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Abstract 20 

How learning is affected by context is a fundamental question of neuroscience, as the ability to 21 

generalize learning to different contexts is necessary for navigating the world. An example of swift 22 

contextual generalization is observed in conditioning tasks, where performance is quickly 23 

generalized from one context to another. A key question in identifying the neural substrate 24 

underlying this ability is how the hippocampus (HPC) represents task-related stimuli across different 25 

environments, given that HPC cells exhibit place-specific activity that changes across contexts 26 

(remapping). In this study, we used calcium imaging to monitor hippocampal neuron activity as 27 

animals performed a conditioning task across multiple spatial contexts. We investigated whether 28 

hippocampal cells, which encode both spatial locations (place cells) and task-related information, 29 

could maintain their task representation even when their spatial encoding remapped in a new spatial 30 

context. To assess the consistency of task representations, we used advanced dimensionality 31 

reduction techniques combined with machine learning to develop manifold representations of 32 

population level HPC activity. The results showed that task-related neural representations remained 33 

stable even as place cell representations of spatial context changed, thus demonstrating similar 34 

embedding geometries of neural representations of the task across different spatial contexts. Notably, 35 

these patterns were not only consistent within the same animal across different contexts but also 36 

significantly similar across different animals, suggesting a standardized neural encoding or 'neural 37 

syntax' in the hippocampus. These findings bridge a critical gap between memory and navigation 38 

research, revealing how the hippocampus maintains cognitive consistency across different spatial 39 

environments. These findings also suggest that hippocampal function is governed by a neural 40 

framework shared between animals, an observation that may have broad implications for 41 

understanding memory, learning, and related cognitive processes. Looking ahead, this work opens 42 

new avenues for exploring the fundamental principles underlying hippocampal encoding strategies. 43 
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Introduction 44 

How can learning can be generalized across contexts as well as remaining localized to one 45 

context? This question is fundamental to both neuroscience and philosophy1-4.  Deficits in 46 

generalization or inappropriate generalization are hallmarks of many disorders, including 47 

autism5,6, schizophrenia7,8, and post-traumatic stress disorder9,10. In spite of their importance, 48 

many questions related to generalization remain to be answered. 49 

 50 

The hippocampus (HPC) is important for learning, memory, and navigation, and damage to 51 

this region can disrupt contextual learning11-17. Many aspects of context, including an animal’s 52 

spatial location and the presence of local and distal cues, can be represented by ‘place cells’ in 53 

the HPC18-22. The activity of many HPC cells therefore changes drastically in different 54 

environments (i.e. place cells remap), even when a task can be generalized across these different 55 

contexts23-25. A major open question is if and how representations of task-relevant stimuli, which 56 

are also found in the HPC26-30, can be maintained against the background of remapped place 57 

cells. A further question is whether different animals solve this problem using the same, or 58 

similar, neural strategies. 59 

 60 

Until recently, the neural mechanisms behind contextual learning have been challenging to 61 

investigate due to the need for tracking large numbers of cells across various environments and 62 

learning stages— tasks which were unachievable prior to the development of calcium imaging31-63 

36. The use of calcium imaging in this study has allowed for a detailed exploration of 64 

hippocampal neuron dynamics, bridging previous gaps between studies of hippocampal 65 
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cognitive maps and the hippocampal bases of memory and learning. The traditional separation 66 

between memory and navigation fields of HPC research is thus in the process of narrowing37,38. 67 

This research addresses two fundamental questions of learning and memory. The first 68 

question pertains to the persistence of learning across varying contexts. The modulation of 69 

hippocampal cells by spatial variables results in substantial changes to cell activity in different 70 

environments24,25,39,40; how can conditioning-related neural representations remain stable amid 71 

such remapping? The second question is the extent to which neural representations in the 72 

hippocampus are invariant and consistent, not only within an individual across diverse contexts, 73 

but across different individuals; is there a standardized neural encoding or 'neural syntax' in the 74 

for learning and memory in the hippocampus? A commonality of encoding across animals would 75 

imply that the functionality of the HPC is informed not solely by individual experiences but also 76 

by a standardized framework of neural algorithms. Such a finding would provide key insights 77 

into the underlying neural mechanisms that govern learning and memory, helping to identify 78 

specific brain circuits and algorithms that drive behavior. 79 

To answer these questions, we trained animals on an HPC-dependent conditioning task 80 

which is rapidly generalized between spatial contexts41,42. We examined the same task in 81 

disparate contexts and looked for changes in a representation of spatial location provided by a 82 

population of place cells while the representation of the task features remains unchanged. We 83 

found that the representations of the conditioning task were maintained as the animal generalized 84 

learning from one environment to another, even as the representation of place changed. 85 

Surprisingly, we also found that the neural representation of the task was consistent across 86 

animals. 87 
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 88 

This study demonstrates that despite the well-known phenomenon of place cell 89 

remapping24,25,39,40, there exists a stable population-level neural representation of task features 90 

that persists across diverse environments. These representations also show consistency across 91 

different individuals, indicating a standardized neural encoding or 'neural syntax' for the 92 

conditioning task within the hippocampus. This novel finding suggests the existence of a 93 

universal coding mechanism for associative learning in the hippocampus, a principle that could 94 

reorient our approach to studying memory and could challenge our current understanding of 95 

cognitive processes. 96 

 97 

 98 

  99 
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Results 100 

We trained a cohort of 5 freely moving rats in a conditioning task in one of two distinct 101 

environments, labeled A and B; the rats had been previously familiarized with the environment 102 

by the time the training began (Fig. 1a, Fig. S1). Environment A was an unscented rectangular 103 

enclosure with wire floor and walls, and white lighting; environment B was a scented ovular 104 

enclosure with white solid floor and walls, and red lighting (Fig. 1b). Both environments were 105 

located at the same spot in the room relative to external cues (see Methods); animals could see 106 

external cues out of the top of both environments, as well as out of the sides of environment A 107 

(animals also reared often, allowing them to see out of the sides of environment B). During 108 

training sessions, we recorded cellular activity in the hippocampal CA1 region via miniscopes, 109 

using Gcamp8m for calcium imaging (CaImg). We used both calcium events and calcium traces, 110 

as indicated when applicable, to perform data analysis (see methods). 111 

 112 

Animals easily transfer a conditioning task across environments 113 

During the initial phase of our study, freely-moving rats (Fig. 1b) underwent training for 114 

trace eyeblink conditioning (tEBC) (Fig. S2), a hippocampus-dependent classical conditioning 115 

task that serves as a robust model for associative memory formation43-46. This paradigm involves 116 

presenting a 250ms conditioned stimulus (CS, in the form of a tone) followed by a 500ms trace 117 

interval, followed by the 100ms presentation of an unconditioned stimulus (US, an eyelid shock) 118 

(Fig. 1c). Both shock and blinking were recorded with wires inserted into the muscle of the 119 

eyelid (see Methods). As rats were trained, they exhibited a conditioned blink (CR) to the tone. 120 

Animals were considered to have learned the task after reaching criterion (70% CRs in 50 trials) 121 

on three consecutive training sessions (termed ‘criterion sessions’) or when the previous four 122 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.620127doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620127
http://creativecommons.org/licenses/by-nc-nd/4.0/


training sessions averaged over 70% (in this instance, only the final three of those sessions were 123 

considered ‘criterion sessions’) (Fig. 1d). There was substantial variability in the number of 124 

sessions it took to learn the task, for an average of 20±4.2 training sessions (note: number of 125 

sessions always includes criterion sessions). The two rats that learned the fastest reached 126 

criterion in 14 sessions, and the rat that learned the slowest reached criterion after 24 sessions 127 

(Fig. S2). After reaching criterion, the rats were introduced to environment B, where their ability 128 

to perform tEBC was assessed over a two-day period (one session per day). Comparative 129 

analysis revealed no significant difference in performance (measured in % CRs) between the 130 

criterion sessions in environment A and the testing phase in environment B (mean in 131 

environment A criterion sessions was 74.75±6.49, mean in environment B test sessions was 132 

77.70±11.68, two tailed t-test(24)=-0.83, p>0.05) (Fig. 1d), indicating the successful transfer of 133 

tEBC learning to a new environment. 134 

 135 

Calcium imaging (CaImg) enabled the longitudinal monitoring of the same hippocampal 136 

cells over multiple sessions in both environments. For criterion and testing sessions, we observed 137 

an average of 459.85±265.31 cells per session per animal, with no significant difference between 138 

the number of cells recorded in environment A and environment B (two-tailed t-test(24)= -0.56, 139 

p>0.05) On average, 132±95 cells were present in both the last criterion session in A and the first 140 

testing session in B. This was not a significantly different numbers of cells that were present, on 141 

average, in both the semi-final session in A, session A(n-1), and the final session in A, session 142 

A(n) (155±115 cells). 143 

 144 

Hippocampal place cell representations differ across environments 145 
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To identify place cells, we compared actual mutual information (MI) to MI computed 146 

after bootstrapping circularly shifted position data 500 times. A cell was deemed a place cell if 147 

its MI was above the 95th percentile of null provided by the bootstrapped MI scores. Using this 148 

95% cutoff, on average, 9.3%±4.2% of cells across criterion sessions in A and testing sessions in 149 

B qualified as place cells. There was not a significant difference between the percent of cells that 150 

qualified as place cells in environment A and environment B (average in environment A was 151 

8.1%±3.3%, average in environment B was 11.1%±4.9%, two-tailed t-test t(23) =-1.9, p>0.05) 152 

(Fig. 2a, Fig. S3). The average mutual information scores across all criterion and testing sessions 153 

was 1.08±0.18, with no difference in average MI between environments (environment A mean 154 

MI was 1.08±0.17, environment B mean MI was 1.08±0.21, two-tailed t-test t(4805)=-0.5, 155 

p>0.05).  (See methods for more detailed analysis).  156 

 157 

Our analysis revealed that individual hippocampal (HPC) cells exhibited distinct spatial 158 

representations for environments A and B, altering their configurations of place cells and place 159 

fields relative to distal cues — a process known as 'place cell remapping' (Fig. 2b). We 160 

confirmed this remapping through several approaches. First, we quantified the shift in the 161 

location of highest calcium event rate (putative place field centers) by comparing their distances 162 

on the last two criterion sessions in environment A (sessions A(n-1) and A(n)) to the shift 163 

observed when transitioning from environment A on session n to environment B on session 1 164 

