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Tradeoffs in microbial carbon allocation may mediate soil
carbon storage in future climates
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A commentary on

Microbial response to multi-factor cli-
mate change: effects on soil enzymes
by Steinweg, J. M., Dukes, J. S., Paul, E., and
Wallenstein, M. D. (2013). Front. Microbiol.
4:146. doi: 10.3389/fmicb.2013.00146

Climate-induced changes in soil micro-
bial physiology impact ecosystem car-
bon (C) storage and alter the rate of
CO2 flux from soils to the atmosphere
(Allison et al., 2010). The direction
and magnitude of these microbial feed-
backs depend on changes in saprotrophic
bacterial and fungal C allocation in
response to altered temperature, pre-
cipitation, and nutrient availability. Soil
microbes may differentially allocate C in
changing environments by altering pro-
cesses such as enzyme production, C
use efficiency (CUE), or biomass stoi-
chiometry (Figure 1). However, because
these mechanisms may operate simultane-
ously and interact, microbial physiological
feedbacks on soil C storage are difficult
to predict. For example, initial increases
in microbial CUE or biomass C:N may
be counteracted by increases in enzyme
production to acquire limiting organic
nutrients.

Few studies have standardized micro-
bial process rates, such as extracellular
enzyme production or respiration, to the
size of the microbial biomass. Examining
process rates alone may obscure the micro-
bial physiological mechanisms that under-
lie climate-induced changes in soil C
cycling, leading to contradictory patterns
among different studies. For instance, in a
large-scale survey of soil protease activities

from climate manipulations, drier and
warmer conditions resulted in lower extra-
cellular enzyme activities (EEA) com-
pared to ambient conditions (Brzostek
et al., 2012). In contrast, drier soils have
also been found to stabilize extracellular
enzymes in water films, reducing enzyme
turnover rates and increasing potential
activities (Lawrence et al., 2009; German
et al., 2012).

CHALLENGING PARADIGMS
In this issue, Steinweg et al. (2013) exam-
ine the microbial mechanisms underly-
ing ecosystem responses to climate change
by quantifying soil EEA and microbial
biomass under factorially manipulated
precipitation (ambient, 50% of ambient,
150% ambient) and temperature [ambi-
ent, + 0.7 (low), + 2.05 (medium)
and + 2.70◦C (high)] treatments in the
Boston-Area Climate Experiment. Overall,
Steinweg and colleagues observed a trend
for lower EEA per gram dry soil in
drought and warming treatments relative
to ambient conditions that was depen-
dent on soil depth. However, mass-specific
EEA was unaffected by climate manipu-
lations except in June 2009, where ele-
vated temperature led to higher EEA of
all enzymes per unit microbial biomass in
low and medium warming, but lower EEA
per unit biomass at the highest warming
level. Similarly, mass specific phosphatase
and cellobiohydrolase EEAs were higher in
drought treatments in June 2009.

These findings challenge our existing
knowledge about the mechanisms driv-
ing EEA in soils. In the laboratory, EEA
increases linearly with temperature over
the narrow temperature range observed

here (German et al., 2012). Steinweg and
colleagues illustrate how considering EEA
per unit microbial biomass can unveil a
more complex relationship, with mass-
specific EEA increasing with temperature
up to a threshold around 2.2◦C; well
within the range of predicted warming
over the next 100 years (IPCC, 2007).
The effects of soil warming are often con-
founded by decreases in soil moisture in
natural systems. Therefore, the non-linear
correlations between EEA and soil temper-
ature observed here and elsewhere (Allison
and Treseder, 2008; Brzostek et al., 2012)
may be driven by limitations on enzyme
and substrate diffusion.

LINKING CHANGES IN MICROBIAL
PHYSIOLOGY WITH ECOSYSTEM
BIOGEOCHEMICAL CYCLES
The work of Steinweg and colleagues is an
example of how shifts in gross process rates
emerge from multiple interacting micro-
bial mechanisms. However, these physi-
ological feedbacks are often not incor-
porated into biogeochemical models. For
instance, despite ample evidence that soil
microbes shift allocation to enzyme pro-
duction depending upon resource avail-
ability, EEA is often modeled simply as
a function of the microbial biomass pool
size. This approach may be valid in some
ecosystems under steady state conditions
or during the growing season (Kivlin and
Treseder, 2013). However, complex inter-
actions among changes in the proportion
of active microorganisms under different
temperatures and soil moistures can alter
microbial biomass growth and enzyme
allocation (Lennon and Jones, 2011), vio-
lating this assumption in altered climates.
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FIGURE 1 | Three mechanisms through which microorganisms can shift C allocation: (A)

extracellular enzyme activities, (B) carbon use efficiency, or (C) biomass stoichiometry. Each of
these pathways can alter C storage in soils. Trend lines indicate expected responses when each
mechanism is operating in isolation. In (A), increased C allocation to extracellular enzymes can
decrease soil C storage by enhancing C cycling rates. Shading in (B and C) shows uncertainty
owing to expected interactions between the total microbial biomass pool, CUE, biomass C:N and
enzyme production. Increased CUE or biomass C:N can augment soil C storage by increasing the
amount of C retained in the soil microbial biomass. Alternatively, increased C in microbial biomass
may cause microbes to produce more enzymes per unit biomass to acquire limiting organic
nutrients, ultimately decreasing soil C stocks.

