (both directions), DAN -> SN negatively
patients and controls, in resting-state session 1 and 2. Red arrows indicate the
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correlates and SN - > VAN positively correlates with det-FSIQ. For the
RS1/RS2 concatenated time-series analysis, det-FSIQ positively corre-
lates with the dynamics DMN - > FPL, and negatively correlates with
Granger causality SN - > CING.

Regarding correlation with det-PRI scores, in the 3 setups (RS1, RS2,
RS1/RS2 concatenated) patients had a negative correlation with the
effective connectivity DMN - > VAN. The dynamics FPL - > SN showed
positive correlation with deterioration scores, i.e., less FPL - > SN causal
connectivity would lead to greater deterioration.

The Granger causality from DMN to VAN was consistently associated
with det-PRI in ACA patients, i.e. the effect was present in RS1, RS2, and
the RS1/RS2 concatenation set-ups. This consistency was not found for
det-FSIQ. Also, the decline in PRI is the most relevant psychological
characteristics for diagnosing ACA. Therefore, the correlation between
DMN- > VAN GC and the det-PRI score is our main and most reliable
significant result and is depicted in Figure 5B.

4. Discussion

Many fMRI studies have identified age-related changes in within-
network functional connectivity but few have reported an association
of between-network connectivity and age-related cognitive deficits [25,
26]. Researchers have mainly focused on DMN connectivity, using cor-
relation methods [27]. Also, decreased connectivity within the nodes of
the main RSNs, including the DMN, salience, executive, and attention
networks has been shown. These results has been observed using ICA [28,
29], seed-based connectivity [30], and graph-theory in a whole brain
approaches [31, 32]. Similar research has been done in case of
mild-cognitive impairment in elderly [33]. Few studies have investigated
the effective connectivity within cognitive networks. In these studies, the
effective connectivity within and between the DMN, dorsal attention
Figure 4. Significant correlation between effective connectivity (Granger causality) a
in blue arrows; positive correlation in red arrows. Note: a negative correlation means
the effective connectivity is. Whereas for a positive correlation: the higher the declin
and RS2 of each participant were normalized and concatenated before undergoing t
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networks and salience networks were studied in ageing [34, 35]. In our
study, we conducted an effective connectivity analysis (Granger causal-
ity), not only for the DMN, DAN, and SN, but also the FPL, FPR, CING, and
VAN (i.e., the executive-control networks). It is shown that the latter
networks are the pillars of cognitive processing, and take part of the
DMN, SN, and EXE triad useful for rest-task switching [29, 36, 37], and
task flexibility [38]. This task switching and flexibility is an important
impairment in ACA patients [8, 12].

Our results suggest that ACA patients have stronger between-
networks effective connectivity from the cingulate cortex compared to
the age- and education-matched control participants. We showed that
CING over-recruits the fronto-parietal (executive) networks (FPR, SN,
DAN) in the baseline resting state fMRI (main group-difference results in
Figure 5A). This is in line with the compensation-related utilization of
neural circuit hypothesis (CRUNCH) model that has been proposed to
describe the use of compensatory mechanisms in ageing [39]. Briefly,
CRUNCH proposes that older adults recruit greater neural resources to
compensate at a lower cognitive load but that at a higher cognitive load,
older adults show equivalent or lower activation and worse cognitive
performance compared with young adults [26, 40]. This effect has been
observed in the PFC and also in the parietal cortex, concretely in the
precuneus and posterior cingulate and both in episodic memory tasks and
in working memory tasks [25]. Our DAN, FPR, and SN are clearly the
constituent networks of the PFC and parietal cortex and are more
strongly causally connected from the CING in RS1 as compared with
controls. Hence, we may hypothesize that ACA patients recruit greater
neural resources to compensate as seen at the baseline rest (RS1, low
cognitive load). However, after cognitive activation (task-based fMRI),
such compensatory mechanisms fail and in the second resting state scan
(after a cognitive task) ACA patients showed equivalent or lower acti-
vation as compared with healthy elderly. The over-recruitment of CING
nd the psychological deterioration scores; negative correlation (anti-correlation)
that the more negative a deterioration score is, i.e. higher decline, the stronger
e is, the lower the effective connectivity strength is. *RSN time series from RS1
he GC analyses.