(the centers of both environments were aligned, see methods). The data indicated a significantly 165 

greater change in these putative place field centers when the animals transitioned from A to B 166 

than when remaining within environment A (medians tested with Wilcoxon rank sum test 167 

p=0.002, means tested with double sided t-test t(1430)= -2.5, p=0.01, distributions tested with 168 
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two-sample Kolmogorov-Smirnov (KS) test, p=3.6*10-4) (Fig. 2c). Second, to compensate for 169 

any differences in environment size, we also compared the distances between field centers to the 170 

distances expected if all centers were shuffled 100 times, and found that the median distance 171 

between field centers when comparing session A(n) to session A(n-1) was less than all median 172 

shuffled values (p=0), while the median distance between field centers when comparing session 173 

A(n) to session B(1) was greater or equal than 56% of shuffled values (p=0.56) (Fig. 2d). Third, 174 

accounting for the fact that cells may have multiple place fields, we computed the population 175 

vector correlation (PVC39,47,48, see methods) using calcium events for sessions A(n-1), A(n), and 176 

B(1). When using cells that appeared in both sessions A(n-1) and A(n), we found a significant 177 

positive correlation when computing the PVC for these two sessions (p = 0.0023, r = 0.11). 178 

Conversely, when using cells that appeared in both sessions A(n) and B(1), we found no 179 

correlation (p>0.05, r=-0.04). This result indicates significantly similar calcium event patterns 180 

between sessions A(n-1) and session A(n), with no significant similarity in patterns between 181 

session A(n) and B(1). (Fig. 2e).  182 

 183 

We then used a machine learning algorithm to determine the variation in neural 184 

embeddings between environments A and B. To do this, we applied the CEBRA algorithm49 to 185 

calcium trace imaging data labelled with spatial coordinates from environment A, session A(n) 186 

(all were trained on 75% of data with 25% held out for verification). The choice of CEBRA was 187 

motivated by its efficacy and interpretability in decoding neural activity patterns when compared 188 

to alternative methods such as PCA50 and Isomap51 (see Methods for additional details). We then 189 

tested this model's ability to decode the animals’ position in environment A and environment B 190 

when applied to neural data not used for training. The results showed that the model, when run 191 
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500 times, predicted the positions in session A(n-1) with significantly greater accuracy than what 192 

would be expected by chance; the null was constructed as determined when compared to a model 193 

trained on shuffled position data and also run 500x. (All double sided t-tests, for each rat: rat1: 194 

t(998):-34.3 p=5.0*10-171, rat2: t(998):-72.5 p=0, rat3: t(998)=-1.96 p=0.05, rat4: t(998):-53.7 195 

p=2.6*10-299, rat5: t(998):-20.0 p=4.1*10-75) (Fig. 3a-b). In contrast, when a model trained on 196 

data from A(n) was applied to environment B, the model's predictions were significantly below 197 

the accuracy of a model trained on shuffled position data, implying that the place cell coding 198 

across environments A and B are actually more different than would be expected by chance (all 199 

double sided t-tests, for each rat: rat1: t(998):84.1 p=0, rat2: t(998):18.8 p=7.4*10-68, rat3: 200 

t(998)=74.7 p=0, rat4: t(998):13.1 p=2.0*10-36, rat5: t(998):154.4 p=0) (Fig. 3c-d). Collectively, 201 

these findings suggest a significant remapping of place cells when transitioning between 202 

environments, and also that the neural embeddings for place coding in individual rats change 203 

when the animal switches contexts. 204 

 205 

The hippocampus represents the conditioning task in both environments, and representations 206 

of the conditioning task are not spatial representations 207 

 208 

We then investigated whether conditioning related data was represented equally in both 209 

environments A and B. It was obvious on visual inspection that individual cells varied their 210 

calcium event rate (Fig. 4a) and calcium trace (Fig. 4b) during the conditioning periods. To 211 

quantify this variation, we devised the metric 'CSUS mutual information' (CSUS-MI), analogous 212 

to spatial mutual information; this enabled us to assess the extent of task-related information 213 

captured by the calcium activity of each cell. We calculated the CSUS-MI for each cell and 214 
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benchmarked it against a control distribution generated by shuffling CS and US periods and 215 

recalculating the MI 500 times. Using calcium event data, we found that 10.7±4.9% of cells held 216 

significant CSUS information related to whether the animal was in a CS or US period (termed 217 

CSUS-MI2 as the conditioning period was divided into 2 bins; see Methods) (Fig. S4a). An even 218 

stronger relationship was noted if using calcium traces: 19.9±8.2 percent of cells contained 219 

significant information related to whether the animal was in a CS or US period (Fig. S4a). 220 

Importantly, neither of these MI metrics were significantly different between environments A 221 

and B (double sided t-tests, using calcium events, t(23)=0.48, p>0.05, using calcium traces, 222 

t(23)=-0.52, p>0.05). 223 

 We then extended this analysis to determine if calcium events or traces of individual cells 224 

contained information about what temporal segment portion of the conditioning task the animal 225 

was in. To do this, we divided the CSUS period into 5 equal sized bins, computed CSUS-MI 226 

using these bins (termed CSUS-MI5, see methods), then compared these mutual information 227 

values to the controls provided by shuffled data. Using calcium event data, we found that 228 

15.5±7.8% of cells contained this information, compared to 10.0±7.8% of cells when we 229 

calculated the MI using trace information (Fig. S4b). Again, neither of these mutual information 230 

metrics were significantly different between environments A and B (double sided t-tests, using 231 

calcium event data, t(23)=-0.32, using calcium trace data, t(23)=-1.1, p>0.05). There was not a 232 

significant difference in CSUS-MI2 values when comparing values in session A(n) to session 233 

A(n-1), versus comparing values in session A(n) to session B(1) (Wilcoxon rank sum test 234 

p>0.05, double sided t-test, t(1431)=0.86, p>0.05). In contrast, there was a small but significant 235 

difference in CSUS-MI5 when comparing session A(n) to session A(n-1) versus comparing A(n) 236 

to session B(1) (Wilcoxon rank sum test p=0.049, double sided t-test, t(1431)=-2.2, p=0.03) (Fig. 237 
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S4c).Collectively, these results demonstrate that the conditioning task is represented in both 238 

environments A and B, and that the percentage of cells representing the conditioning task was 239 

not different between the two environments. 240 

We then examined the overlap between cells that contained spatial information and those 241 

with CSUS information, identifying a significant positive correlation between spatial MI and 242 

CSUS-MI2 (linear regression, r2  = 0.04, p=2.1*10-104) and spatial MI and CSUS-MI5 (linear 243 

regression, r2  = 0.09, p=1.7*10-237; note that the statistics have been computed for unbinned data 244 

but the graph presents binned data for visualization purposes due to the large number of points) 245 

(Fig. 4c). Further analysis revealed that cells with significant spatial modulation had a  246 

significantly higher likelihood of being significantly modulated by CSUS compared to cells 247 

without spatial modulation: 1.35 times higher chance of having significant spatial MI if the cell 248 

has a significant CSUS-MI2 (Fisher’s exact test, p=0.001) and 1.27 times higher chance if the 249 

cell has a significant CSUS-MI5 (Fisher’s exact test, p=0.002). We then inquired whether the 250 

calcium events that occurred during conditioning periods were confined to the ‘firing’ fields of 251 

place cells. We thus calculated the average location of calcium events during conditioning 252 

periods versus the average location during periods of movement that were not conditioning 253 

periods. We analyzed this data using the Mantel test, which statistically evaluates the correlation 254 

between two distance matrices to determine if the spatial patterns they represent are significantly 255 

related. Across all sessions, we found a Mantel statistic of 534.58; we compared this statistic to 256 

the result of 10,000 shuffles to determine the statistic was not significant (p>0.05); i.e. the spatial 257 

firing patterns during conditioning periods are not generally similar to those that occur during 258 

non-conditioning periods (Fig. 4d). In other words, the spatial distribution of firing during 259 
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conditioning differs fundamentally from that during non-conditioning periods, a result which 260 

would not be expected if conditioning related responses were restricted to the cells’ place fields 261 

We next assessed the consistency of task representation across environments. When we 262 

compared cells that appeared in both sessions A(n) and B(1), there was no difference in cell 263 

responses to either CS or US (double sided t-tests for CS: t(1174) = 0.68 p>0.05 and ks test 264 

p>0.05, for US: t(1174) = 1.20 p>0.05, and ks-test p>0.05) (Fig. 4e).  265 

 266 

Conditioning task representations are consistent across environments 267 

We then trained a CEBRA model using calcium imaging data and time-stamped CS/US 268 

periods from environment A, using only cells that were recorded in both environment A and B. 269 

We then used this trained model to decode if the animal was in a CS or US period during an 270 

additional session in environment A, as well as in environment B. All models successfully 271 

decoded CS and US periods the additional session in environment A, as compared to shuffled 272 

data (all double sided t-tests, for each rat: rat1: t(998):6.7 p=2.5*10-11, rat2: t(998):16.1 273 

p=7.4*10-52, rat3: t(998)=83.5 p=0, rat4: t(998):80.1 p=0, rat5: t(998):61.0 p=0) (Fig. 5a,c). All 274 

five models significantly outperformed chance level in environment B as determined by shuffled 275 

data (all double sided t-tests, for each rat: rat1: t(998):10.4 p=2.6*10-24, rat2: t(998):2.7 276 

p=7.6*10-3, rat3: t(998)=75.3 p=0, rat4: t(998):63.7 p=0, rat5: t(998):106.3 p=0) (Fig. 5b-c). 277 