Based on the results of the current study,
for example, traditional models may over-
estimate soil C storage under warming if
they do not capture observed increases in
mass-specific EEA, which could accelerate
rates of soil C cycling over time. However,
the shifts in mass-specific EEA appeared
to be only seasonal and potentially could
be counteracted by changes in total micro-
bial biomass or CUE over the longer term.
Microbial CUE, or ratio of growth to
C uptake, is reduced under warming in
both empirical tests and theoretical mod-
els (Manzoni et al., 2012; Tucker et al.,
2013), yet this response can be medi-
ated by changes in substrate recalcitrance
(Frey et al., 2013) or microbial commu-
nity composition (Bradford et al., 2008;
Waring et al., 2013). Shifts in microbial
CUE under altered precipitation regimes
are more variable. Drought conditions can
lead to higher microbial CUE over the
short term, as osmolytes are accumulated
in the microbial biomass (Manzoni et al.,
2012), but repeated moisture pulses can
cause decreases in CUE (Tiemann and
Billings, 2011).

Shifts in intracellular C allocation may
also affect element cycling at the ecosys-
tem scale if the stoichiometric require-
ments of the microbial biomass are

altered. Steinweg and colleagues found
that enzyme ratios varied with season,
indicating higher microbial C vs. N
demand in the winter. They suggest that
changes in enzyme stoichiometry may
reflect increased microbial maintenance
cost during freeze-thaw cycles, which
impose a high C cost on the microbial
biomass. Shifts in biomass C:N have also
been observed in response to altered sub-
strate stoichiometry (Fanin et al., 2013)
and changes in community composition
under drought (Cregger et al., 2012).
Increasing biomass C:N may enhance soil
C storage if biomass turnover is slow
(Treseder et al., 2010) or if microbes syn-
thesize extremely recalcitrant compounds
that are difficult to decompose (Rillig et al.,
2001). However, if microbial residues are
decomposed more rapidly than plant lit-
ter inputs (e.g., Throckmorton et al., 2012)
or larger microbial biomass C pools corre-
spond to higher respiration rates over the
long term, increases in the size or C con-
tent of the microbial biomass may actually
enhance soil C loss.

FUTURE DIRECTIONS
Based on the findings of Steinweg et al.
(2013) many of the parameters in cur-
rent microbial physiology models may

be better represented as allocation trade-
offs rather than constant values. In this
instance, microbial allocation to resource
acquisition (EEA) vs. growth may be
dependent on the degree of environmen-
tal stress and biomass maintenance costs.
Representing these parameters as func-
tions rather than fixed values may enhance
the predictive power of current soil C
models, and increase their applicability
to ecosystems where fewer parameters are
known. Indeed, plant physiological mod-
els that incorporate C and resource allo-
cation tradeoffs often perform better than
either fixed-value or trait-based models
[reviewed in Franklin et al. (2012)].

While Steinweg et al. (2013) focus on
saprotrophic fungi and bacteria, physio-
logical responses of mycorrhizal fungi to
changing climates can also impact soil C
storage (Clemmensen et al., 2013). Ecto-
and ericoid mycorrhizal fungi can produce
hydrolytic and oxidative enzymes, while
arbuscular mycorrhizal fungi may pro-
duce hydrolytic phosphatases (Tisserant
et al., 2012). All mycorrhizal fungi likely
invest more in enzymes to acquire nutri-
ents rather than C, as C is provided by
the host plant (Smith and Read, 2008;
Rineau et al., 2012). Similar to sapro-
trophs, mycorrhizal fungi can shift C allo-
cation between biomass and respiration in
response to altered environmental condi-
tions, and appear to have decreased CUE
under novel temperature and moisture,
but not fertilization (Johnson et al., 2002;
Heinemeyer et al., 2006, 2007; Hawkes
et al., 2008). However, more research into
the tradeoffs between growth, respiration
and EEA for mycorrhizal fungi is needed,
as mycorrhizal fungi have been identi-
fied as the dominant pathway by which
recently fixed C enters soils in several sys-
tems (Godbold et al., 2006; Clemmensen
et al., 2013).

Multiple processes will have large con-
sequences for soil C storage in future
climates, including climate controls
on enzyme production and turnover,
and tradeoffs in microbial allocation to
growth, respiration, and resource acqui-
sition. Yet, because all of these processes
interact, the effects of climate change on
soil C pools and fluxes can be extremely
variable. As Steinweg and colleagues
demonstrate, measuring mass-specific
microbial responses is the first step toward

Frontiers in Microbiology | Terrestrial Microbiology September 2013 | Volume 4 | Article 261 | 2

http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology
http://www.frontiersin.org/Terrestrial_Microbiology/archive


Kivlin et al. Microbial allocation affects soil carbon

improving our understanding of microbial
physiological responses to altered climate
regimes. However, studies that simulta-
neously examine the links among these
mechanisms will be necessary to predict
when tradeoffs in microbial C allocation
occur and their long-term effects on soil C
storage. By viewing ecosystem responses to
temperature and precipitation through the
lens of microbial physiology, we may arrive
at a more mechanistic understanding of
soil feedbacks on climate change.
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