Figure 5. (A) Main evidence of abnormal connectivity in ACA, with increased GC between the cingulate cortex and three cognition-related RSNs; (B) and the most
consistent (in RS1 and RS2) correlation between the GC and the decline in Perceptual Reasoning Index (det-PRI) in ACA.
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towards the other cognitive networks is also supported by the study of
Cao et al. where ageing has proven to have an effect on the resting-state
functional connectivity in anterior cingulate cortex, with increased
connection with salience network parts (CING - > SN) but reduced
integration with DMN [41]. Also, the increased dynamic connectivity
from CING and the decreased connectivity DAN - > FPR in ACA can be
explained by the Posterior-Anterior Shift with Aging (PASA) model [42].
PASA hypothesizes deficits in ageing to activate regions in the posterior
midline cortex — as for our reduced DAN - > FPR — accompanied with
increased activity in medial frontal cortex — as for our CING-related
dynamics. In this regard, this posterior-anterior shift commonly results
in the disconnection between the anterior and the posterior nodes of the
DMN, which correlates with age-related cognitive decline [28, 30]. More
research has shown evidence that ageing reduces within-DMN connec-
tivity and increases connectivity between the DMN and external regions
[25]. The within-network decrease and between-network increase of
connectivity can be seen as a decreased network segregation, which oc-
curs across the healthy adult lifespan [43, 44]. We also found an
over-recruitment of the effective connection DAN - > DMN in RS1, that
can be explained by the decreased anti-correlation between DMN and
DAN proven to occur in ageing at rest [45].

The posterior-anterior shift caused by the disruption within the DMN,
is in line with our correlations between effective connectivity and the
det-FSIQ. Indeed, the PASA model could explain that a weakened DMN -
> FPL and a strengthened SN - > CING were linked to stronger IQ de-
clines. The short-range increase of connectivity between the SN and CING
seems however to contradict the findings of Onoda et al. [46], but is in
line with other research [25, 31]. Indeed the salience network has proven
to relate to cognitive capacity, where the within-salience connectivity
was anti-correlated with fluid intelligence, and multitasking [34]. This
closely resembles the short-range increased connectivity SN - > CING
that correlated with the decline in cognition (FSIQ deterioration).
Moreover, when concatenating RS1 and RS2 network time series, ACA
showed a strong positive correlation between DMN - > FPL and the
det-FSIQ, i.e., more directed connectivity from DMN to FPL would lead to
6

less FSIQ deterioration in ACA. This is in line with the recent findings that
a strengthened DMN-LFC (left frontal cortex) connectivity supports
reserve (i.e., a relatively preserved cognition in disproportion to the
extent of neuropathology) in mild cognitive impairment and ageing [47,
48]. Indeed, for our ACA patients, a weaker DMN - > FPL leads to a
stronger cognitive deterioration, as if ACA patients' reserve capacity was
not able to maintain a relatively preserved cognition. This is also in line
with our cascadic hypothesis, and lack of cognitive reserve after the
second ‘hit’ in ACA.

IQ decline in the Perceptual Reasoning Index (PRI) is mainly corre-
lated with DMN and the (ventral) attention network dynamics. More
specifically, the stronger the Granger causality from DMN to VAN there
is, the more deterioration in fluid IQ is expected (Figure 5B). It has been
shown that between-network connectivity with DMN is challenged with
ageing, and it is associated with sharpening of the boundaries of the
default mode network, and integration of the insula and cingulate with
fronto-parietal attentional regions [49]. This is similar to our det-PRI
correlation with the SN - > CING dynamic. Anderson and his col-
leagues also showed decreasing correlation between the default mode
and attention control networks with age, which is in line with our
consistent DMN - > VAN dynamics that correlated with the deterioration
in PRI [49].
4.1. Limitations