 278 

We then trained an additional model on data from environment A during session A(n)to 279 

ascertain whether it could decode the temporal order within the conditioning period (CSUS5), 280 

both  in an alternate session in environment A (session A(n-1)) and in environment B (session 281 
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B(1)). After being trained on session A(n), all models were able to decode environment A(n-1) 282 

well better than chance levels (all double sided t-tests for accuracy, for each rat: rat1: t(998):41.5 283 

p=3.3*10-220, rat2: t(998):28.7 p=7.8*10-133, rat3: t(998)=122.6 p=0, rat4: t(998):118.5 p=0, rat5: 284 

t(998):62.6 p=0) (Fig. 5d,f,g). Remarkably, our results for decoding environment B(1) showed 285 

that temporal aspects of CS/US temporal order were decodable across environments, suggesting 286 

that a refined level of task encoding is stable across both environments (all double sided t-tests 287 

for accuracy, for each rat: rat1: t(998):55.1 p=4.9*10-305, rat2: t(998):9.3 p=1.1*10-19, rat3: 288 

t(998)=71.4 p=0, rat4: t(998):62.6 p=0, rat5: t(998):106.2 p=0; results were also significant 289 

compared to those for shuffled data for precision, recall, F1 score, and area under the receiver 290 

operating characteristic curve, data not shown, see Methods) (Fig. 5e-g). 291 

 292 

Remarkably, for both CSUS2 and CSUS5, the model trained on session A(n) was no less 293 

accurate decoding session B(1) than it was decoding session A(n-1) (double sided t-tests, for 294 

CSUS2 t(8)=-0.13, p>0.05, for CSUS5, t(8)=0.32, p>0.05) (Fig. 5h).  295 

 296 

We then used CEBRA to analyze the embedding geometries of cell representations during 297 

CS/US periods in both environments. First, we examined the embedding geometries for the 298 

conditioning task divided into CS and US periods (CSUS2), for 2, 3, 5, 7, and 10 latents. We 299 

compared sessions A(n-1), A(n), B(1), and B(2) to each other, as well as shuffled versions of 300 

each session. 301 

 302 

For all 5 rats, the geometries displayed a high and significant degree of similarity as 303 

compared to the shuffled control. This significance was maintained when examining up to 10 304 
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latents, the largest number of latents we utilized (averaging results from all animals, all double 305 

sided t-tests, for 2 latents all comparisons were p<1*10-5, for 3 latents p<1*10-4, for 5 latents 306 

p<1*10-5, for 7 latents p<1*10-5, and for 10 latents p<1*10-4) (Fig. 6a-c). This high degree of 307 

similarity was maintained when the CS/US periods were divided into 5 segments (CSUS5, (all 308 

double sided t-tests, for 2 latents all comparisons were p<1*10-12, for 3 latents p<1*10-7, for 5 309 

latents p<1*10-6, for 7 latents p<1*10-5, and for 10 latents p<1*10-5) (Fig. 6d-f). 310 

 311 

These highly significant similarity signifies that the neural representations of the task 312 

were consistent between environments A and B. 313 

 314 

Conditioning task representations are consistent across animals 315 

Considering the similarity between representations of the task in environments A and B, we 316 

wondered if there was a universal, inter-animal, representation of the conditioning task. To 317 

answer this question, we investigated if there were coding similarities of the conditioning task 318 

across subjects. For each animal, we developed a unique model based on calcium signal patterns 319 

and the structure of the conditioning task. We then calculated a similarity score among all 320 

animal-specific models. We observed a markedly significant consistency across these trained 321 

models compared to those trained on shuffled data. Notably, this consistency was apparent in 322 

models trained to differentiate between CS and US periods, as well as in more granular models 323 

that recognized five discrete time segments during CS presentation, the trace interval, and US 324 

delivery (akin to the models in Figures 6d-g). When the conditioning period is divided into 2 325 

periods (CSUS2), the similarity across animal models is not significantly different than the 326 
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similarity between models in one animal for all tested number of latents (2 latents: ttest(188) = -327 

0.45 p>0.05, 3 latents: ttest(188) = -1.57 p>0.05, 5 latents: ttest(188) = -0.40 p>0.05, 7 latents: 328 

ttest(188) = -0.22, p>0.05, 10 latents: ttest(188) = 0.40, p>0.05) (Fig. 7a-b). This relationship 329 

also holds when the conditioning period is divided into 5 periods (CSUS5): the similarity across 330 

animal models is not significantly different than the similarity between models in one animal (2 331 

latents: ttest(188) = -0.79 p>0.05, 3 latents: ttest(188) = 0.25 p>0.05, 5 latents: ttest(188) = -0.42 332 

p>0.05, 7 latents: ttest(188) = 0.70, p>0.05, 10 latents: ttest(188) = 0.30, p>0.05) (Fig. 7c-d). 333 

  334 
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Discussion  335 

Our study provides significant insights into hippocampal function, as it demonstrates that 336 

the hippocampus not only responds to environmental change with changes in neural coding but 337 

also maintains consistent task-related information across varying contexts. These mechanisms 338 

underpin cognitive flexibility and the ability to apply learned behaviors in new situations. Below 339 

we will discuss this interplay between variability and consistency of representations through 340 

several theoretical lenses, including predictive coding and cognitive mapping theories, while 341 

exploring the stability of these processes within and across subjects. 342 

 343 

Task abstraction across environments 344 

A critical aspect of our study highlights that the hippocampus retains stable task 345 

representations, such as those required for eyeblink conditioning, despite variations in 346 

environmental contexts. This ability to generalize learned tasks across different settings supports 347 

models that posit a cognitive map that extends beyond simple spatial navigation, such as the 348 

Tolman-Eichenbaum Machine’s (TEM)52. According to this model, “spatial” maps integrate 349 

task-related information and enable the hippocampus to utilize learned behaviors in novel 350 

environments that share cognitive demands but differ in sensory or environmental specifics. This 351 

flexible functionality exemplifies the hippocampus’ role in abstracting and applying learned 352 

knowledge, a hallmark of high-dimensional cognitive mapping. This integrated framework 353 

facilitates the adaptation of learned behaviors across diverse contexts, an essential capability for 354 

navigating both physical and abstract environments.  355 

Our findings further reveal that the hippocampus abstracts task-related information from 356 

the surrounding sensory environment and suggests that the hippocampus connects experiences 357 
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across different contexts by recognizing underlying similarities; these features help generalize 358 

learning and adjust behavior. Our results thus support the TEM's perspective that the 359 

hippocampus can encode higher-order, abstract information crucial for task execution. The 360 

ability to detach task representation from immediate sensory inputs allows for a generalized 361 

version of learned information53-55, enhancing the hippocampus's utility in supporting the 362 

organism’s application of learned skills and behaviors in new albeit similar situations55,56. This 363 

capacity for abstraction is indicative of a sophisticated neural coding mechanism and of an 364 

adaptable and extensive cognitive mapping system, as it provides a buffer against potential 365 

interference that could arise from the myriad of sensory stimuli an organism encounters. By 366 

maintaining a conceptual,  generalized version of learned information, the hippocampus supports 367 

the organism's ability to apply learned skills and behaviors in new situations that share 368 

underlying similarities with previous experiences but differ in sensory or contextual details. 369 

 370 

Pattern Separation vs. Completion 371 

Evidence from various areas of neuroscience has led to the development of a theory of HPC 372 

function holding that the HPC treats states that involve equivalent actions or relationships such 373 

as similar tasks as equivalent, resulting in learning that is easily transferred between 374 

environments52-54,56,57. This theory contrasts with the theory that the HPC acts primarily to 375 

perform competitive “pattern separation”58-62.  The prevailing theory as well as the cellular and 376 

systems level bases for contextual memory remain to be elucidated. In our study, the distinct 377 

coding of different environments by hippocampal place cells provides evidence for pattern 378 

separation: the hippocampus differentiates between distinct contexts. This separation reduces 379 

interference between memories, allowing for more accurate recall based on specific 380 
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environmental cues. On the other hand, consistent decoding of the eyeblink task across different 381 

environments suggests pattern completion. This process allows the hippocampus to reconstruct a 382 

complete memory or learned response from partial or generalized cues, enabling the execution of 383 

the learned task even when contextual details change. 384 

Our results complement previous work that identifies the HPC as both a pattern 385 

completer and a pattern separator. Studies have demonstrated that place cells can differentially 386 

represent the same environment when task demands change60,63,64, yet show similar firing 387 

patterns when locations have similar task demands65. In more recent work66, rats were exposed to 388 

two distinct environments while performing variations of the same task: approaching object A in 389 

the first environment and object B in the second; the study revealed anticorrelated hippocampal 390 

firing patterns for events in the two contexts. This suggests that the hippocampus encodes 391 

context-specific associations between items and locations, rather than just specific behavior. This 392 

study underscored the role of the hippocampus in robust pattern separation when environments 393 

differ but require similar behaviors, showing that even minor task variations can lead to 394 

significant neuronal pattern separation66. In contrast, our study used a task that remained 395 

identical across both environments and found consistent hippocampal population-level task 396 

representations in both contexts. This consistency likely reflects that the task could be 397 

generalized between environments, without necessitating the hippocampus to differentiate 398 

between task demands. Therefore, the hippocampus seems to balance pattern separation and 399 

completion based on how similar or distinct task demands are across different contexts. 400 

 401 

Non-spatial hippocampal representations 402 
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There is ongoing debate about whether hippocampal pyramidal cells encode both spatial 403 

and non-spatial aspects of a context38,67,68. Our findings show that responses to the conditioning 404 

task were independent of place field location, with a fraction of the recorded individual cells 405 

found able to represent both spatial location and the conditioning task (Fig. 4). This contrasts 406 

with studies where conditioning responses were more closely tied to specific spatial 407 

locations69,70. The difference likely stems from task design: in previous studies, spatially 408 

contingent rewards or freezing behavior after a shock made location highly salient, by 409 

associating the place where the shock occurred with the aversive event.  In our experiment, 410 

spatial position was irrelevant; this allowed pyramidal cells to encode task-relevant features 411 

independent of location. This finding aligns with previous work showing that hippocampal cells 412 

often respond to non-spatial aspects like sensory cues or task demands, particularly in non-spatial 413 

tasks19,71-73. 414 

The discovery that population level patterns in the hippocampus are organized into 415 

manifolds provides an elegant solution to the problem of single cells representing both spatial 416 

coordinates and task features. Previous hippocampal work has described distinct encoding for 417 

spatial location along the center stem of a T maze vs accumulation of evidence for a left-right 418 

turning decision at the end of this branch through two distinct, orthogonal directions in a two-419 

dimensional neural manifold74. Other brain regions, such as the prefrontal cortex and cingulate 420 

cortex, appear to use a similar orthogonal coding strategy75-77; this strategy has also emerged in 421 

neural network simulations of a context-dependent classification task78.  422 

 423 

Intra-Subject and Inter-Subject Consistency 424 
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The stability of neural representations within subjects across different testing sessions 425 

indicates that once hippocampal circuits are trained, their functional architecture remains 426 

remarkably consistent, even in varying contexts. This intra-subject consistency supports theories 427 

suggesting that neural circuits are not just reactive but possess a robust, predefined role in 428 

processing and responding to specific stimuli79,80. Furthermore, the observation of similar neural 429 

encoding patterns across different animals performing the same task suggests a species specific, 430 

possibly evolutionary conserved, neural code79,80. These findings highlight a generalized neural 431 

processing strategy that may have been shaped by natural selection to optimize cognitive and 432 

behavioral responses across environmental challenges faced by a species. Such a generalized 433 

coding strategy may be indicative of evolutionary pressures that have favored neural mechanisms 434 

promoting cognitive flexibility and rapid adaptation to environmental challenges81-83. 435 

The results of our study highlight the preservation of hippocampal task encoding across 436 

different contexts and species; this presents a surprising parallel to recent findings in motor 437 

cortex84,85 and insular cortex86. Motor functions, especially those fundamental to survival and 438 

interaction with the physical environment, are expected to exhibit conserved neural dynamics 439 

due to their innate and reflexive nature; motor tasks typically involve stereotyped and predictable 440 

patterns of behavior that are essential for immediate responses and interactions with the 441 

environment87-90. Similarly, the motivational states preserved across animals in the insular cortex 442 

are those central to basic biological needs, such as thirst and hunger. These states and tasks are 443 

often highly conserved across individuals because they rely on well-established neural circuits 444 

that perform specific, crucial functions necessary for survival88,90-94. 445 

In contrast, hippocampal tasks involve complex cognitive processes that include memory, 446 

learning, and spatial navigation; these require a higher degree of cognitive flexibility82,95-97. and 447 
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are generally influenced by individual experiences (and, at the species level, specific ecological 448 

and evolutionary pressures)98-102. Therefore, the conservation of hippocampal task encoding 449 

across different individuals, as observed in our study, challenges these traditional views and 450 

suggests a deeper, possibly adaptive significance to these cognitive functions. 451 

The surprising conservation of the neural representation of tasks within the hippocampus 452 

suggests that certain aspects of cognitive mapping and memory processing might be as 453 

evolutionarily essential as motor functions. This conservation might reflect universal cognitive 454 

strategies that are critical for survival across a range of environmental contexts, providing 455 

individuals within a species with the ability to adapt behavior based on past experiences and 456 

anticipated future conditions. Such a mechanism would not only enhance an organism's ability to 457 

navigate complex environments but also facilitate learning and decision-making across 458 

generational timescales. 459 

 460 

Conclusion 461 

 462 

The consistent decoding of eyeblink conditioning tasks across different environmental 463 

contexts indicates that the hippocampus can maintain a stable representation of task-specific 464 

information irrespective of the external sensory environment. This suggests an advanced 465 

capability for abstract cognitive mapping, where the hippocampus constructs and utilizes 466 

cognitive maps not only for physical locations but also for abstract tasks and concepts, allowing 467 

for effective application in varying contexts. These findings expand our understanding of how 468 

memories are formed, stored, and retrieved. They suggest that memories are not just static 469 
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recollections of past events but dynamic and adaptable representations that can be applied to new 470 

situations. 471 

 472 

 473 
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 744 

 745 

Fig 1. Experimental training paradigm and results. 746 

a. Animals explored environment A for one session before undergoing eyeblink 747 

conditioning until they reached the learning criterion. Criterion was defined as achieving 748 

70% conditioned responses (CRs) in 50 trials across three consecutive training sessions 749 

(A(n-2), A(n-1), and A(n)) or averaging over 70% CRs across the previous four training 750 

sessions. After meeting the criterion in environment A, animals were allowed one session 751 

of exploration in environment B, followed by two test sessions of trace eyeblink 752 

conditioning (sessions B(1) and B(2)) in environment B. 753 

b. (Top) Schematics of environments A and B. Environment A is a rectangular enclosure 754 

with wire walls, floor, and ceiling, lit with white light, and unscented. Environment B is 755 

oval-shaped with solid white floors and walls, without a ceiling, lit with red light, and 756 

scented with clove oil. Both environments provided distal cues visible from the top and 757 

sides. (Bottom) Animal trajectories in environments A and B during a single session. 758 
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c. Trace eyeblink conditioning (tEBC) paradigm. A 250 ms tone (conditioned stimulus, CS) 759 

was followed by a 500 ms trace interval, then a 100 ms eyelid shock (unconditioned 760 

stimulus, US). Eyelid activity was recorded using an EMG electrode implanted above the 761 

eye. Untrained animals only blinked in response to the US (unconditioned response, UR), 762 

whereas trained animals began blinking during the trace interval after the CS and before 763 

the US (conditioned response, CR). 764 

d. Performance of animals (n=5) in the tEBC task. Animals learned tEBC while freely 765 

moving in environment A and successfully transferred this learning to environment B. 766 

The dotted line indicates the performance criterion. No significant difference was found 767 

between performance in the criterion sessions in environment A (mean 74.75 ± 6.49%) 768 

and the test sessions in environment B (mean 77.70 ± 11.68%; two-tailed t-test, t(24) = -769 

0.83, p > 0.05). Error bars represent standard error. 770 
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 771 

Fig 2. Place cells remap between environment A and environment B. 772 

a. Percent of place cells during criterion sessions in environment A and test sessions in 773 

environment B. Light-colored bars represent averages across individual sessions, and 774 

dark-colored bars represent overall averages in environments A and B. Overlaid bars 775 

indicate standard deviation. On average, 9.3% ± 4.2% of cells were classified as place 776 

cells. There was no significant difference in the percentage of place cells between 777 

environments A and B (average in environment A: 8.1% ± 3.3%; average in environment 778 

B: 11.1% ± 4.9%; two-tailed t-test, t(23) = -1.9, p > 0.05). 779 
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b. Example activity map of the same single cell in environments A and B. Yellow indicates 780 

the highest firing rates. This cell exhibited remapping between environments, showing 781 

different place fields relative to external cues in the two contexts. 782 

c. Distribution of distances between place field centers (determined by the highest calcium 783 

event rate), comparing sessions A(n) and A(n-1) versus sessions A(n) and B(1). Place 784 

field centers shifted significantly more when the animal was moved to environment B 785 

compared to within-session shifts in environment A (Wilcoxon rank sum test, p = 0.002; 786 

two-sided t-test, t(1430) = -2.5, p = 0.01; two-sample Kolmogorov-Smirnov test, p = 3.6 787 

× 10). The brown shaded area represents the overlap between distance histograms. 788 

d. Distribution of the median distance between place field centers after shuffling center 789 

locations 500 times. The actual median value for session A(n) to A(n-1) was smaller than 790 

all shuffled medians (p = 0, dashed blue line), while the median for session A(n) to B(1) 791 

was greater than or equal to 56% of shuffled medians (p = 0.56, dashed yellow line). The 792 

brown shaded area represents the overlap between shuffled distributions. 793 

e. Population vector correlation (PVC) based on calcium events for sessions A(n-1), A(n), 794 

and B(1). A significant positive correlation was found between sessions A(n-1) and A(n) 795 

for cells present in both sessions (p = 0.0023, r = 0.11). In contrast, there was no 796 

significant correlation between sessions A(n) and B(1) for shared cells (p > 0.05, r = -797 

0.04). These findings suggest that calcium event patterns are significantly similar 798 

between sessions A(n-1) and A(n) but not between session A(n) and B(1). Dashed lines 799 

represent lines of best fit. (a.u. = arbitrary units). 800 

  801 
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 802 

Fig. 3. A model trained in environment A can decode positions within environment A but 803 

not in environment B. 804 

a. A model trained on calcium trace and position data from session A(n) (using cells present 805 

in both A(n) and A(n-1)) predicted positions in environment A(n-1) with significantly 806 

greater accuracy compared to a model trained on shuffled position data. The model was 807 

run 500 times, and the accuracy of predictions was assessed. The model trained on actual 808 

data significantly outperformed the shuffled model across rats (double-sided t-tests: Rat 809 

1: t(998) = -34.3, p = 5.0 × 10-171; Rat 2: t(998) = -72.5, p = 0; Rat 3: t(998) = -1.96, p = 810 
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0.05; Rat 4: t(998) = -53.7, p = 2.6 × 10-299; Rat 5: t(998) = -20.0, p = 4.1 × 10-75). Error 811 

bars represent standard error. A single asterisk (*) indicates p ≤ 0.05, and three asterisks 812 

(***) indicate p < 10⁻⁷⁴. 813 

b. (Top row) Visualization of model performance for decoding animal position in 814 

environment A(n). Left: The trained model demonstrated on the training data from 815 

session A(n). Middle: The same model applied to held-out trace data (25%) from session 816 

A(n). Right: The model applied to predict the animal’s position in session A(n-1). 817 

(Bottom row) The same models trained on shuffled position data. Shown here is the 818 

model for Rat 4, where the model trained on real data significantly outperformed the 819 

shuffled model for decoding position in session A(n-1) (500 simulations, t(998) = -53.7, 820 

p = 2.6 × 10-299). (For visualization purposes, distance from the corner of the environment 821 

is plotted using normalized values in arbitrary units [a.u.]). 822 

c. A model trained on data from session A(n) (using cells present in both A(n) and B(1)) 823 

was applied to environment B(1). The model's predictions were significantly less 824 

accurate than those of a model trained on shuffled position data (double-sided t-tests: Rat 825 