In this study three major limitations are to be mentioned. First, we
acknowledge that a third group of patients with epilepsy but no ACA,
would have strengthened the results interpretation. Some of the (GC)
effects depicted in ACA patients might be apparent because of epilepsy
itself; and adding such a group could better confirm that effect seen here
are solely made by the ACA comorbidity. Only few recent studies could
show impaired directed causal inferences in brain connectivity [50, 51,
52]. The impaired directed connectivity was epilepsy-type dependent,
and located in epileptic tissues, in an EEG study [50]; or was different
from healthy controls in the subcortical-cortical connectivity, in frontal
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lobe and temporal lobe epilepsy [51, 52]. The latter studies were also
using resting-state fMRI but were limited in trying to shed light on
impaired mechanism in focal epilepsies with significant results related to
specific clinical characteristics (consciousness-impairing seizure in [51]
and duration of epilepsy in [52]). Those characteristics are not relevant
in our ACA case, where the cognitive decline is of importance. ACA pa-
tients are more heterogeneous in their epilepsy forms, seizure types,
refractoriness, and durations (see Table 1), so our results should not
reflect the effects of a specific type of epilepsy. Additionally, ACA cannot
be separated from Epilepsy, since it is defined as an epileptic
co-morbidity. Even though cognitive decline is seen in other degenera-
tive disorders, such as in epilepsy dementia or Alzheimer disease, in such
cases, degeneration do not only impaired fluid intelligence, but also
long-term memory. We are not aware of other ageing disorder that
develop similar, and quite specific, cognitive decline comorbidity.

As a second limitation, we hypothesized that the cognitive task
executed prior a resting-state has an effect on the resting state the brain
experienced, which is debatable. However, we want to emphasize we do
not hypothesize that the task itself and its evoked dynamics could persists
at rest afterwards, but rather, that brain cognitive reserve capacity is
challenged [47, 53]; and that brain fatigue could still persist for a few
minutes right after executing a cognitively demanding task [54]. So that
the speed of communication, and the use of the (activity-related) network
resources, weakened after the task. It also happens for healthy controls,
but at lesser degree, as found in our study.

Thirdly, Granger causality validity in fMRI data is still debated.
However, a research group simulated fMRI data and found out that GC at
the fMRI level is monotonically related to GC at the neural level, i.e., GC
from BOLD signals reliably detect neural GC [55]. Hence, they concluded
that neural activity (or here, neural GC) changes, such as in a patholog-
ical group, can be detected from the fMRI data. But in our case,
time-series are not direct BOLD signals, but indirect (BOLD-derived)
network activity, so it remains uncertain that the monotonic relationship
between neural GC and the network GC is fully preserved.

Overall, caution should be taken with respect to the interpretation of
the effect of (network) brain dynamics on the IQ decline, and further
research with a third group, an epilepsy-control group, could alleviate
these limitations and uncertainties.

5. Conclusion

Accelerated cognitive ageing (ACA) in epilepsy shows decline in
cognitive abilities that resemble normal processes of cognitive ageing in
older subjects, but at greater speed. Comparing brain resting-state dy-
namics of ACA patients and age-, and education-level-matched controls,
we mainly found strengthened effective connectivity between large-scale
cognitive networks in ACA. This shows a tendency of over-recruitment as
a compensatory mechanism, in line with the CRUNCH model for ageing.
However, this seem to be a fragile mechanism that fails after cognitive
load, showing an exhaustion phenomenon, corroborating our second-hit
model, which describes the lack of cognitive reserve capacity in ACA
patients. Furthermore, the DMN to ventral attention network directed
connectivity strongly correlates with the decline in the perceptual
reasoning IQ, which is in line with the PASA model. Both CRUNCH and
PASAmodels show that the deterioration in the patients can be described
as processes that are seen in older individuals, albeit in our patients at a
younger age.
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