1: t(998) = 84.1, p = 0; Rat 2: t(998) = 18.8, p = 7.4 × 10-68; Rat 3: t(998) = 74.7, p = 0; 826 

Rat 4: t(998) = 13.1, p = 2.0 × 10-36; Rat 5: t(998) = 154.4, p = 0). Error bars represent 827 

standard error. Three asterisks (***) indicate p < 10-35. 828 

d. (Top row) Model trained on position and calcium trace data from session A(n), using 829 

cells present in both A(n) and B(1). Left: The model demonstrated on the training data 830 

from session A(n). Middle: The same model applied to held-out trace data (25%) from 831 

session A(n). Right: The model applied to decode the animal’s position in session B(1). 832 

(Bottom row) The same models trained on shuffled position data. Shown here is the 833 

model for Rat 4, where the shuffled model performed significantly better than the model 834 
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trained on session A(n) for decoding position in session B(1) (500 simulations, t(998) = 835 

13.1, p = 2.0 × 10-36). (For visualization purposes, distance from the corner of the 836 

environment is plotted using normalized values in arbitrary units [a.u.]). 837 

 838 

  839 
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Figure 4. Identifying CS and US modulation in individual cells 841 

a. Peristimulus time histograms (PSTHs) of six example cells responding to the CS, US, 842 

and/or trace period. Bars represent calcium events summed across 50 trials. The 843 

shaded regions indicate different stimulus periods: blue (CS), green (trace), and red 844 

(US). 845 

b. Mean calcium traces of eight example cells in response to the CS, US, and/or trace 846 

period, averaged across 50 trials. Shaded regions are consistent with panel a (a.u. = 847 

arbitrary units). 848 

c. Scatter plots illustrating the significant positive correlation between spatial mutual 849 

information (MI) and CSUS mutual information (MI). Data points represent binned 850 

observations with error bars showing standard errors, while the solid red line 851 

represents the best fit from a linear regression analysis of the original, unbinned 852 

dataset. Top schematics indicate division of conditioning period into 2 or 5 bins. Left: 853 

CSUS-MI2 (r2 = 0.04, p = 2.1 × 10-104). Right: CSUS-MI5 (r2 = 0.09, p = 1.7 × 10-854 

237). 855 

d. Place field remapping during conditioning and non-conditioning periods. (Left) Heat 856 

map comparing the spatial distances between place field centers during conditioning 857 

(e.g., during CS/US trials) versus non-conditioning periods (e.g., intertrial intervals). 858 

Color represents the absolute difference in distances between field centers: regions 859 

with minimal color variation (blue) suggest similar place field centers between the 860 

two conditions, while more yellow areas represent significant differences in distance 861 

(Mantel statistic = 534.58, p > 0.05). (Right) Example of two cells showing spatial 862 

calcium activity. Top: Heat maps showing calcium event rates during periods of 863 

movement but not conditioning (e.g., intertrial intervals). Bottom: Calcium event 864 
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rates during CS/US conditioning periods. Dark blue signifies the lowest event rate, 865 

and yellow represents the highest event rate. These results show that calcium events 866 

during trials are not confined to a cell’s place field. 867 

e. Distribution of calcium events during CS (left) and US (right) periods in sessions 868 

A(n) (blue) and B(1) (yellow). No significant difference was observed in 869 

hippocampal firing during the CS (left) or US (right) periods between environments 870 

A and B (CS: two-tailed t-test, t(1174) = 0.68, p > 0.05; US: two-tailed t-test, t(1174) 871 

= 1.20, p > 0.05; KS tests, p > 0.05 for both comparisons). 872 

 873 

  874 
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 875 

 876 

Fig. 5. A model trained in environment A can decode CS and US periods in both 877 

environment A and B at above chance levels, including fine-grained temporal decoding. 878 

a. A CEBRA model was trained using calcium imaging data and time-stamped CS/US 879 

periods from environment A, using only cells that were recorded in both environments A 880 

and B. The model was used to decode whether the animal was in a CS or US period in 881 

another session in environment A, and all models successfully decoded these periods 882 

compared to shuffled data (all double-sided t-tests: Rat 1: t(998) = 6.7, p = 2.5 × 10-11; 883 

Rat 2: t(998) = 16.1, p = 7.4 × 10-52; Rat 3: t(998) = 83.5, p = 0; Rat 4: t(998) = 80.1, p = 884 
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0; Rat 5: t(998) = 61.0, p = 0). Error bars represent standard error, and asterisks denote 885 

significance (p < 10-10). 886 

b. The same models from panel a were also applied to environment B and significantly 887 

outperformed chance level (all double-sided t-tests: Rat 1: t(998) = 10.4, p = 2.6 × 10-24; 888 

Rat 2: t(998) = 2.7, p = 7.6 × 10-3; Rat 3: t(998) = 75.3, p = 0; Rat 4: t(998) = 63.7, p = 0; 889 

Rat 5: t(998) = 106.3, p = 0). Error bars represent standard error, *p < 10-3, ***p < 10-25. 890 

c. (Top row) A CEBRA model trained on CS/US periods, divided into two time bins (data 891 

from Rat 4). The model was trained using position and calcium trace data from session 892 

A(n), using cells present in both A(n) and A(n-1). Left: The trained model applied to 893 

training data from session A(n). Middle: The model applied to decode CS/US periods 894 

from held-out data (25%) from session A(n). Right: The model applied to session A(n-1). 895 

(Bottom row) The same model trained on shuffled data. The model trained on session 896 

A(n) significantly outperformed shuffled data in decoding both session A(n-1) and 897 

session B(1) (double-sided t-tests, t(998) = 83.5, p = 0, and t(998) = 75.3, p = 0, 898 

respectively). 899 

d. A CEBRA model was trained on data from environment A to decode temporal order 900 

within the CS, trace, and US periods, split into five divisions, applied to an alternate 901 

session in environment A (session A(n-1)). The model significantly outperformed chance 902 

(all double-sided t-tests for accuracy: Rat 1: t(998) = 41.5, p = 3.3 × 10-220; Rat 2: t(998) 903 

= 28.7, p = 7.8 × 10-133; Rat 3: t(998) = 122.6, p = 0; Rat 4: t(998) = 118.5, p = 0; Rat 5: 904 

t(998) = 62.6, p = 0). Bars indicate standard error; significance denoted as *p < 10-50. 905 

e. The same five models from panel d were also applied to environment B and 906 

outperformed shuffled data in decoding the temporal aspects of the CS/US periods, 907 

indicating that fine-grained temporal encoding is stable across environments (all double-908 
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sided t-tests for accuracy: Rat 1: t(998) = 55.1, p = 4.9 × 10-305; Rat 2: t(998) = 9.3, p = 909 

1.1 × 10-19; Rat 3: t(998) = 71.4, p = 0; Rat 4: t(998) = 62.6, p = 0; Rat 5: t(998) = 106.2, 910 

p = 0). 911 

f. Same analysis as in panel c, but a CEBRA model was trained on CS/US periods split into 912 

five divisions. Top: Five divisions are shown for context. Data from Rat 3 show that the 913 

model trained on session A(n) outperformed shuffled models for decoding both session 914 

A(n-1) and session B(1) (double-sided t-tests, t(998) = 88.9, p = 0, and t(998) = 71.4, p = 915 

0, respectively). 916 

g. Confusion matrices displaying CEBRA decoding of five CS/US time bins, as shown in 917 

panel f. Top row: Models trained on data from session A(n). Bottom row: Models trained 918 

on shuffled data. Darker colors indicate higher model accuracy. 919 

h. Model accuracy for decoding sessions A(n-1) and B(1) using CSUS2 and CSUS5 920 

divisions. For both CSUS2 and CSUS5, a model trained in session A(n) decoded session 921 

B(1) with accuracy similar to decoding session A(n-1) (CSUS2: double-sided t-test, t(8) 922 

= -0.13, p > 0.05; CSUS5: t(8) = 0.32, p > 0.05). Bars represent standard error 923 

 924 

  925 
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Fig 6. High consistency in neural representations between environments A and B. 927 

a. Consistency scores for each rat, calculated with 2, 3, 5, 7, and 10 latents. Lighter bars 928 

represent consistency percentage for actual data, while adjacent darker bars represent 929 

consistency for shuffled data. The schematic below the x-axis illustrates the data sets 930 

included in each comparison (for position and labelling of data sets see figure 6b). 931 

For the CSUS2 division of conditioning periods (split into CS and US components), 932 

all five rats show significantly higher consistency between environments A and B in 933 

the actual data compared to shuffled data. This consistency remains significant with 934 

up to 10 latents. 935 

b. Example consistency measurements from Rat 5 for CSUS2 with 2, 3, 5, 7, and 10 936 

latents. 937 

c. Average consistency scores across all rats for CSUS2. The figure legend follows the 938 

format of panel a. Bars represent standard error. Consistency scores for actual data 939 

versus shuffled data were significantly different across all latent dimensions (all 940 

double-sided t-tests: 2 latents, p < 1 × 10-5; 3 latents, p < 1 × 10-4; 5 latents, p < 1 × 941 

10-5; 7 latents, p < 1 × 10-5; 10 latents, p < 1 × 10-4). 942 

d. Consistency scores for each rat, as in panel a, but for CSUS5, where the conditioning 943 

period is divided into five temporal components. All five rats show significantly 944 

higher consistency between environments A and B in the actual data compared to 945 

shuffled data, maintained across up to 10 latents. 946 

e. Example consistency measurements from Rat 3 for CSUS5 with 2, 3, 5, 7, and 10 947 

latents. 948 

f. Average consistency scores across all rats for CSUS5. The figure legend matches that 949 

of panel c. Bars represent standard error. Significant differences between actual and 950 
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shuffled data were observed for all latent dimensions (all double-sided t-tests: 2 951 

latents, p < 1 × 10-12; 3 latents, p < 1 × 10-7; 5 latents, p < 1 × 10-6; 7 latents, p < 1 × 952 

10-5; 10 latents, p < 1 × 10-5). 953 

 954 

 955 

  956 
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 957 

 958 

Figure 7. There is a high degree of consistency between the conditioning representations 959 

across animals 960 

a. Consistency across animals for CSUS2 with 2, 3, 5, 7, 10 latents. The larger graph 961 

highlights the bracketed area from the graph with two latents. 962 

b. When the conditioning period is divided into 2 components (CSUS2), the similarity 963 

between models across animals is not significantly different from the similarity 964 

within each individual animal's model, regardless of the number of latents (2 latents: 965 

t(188) = -0.45, p > 0.05; 3 latents: t(188) = -1.57, p > 0.05; 5 latents: t(188) = -0.40, p 966 
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> 0.05; 7 latents: t(188) = -0.22, p > 0.05; 10 latents: t(188) = 0.40, p > 0.05). Error 967 

bars represent standard error. 968 

c. Consistency across animals for CSUS5 with 2, 3, 5, 7, 10 latents. The larger graph 969 

highlights the bracketed area from the graph with two latents. 970 

d. When the conditioning period is divided into 5 components (CSUS5), the similarity 971 

across animal models remains comparable to within-animal model similarity, 972 

regardless of the number of latents (2 latents: t(188) = -0.79, p > 0.05; 3 latents: 973 

t(188) = 0.25, p > 0.05; 5 latents: t(188) = -0.42, p > 0.05; 7 latents: t(188) = 0.70, p > 974 

0.05; 10 latents: t(188) = 0.30, p > 0.05). Error bars represent standard error.  975 
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Methods 976 

LEAD CONTACT AND MATERIALS AVAILABILITY 977 

Questions and  requests for information should be directed to and will be fulfilled by the 978 

Lead Contact, Hannah Wirtshafter (hsw@northwestern.edu). This study did not generate new 979 

unique reagents. The data that support the findings of this study are available from the 980 

corresponding author. 981 

 982 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 983 

All procedures were performed within Northwestern Institutional Animal Care and Use 984 

Committee and NIH guidelines. Five male Long Evans rats (275–325 g) were sourced from 985 

Charles River Laboratories, injected with AAV9-GCaMP8m, implanted with a 2-mm GRIN lens, 986 

and trained and tested on eyeblink conditioning in two apparatuses (Fig. 1). Animals were 987 

individually housed in an animal facility with a 12/12 h light/dark cycle. 988 

 989 

METHOD DETAILS 990 

GCaMP7c injection, lens implantation, EMG implantation 991 

GCaMP8 injection and lens implantation were completed as reported in Wirtshafter and 992 

Disterhoft, 2022 and Wirtshafter and Disterhoft, 20231,2. Briefly, rats were anesthetized with 993 

isoflurane (induction 4%, maintenance 1-2%) and a craniotomy was performed at stereotaxic 994 

coordinates Bregma AP −4.00mm, ML 3.00mm. 0.06uL of GCaMP8m (obtained from 995 

AddGene, packaged AAV9 of pGP-AAV-syn-jGCaMP8m-WPRE, lot v175525, titer 1.3E+13 996 

GC/mL) was injected over 12 minutes (approximate coordinates Bregma AP −4.00mm, ML 997 

3mm, DV 2.95mm relative to skull); then the syringe was raised 0.2mm and an additional 0.6ul 998 
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of GCaMP7 was injected. We repeated this process once more and at slightly different 999 

coordinates in the craniotomy hole, resulting in 4 total injections. 1000 

We then aspirated tissue from the craniotomy site using a vacuum pump and 25 gauge 1001 

needle. Tissue was aspirated up to and including the horizontal striations of the corpus collosum. 1002 

A 2mm GRIN lens (obtained from Go!Foton, CLH lens, 2.00mm diameter, 0.448 pitch, working 1003 

distance 0.30mm, 550nm wavelength) was then inserted into the craniotomy hole and cemented 1004 

in place using dental acrylic. Animals were given buprenorphine (0.05mg/kg) and 20mL saline, 1005 

taken off anesthesia, and allowed to recover in a clean cage placed upon a heat pad. 1006 

Six to eight weeks after surgery, animals were again anesthetized with isoflurane and 1007 

checked for GCaMP expression. If expression was seen, baseplates were attached using UV-1008 

curing epoxy and dental acrylic. Electrode implantation to record obicularis oculi 1009 

electromyographic (EMG) activity occurred in the same surgery as baseplate attachment, as 1010 

described previously3,4. Briefly, a connector containing 5 wires was cemented on the front of the 1011 

animal’s head: 4 wires were implanted directly above the eye in the surrounding muscle (2 for 1012 

recording, 2 for electrical stimulation). An additional wire was attached to a connector attached 1013 

to a ground screw located above the cerebellum; this screw was implanted during lens 1014 

implantation surgery.  1015 

 1016 

Behavioral environment and training 1017 

Two behavioral apparatuses were used in these experiments: Environment A was a 1018 

78.7cm x 50.8cm unscented rectangular enclosure with wire floor and walls and white lighting. 1019 

Environment B was a 50.1cm x 34.9cm scented (with two dabs of clove essential oil on opposite 1020 

walls) ovular enclosure with white solid floor and walls, and red lighting. Both environments 1021 

were located at the same spot in the room relative to external cues (see Figures 1b and S1).  1022 
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A tether containing a plug to relay the EMG activity and to deliver a shock to the rat's eye 1023 

was attached to a the eyeblink connector on the rat's head. The miniscope was plugged into the 1024 

cemented baseplate. The miniscope and EMG cords were all attached to a commutator for ease 1025 

of animal movement.  1026 

The CS was a 250ms, 85dB free-field tone (5ms rise-fall time). The US was a 100ms 1027 

shock directed to the left eye. Shock amount varied per session per animal and was calibrated, if 1028 

needed, at the end of a training session for the next session’s training. Shock level was deemed 1029 

appropriate when a shock was met with a firm shake of the animal’s head. 1030 

The trace interval was 500ms and the intertrial interval (ITI) was randomized between 1031 

30s and 60s, with a 45s average. EMG signal output was amplified (5000×) and filtered (100 Hz 1032 

to 5 kHz), then digitized at 3 kHz and stored by computer.  1033 

 A conditioned response (CR) was identified as an increase in integrated EMG activity 1034 

that exceeded the baseline mean amplitude by more than four standard deviations, sustained for a 1035 

minimum duration of 15ms. Baseline mean amplitude was calculated during the 500ms 1036 

preceding CS onset. Additionally, the response had to commence at least 50ms after the 1037 

conditioned stimulus (CS) onset and before the unconditioned stimulus (US) onset. 1038 

The animal’s first exposure to each environment was a 38min exploration session, in 1039 

which the animal was able to freely move and explore the environment without any conditioning 1040 

(Figure 1a). Animals were then trained in one environment per session, with no more than one 1041 

session per day, and were considered to have learned the task after reaching criterion (70% CRs 1042 

in 50 trials) on three consecutive training sessions (termed ‘criterion sessions’) or when the 1043 

previous four training sessions averaged over 70% (in this instance, only the final three of those 1044 

sessions were considered ‘criterion sessions’). Following the last session in environment A, the 1045 

animal was given an exploratory session in environment B. The session after that, the animal was 1046 
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tested on eye blink conditioning in environment B, using the same parameters as used in 1047 

environment A. 1048 

 1049 

Calcium imaging  1050 

Calcium imaging was completed as reported in Wirtshafter and Disterhoft, 2022 and 1051 

Wirtshafter and Disterhoft, 20231,2. Briefly, calcium imaging was done using UCLA V4 1052 

Miniscopes5,6, assembled with two 3mm diameter, 6mm FL achromat lens used in the objective 1053 

module and one 4mm diameter, 10mm FL achromat lens used in the emission module. 1054 

 1055 

QUANTIFICATION AND STATISTICAL ANALYSIS 1056 

Means are presented as mean+-standard deviation. All analysis code is available 1057 

at https://github.com/hsw28/ca_imaging and https://github.com/hsw28/Hannahs-CEBRAs. Code 1058 

to create specific figures is also available at the former github repository.  1059 

 1060 

Position and speed analysis  1061 

Position was sampled by an overhead camera at 30Hz. Position tracking was done post-1062 

recording using DeepLabCut7. Position was then converted from pixels to cm. Position was 1063 

smoothed using a Gaussian filter with standard deviation of 2cm. Speed was calculated by taking 1064 

the hypotenuse of the coordinates one before and after the time of interest.  1065 

 1066 

Video pre-processing and cell identification  1067 

Video pre-processing and cell identification were performed as reported in Wirtshafter 1068 

and Disterhoft, 2022 and Wirtshafter and Disterhoft, 20231,2.  In brief, videos were recorded with 1069 

Miniscope software at 15frames/second. Video processing was done using CIATAH software8. 1070 
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Videos were down sampled in space and normalized by subtracting the mean value of each 1071 

frame from the frame. Each frame was then normalized using a bandpass FFT filter (70-1072 

100cycles/pixel) and motion corrected to a using TurboReg9. Videos were then converted to 1073 

relative florescence (dF/F0); F0 was the mean over the entire video.  1074 

Cells were automatically identified using CIATAH8 using CNMF-E10. Images were 1075 

filtered with a gaussian kernel of width 2 pixels and neuron diameter was set at a pixel size of 8. 1076 

The threshold for merging neurons was set at a calcium trace correlation of 0.65; neurons were 1077 

merged if their distances were smaller than 4 pixels and they had highly correlated spatial shapes 1078 

(correlation>0.8) and small temporal correlations (correlation <0.4). 1079 

In vivo calcium imaging involves detecting changes in intracellular calcium levels, which 1080 

serve as proxies for neuronal activity. Calcium events refer to transient increases in calcium 1081 

concentration above a threshold level; these crossings putatively correspond to spikes in neuronal 1082 

firing. These events typically appear as peaks in the data and indicate an active response from the 1083 

neuron. Calcium traces are continuous recordings of calcium levels over time. Thus, calcium 1084 

events highlight specific neuronal activations, while calcium traces provide a full temporal 1085 

picture of these activations together with baseline activity. 1086 

All cells identified using CNMF-E were then scored as neurons or not by a human scorer. 1087 

Scoring was also done within CIATAH software in a Matlab GUI. Scoring was done while 1088 

visualizing and considering a calcium activity trace, average waveform, a montage of the 1089 

candidate cell’s Ca2+ events, and a maximum projection of all cells on which the candidate cell 1090 

was highlighted. The relative fluorescence (ΔF/F0) local maxima of each identified cell were 1091 

considered calcium event times.  1092 

 1093 

Cell cross registration across sessions and within session 1094 
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Validation and registration were completed as documented in Wirtshafter and Disterhoft2. 1095 

Briefly, videos underwent five rounds of registration using Turboreg image rotation9 with the 1096 

CIATAH software8,11. Background noise, axons, and dendrites were removed using an image 1097 

binarization threshold of 40% of the images’ maximum value. Cells were matched across 1098 

sessions using a distance threshold of a maximum of five pixels, with a minimum 2-D correlation 1099 

coefficient of 0.5. Sessions were aligned to session A(n), the last session in environment A.  1100 

 1101 

Place cell identification and computing spatial mutual information 1102 

Place cells were identified using mutual information computed when the animals were 1103 

running at speeds greater than or equal to 4cm/s. MI was computed for all cells; there was no 1104 

calcium event rate criterion for included cells. To be considered significant, the computed mutual 1105 

information (MI) must be greater than 95% of MI scores computed 500 times from shuffled 1106 

positions12. To compute the MI for each cell, the training environments were divided into 2.5cm 1107 

x 2.5cm bins. The calcium event rate of each cell and the occupancy of the animal were found 1108 

for  1109 

each bin. Rate and occupancy were smoothed with a Gaussian kernel with filter width of 3cm 1110 

and Sigma of 0.5cm. Mutual information was computed during periods of movement as 1111 

follows2,12,13: 1112 

p = 	
P)
P*

 1113 

M) = 	,P) 1114 

M* =	,P* 1115 

MI = 	, 	p ∗ 	 log2(
p

M) ∗ M*
) 1116 

 where: 1117 
P) = calcium	event	probability	in	each	bin 1118 
P* = occupancy	probability	at	each	bin 1119 

 1120 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.620127doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Mutual information using calcium traces was computed as above, except instead of Ps 1121 

being calcium event probability per bin, the value of P) was the average value of calcium trace in 1122 

the bin. 1123 

We computed MI using both calcium events and calcium trace data. There was no 1124 

significant difference between the number of place cells detected using calcium event data and 1125 

calcium trace data, (paired t-test t(24)=1.01, p>0.05). Note that all place cell and place field 1126 

measurements are presented with conditioning periods included, as the animal was frequently 1127 

moving during conditioning periods. We also computed results while excluding conditioning 1128 

periods and found no significant differences.  1129 

 1130 

Computing CSUS mutual information 1131 

The computation of CSUS mutual information was very similarly to that for spatial 1132 

mutual information. A 1.3 second period beginning at the start of the CS tone was either divided 1133 

into 2 bins (CSUS-MI2) or 5 bins (CSUS-MI5) (Fig. 3c-3d). Mutual information was then 1134 

computed using the following: 1135 

p = 	
P)
P*

 1136 

M) = 	,P) 1137 

M* =	,P* 1138 

MI = 	, 	p ∗ 	 log2(
p

M) ∗ M*
) 1139 

 Where: 1140 
P) = calcium	event	probability	in	each	CSUS	bin 1141 

P* = probability	of	individual	CSUS	occuring	out	of	all	CSUS	bins 1142 
 1143 

 1144 

Mutual information using calcium traces was computed as above, except that Ps did not 1145 

represent the calcium event probability per bin, but the average value of calcium trace within the 1146 

bin. 1147 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.620127doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620127
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1148 

Remapping quantification  1149 

 The place cell center was defined as the occupancy-normalized location with maximum 1150 

number of calcium events while the animal was moving at 5cm/s or faster. Position was binned 1151 

into 2.5cm square bins. The centers of environments A and B (as well as environment A across 1152 

days and environment B across days) used to align each environment across days, as well as to 1153 

align environment A to environment B. 1154 

 Population vector correlation was calculated between two environments using calcium 1155 

event data. Neurons present in both datasets (such as sessions A(n) and A(n-1), or A(n) and B(1)) 1156 

were identified and their calcium event times were converted to rates using 0.75 second binning. 1157 

These firing rates were then normalized using z-score normalization across each neuron's activity 1158 

across time. The and the mean calcium event rate for each neuron in each environment was then 1159 

computed. The population vector correlation between these mean rates was determined, and a 1160 

linear regression was performed to evaluate the relationship between firing rates in the two 1161 

environments. 1162 

 1163 

	𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛	𝑣𝑒𝑐𝑡𝑜𝑟	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = 	
∑ U𝑟{W,Y} − 	{𝑟}Y\ U𝑟{W,]} − 	 {𝑟}]\
^
W_`

a∑ U𝑟{W,Y} − 	{𝑟}Y\
2

^
W_` 	a∑ U𝑟{W,]} − 	 {𝑟}]\

2
^
W_`

 1164 

 1165 
 1166 
 Where: 1167 

𝑟{W,Y}	and		𝑟{W,]} = firing rates of neuron i in environments A and B 1168 
{𝑟}Y	and	{𝑟}] = mean firing rates across neurons in environments A and B 1169 

The factors in the denominator compute the standard deviation of the components of each 1170 
population vector relative to their mean, computed in each environment. 1171 

 1172 

Use of CEBRA versus alternative methods 1173 
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 We explored multiple different methods before settling on the use of CEBRA for this 1174 

study. A short summary of each tested method can be found below: 1175 

 1176 

• Principal Component Analysis (PCA)14: Principal component analysis (PCA) is a 1177 

statistical method used to reduce the dimensionality of data while retaining as much 1178 

variability as possible. This linear technique identifies the axes (principal components) in 1179 

the dataset that maximize variance. The first principal component explains the most 1180 

variance, the second explains the second most, and so on. Principal components are 1181 

combinations of original features and may not always have clear or intuitive meanings. In 1182 

agreement with previous hippocampal data15, PCA required upwards of 15-25 1183 

components to capture 95% of the variance of the data. In addition, across and within all 1184 

sessions and representations (spatial and task representations), the manifolds spanned by 1185 

the largest PCs remained highly similar, with small principal angles in pairwise 1186 

comparisons. This similarity in the orientation of the leading subspaces suggested that 1187 

PCA did not distinguish between spatial or behavioral components of the task (Figure 1188 

S5). 1189 

• Independent Component Analysis (ICA)16: Independent Component Analysis (ICA) is 1190 

a computational technique used to separate a multivariate signal into additive, 1191 

independent components. ICA operates under the assumption that observed data are 1192 

linear mixtures of underlying, independent sources. It aims to find a linear transformation 1193 

that maximizes the statistical independence of the estimated components. We found that 1194 

ICA embeddings were unstable throughout the length of the recordings, and also did not 1195 

clearly map onto behavioral states (Figure S6). 1196 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 24, 2024. ; https://doi.org/10.1101/2024.10.24.620127doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.24.620127
http://creativecommons.org/licenses/by-nc-nd/4.0/


• Isomap17: Isomap is a manifold learning technique that seeks to capture the intrinsic 1197 

geometric structure of data. Isomap is useful when linear methods like PCA cannot 1198 

capture the intrinsic structure of the data, as it preserves the geodesic (curved) distances 1199 

in the reduced dimensionality space. Unlike linear methods such as PCA, Isomap can 1200 

capture nonlinear relationships in the data. Interestingly, using Isomap, only about 5 1201 

neural modes were required to achieve a residual variance of 5-10%. However, the 1202 

embedding shape did not relate to any discernable property of neural data or behavior 1203 

(Figure S7).  Dimensionality reduction was achieved, but the resulting representations 1204 

were not interpretable (Figure S7). 1205 

• MIND15,18: MIND is a decoding method designed for integrating multiple data modalities 1206 

to predict various features, particularly sensory and motor functions. MIND uses 1207 

recurrent neural networks whose hidden variables provide a memory mechanism for 1208 

remembering previous inputs; this approach is particularly apt for the analysis of time 1209 

series data such as neural recordings. While MIND was very robust at distinguishing the 1210 

different environments, it was not equipped to handle relatively short signals separated in 1211 

time, such as the conditioning trials separated by intertrial intervals. Our analyses using 1212 

MIND resulted in poor and unstable embeddings that could not be analyzed (Figure S8). 1213 

CEBRA19 was chosen for this project for its ability to capture nonlinear relationships in the data 1214 

and to create stable embeddings over short and long time periods. Additionally, spatial 1215 

separations of components were well isolated and correlated well with observed behaviors. 1216 

 1217 

Use of CEBRA for position decoding 1218 

 Optimal parameters for decoding the position of each animal from neural activity were 1219 

determined using an extensive grid search across learning rate, temperature, and number of 1220 
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iterations (Figure S9). Models created to compare different sessions of neural activity, such as a 1221 

model trained on data from session A(n) used to decode session B(1), were only trained on cells 1222 

that occurred in both sessions. Models were trained on spike traces of these cells, labeled with 1223 

the animal’s (X,Y) position. In all cases, 75% of data was used to train the model while 25% of 1224 

data was held out for verification. All models were run 500 times. Optimal embeddings were 1225 

determined based on the minimum median absolute error between the predicted and true 1226 

positions. The optimal parameters for each rat are as follows: 1227 

 Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 

Model 
Architecture 

‘Offset10-model’ 

Batch size 512 
Learning rate 5.5*10-5 6.625*10-4 5.5*10-4 1.0*10-3 1.0*10-3 

Temperature 
mode 

‘Auto’ 

Minimum 
temperature 

No minimum 1.5 0.95 1.0*10-9 No minimum 

Output 
dimensions 
(# of latents) 

3 

Max 
iterations 

25000 8000 26500 30000 18000 

Distance ‘Cosine’ 
Conditional ‘Time delta’ 
Number of 
hidden units 

32 

Time offsets 1 
 1228 

The number of output dimensions was chosen based on the fewest number of dimensions under 1229 

which all 5 models consistently outperformed shuffled data for both position and conditioning 1230 

decoding (Figure S10-12). 1231 

 1232 

Use of CEBRA for conditioning decoding 1233 
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 As in position decoding, the optimal parameters for decoding conditioning were 1234 

determined for each animal using an extensive grid search across learning rate, temperature, and 1235 

number of iterations (Figure S11). Models created to compare different sessions of neural 1236 

activity, such as a model trained on data from session A(n) used to decode session B(1), were 1237 

only trained on cells that occurred in both sessions. Models were trained on spike traces of these 1238 

cells, with labels corresponding to the CSUS bin during which the signal occurred (either one out 1239 

of 2 bins or out of 5 bins, see Figures 3c-d). In all cases, 75% of data was used to train the model 1240 

while 25% of data was held out for verification. All models were run 500 times. Optimal 1241 

embeddings were determined based on the percent of correctly binned time points. The optimal 1242 

parameters for each rat are as follows: 1243 

 1244 
 Rat 1 Rat 2 Rat 3 Rat 4 Rat 5 
Model 
Architecture 

‘Offset10-model’ 

Batch size 512 
Learning rate 3.5*10-3 7.0*10-3 3.5*10-3 7.5*10-3 9.5*10-3 
Temperature 
mode 

‘Constant’ ‘Constant’ ‘Auto’ ‘Constant’ ‘Constant’ 

Minimum 
temperature 

2.33 1.75 1.67 1.67 2.66 

Output 
dimensions 
(# of latents) 

3 

Max 
iterations 

50000 7500 20000 18000 25000 

Distance ‘Euclidian’ ‘Cosine’ ‘Cosine’ ‘Euclidian’ ‘Cosine’ 
Conditional ‘Time delta’ 
Number of 
hidden units 

32 

Time offsets 1 
 1245 

The number of output dimension was chosen based on the fewest number of dimensions 1246 

under which all 5 models consistently outperformed shuffled data for both position and 1247 
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conditioning decoding (Figure S10-12). The parameters listed above were used for decoding into 1248 

2 or 5 bins, including the use of 3 output dimensions (# of latents).  1249 

 The accuracy of results was computed from the entries in the confusion matrix: 1250 

 1251 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑆𝑢𝑚	𝑜𝑓	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙	(𝑐𝑜𝑟𝑟𝑒𝑐𝑡)	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑆𝑢𝑚	𝑜𝑓	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑜𝑡𝑎𝑙	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠  1252 

 1253 
Precision was calculated for each class 𝑖, 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the number of classes: 1254 
 1255 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛W =
(𝑇𝑃W)

𝑇𝑃W + 𝐹𝑃W
 1256 

  where: 1257 
	𝑇𝑃 = 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 1258 
𝐹𝑃 = 𝑓𝑎𝑙𝑠𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 1259 

 1260 
The global precision is given by the average: 1261 

𝑃𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1
𝑛,𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛W

q

W_`

 1262 

 1263 
 1264 
Recall, also known as sensitivity, was calculated for each class 𝑖, 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the 1265 
number of classes: 1266 
 1267 

𝑅𝑒𝑐𝑎𝑙𝑙W =
(𝑇𝑃W)

𝑇𝑃W + 𝐹𝑁W
 1268 

 1269 
  where: 1270 

𝑇𝑃 = 𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 1271 
𝐹𝑁 = 𝑓𝑎𝑙𝑠𝑒	𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 1272 

 1273 
The global recall given by the average: 1274 
 1275 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1
𝑛	,𝑅𝑒𝑐𝑎𝑙𝑙W

q

W_`

 1276 

 1277 
The F1 score was calculated for each class 𝑖, 1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the number of classes: 1278 
 1279 

𝐹1W = 2 ∗ 	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛W ∗ 𝑅𝑒𝑐𝑎𝑙𝑙W	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛W + 𝑅𝑒𝑐𝑎𝑙𝑙W

 1280 

The global F1 score is given by the average: 1281 
  1282 
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𝐹1 =
1
𝑛	,𝐹1W

q

W_`

 1283 

 1284 
 1285 
The area under the receiver operating characteristic (ROC) curve was calculated for each class 𝑖, 1286 
1 ≤ 𝑖 ≤ 𝑛, where 𝑛 is the number of classes: 1287 
 1288 

𝐴𝑈𝐶W = 𝑟𝑜𝑐_𝑎𝑢𝑐_𝑠𝑐𝑜𝑟𝑒(𝑦xyz{|}Wq[: , 𝑖], 𝑦�y{�|�y�}	[: , 𝑖]) 1289 
 1290 
The global value is given by the average:  1291 
 1292 

𝑅𝑂𝐶	𝐴𝑈𝐶 =
1
𝑛	,𝐴𝑈𝐶W

q

W_`

	 1293 

 1294 
  where: 1295 

𝑦xyz{|}Wq = 𝑏𝑖𝑛𝑎𝑟𝑖𝑧𝑒𝑑	𝑡𝑟𝑢𝑒	𝑙𝑎𝑏𝑒𝑙𝑠 1296 
𝑦�y{�|�y�} = 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑	𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠	𝑓𝑜𝑟	𝑒𝑎𝑐ℎ	𝑐𝑙𝑎𝑠𝑠 1297 

 1298 
Model consistency 1299 

Model consistency was computed using a built-in CEBRA function which relies on the 1300 

function ‘sklearn.metrics.consistency_score’20. The function compares the embeddings from 1301 

different models by calculating pairwise consistency scores. This comparison involves 1302 

measuring the similarity of the embeddings using statistical metrics; i.e. this metric calculates 1303 

how similar a model’s labels are for similar instances in the data set.  1304 

 To determine consistency between environments and across animals, the data was fit to 1305 

each model 20 times. The model with the lowest loss was selected and compared to other models 1306 

with the lowest loss. Models were created using each individual animal’s optimal parameters 1307 

(see above). 1308 

 1309 

  1310 
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Supplementary figures 1338 

 1339 

 1340 

Figure S1. Photos of testing chambers. 1341 
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Photos of testing chambers. Top: Environment A, an unscented rectangular enclosure with wire 1342 

floor and walls, and white lighting. Bottom: Environment B, a scented ovular enclosure with 1343 

white solid floor and walls, and red lighting. Both environments were located at the same spot in 1344 

the room relative to external cues. Note that during testing, the door to the chamber was closed 1345 

which accentuated the distinction between the white and red lighting. 1346 

 1347 

Figure S2. Learning curves for the five rats. 1348 

There was substantial variability in the number of sessions required to learn the task, with the 1349 

average number of sessions being 20 ± 4.2 (including the criterion sessions). The fastest learners 1350 

(2 rats) reached criterion after 14 sessions, while the slowest rat required 24 sessions to reach 1351 

criterion. 1352 

 1353 
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 1354 

Figure S3. Percent of place cells by session for each animal. 1355 

The percentage of cells classified as place cells is plotted for each session and each animal 1356 
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 1357 

Figure S4. CSUS-MI2 and CSUS-MI5 differences between sessions. 1358 

a. The trial period was divided into two segments: the CS and trace period (750 ms) and the 1359 

US and post-US period (500 ms). Mutual information (MI) was calculated for cells based 1360 

on these two periods and compared to shuffled data, where period IDs were shuffled 500 1361 

times across all trials. Left: Using calcium event data, we found that 10.7% ± 4.9% of 1362 

cells contained significant CSUS information related to whether the animal was in a CS 1363 

or US period. Right: Using calcium traces, 19.9% ± 8.2% of cells contained significant 1364 

information distinguishing the CS from the US period. No significant differences in 1365 
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CSUS-MI were observed between environments A and B (double-sided t-tests, calcium 1366 

events: t(23) = 0.48, p > 0.05; calcium traces: t(23) = -0.52, p > 0.05). 1367 

b. The trial period was divided into five equal-sized segments (each 250 ms), and MI was 1368 

calculated for each cell based on these five periods. We compared the observed values to 1369 

those obtained after shuffling period IDs 500 times. Left: Using calcium event data, 1370 

15.5% ± 7.8% of cells contained significant information distinguishing the five periods, 1371 

compared to 10.0% ± 7.8% when using calcium trace data. No significant differences in 1372 

these MI metrics were found between environments A and B (double-sided t-tests, 1373 

calcium events: t(23) = -0.32, p > 0.05; calcium traces: t(23) = -1.1, p > 0.05). 1374 

c.  Left: There was no significant difference in CSUS-MI2 values when comparing session 1375 

A(n) to session A(n-1) versus session A(n) to session B(1) (Wilcoxon rank sum test: p > 1376 

0.05; double-sided t-test: t(1431) = 0.86, p > 0.05). Right: A small but significant 1377 

difference was observed in CSUS-MI5 when comparing session A(n) to session A(n-1) 1378 

versus session A(n) to session B(1) (Wilcoxon rank sum test: p = 0.049; double-sided t-1379 

test: t(1431) = -2.2, p = 0.03). 1380 

  1381 
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 1382 

Figure S5. PCA computations for session A(n) and session B(1), using only cells present in 1383 

both sessions. 1384 

Principal component analysis14 (PCA) revealed that approximately 15-25 principal components 1385 

(PCs) are needed to account for 95% of the variance in the data. When using the complete cell 1386 

population (not shown), more than 25 PCs are required to achieve the same variance. Across and 1387 

within all sessions and representations (spatial and task), the principal angles between manifolds 1388 

remain highly similar. 1389 
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 1390 

Figure S6. ICA computations across different segments of a session. 1391 

Top: Independent component analysis16 (ICA) was computed over the entire session, with three 1392 

independent components (ICs). Blue dots represent non-trial times, while red dots represent trial 1393 

times. Middle: ICA computed over the last two-thirds of the same session, showing variability in 1394 
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ICs across session segments. Bottom: ICA computed over the second half of the session shows 1395 

additional variability in components depending on how the session is divided. These results 1396 

indicate that components are highly variable over the course of the session and are sensitive to 1397 

how the session is partitioned. 1398 

 1399 

Figure S7. Isomap computations for session A(n) and B(1). 1400 

Isomap17 computations suggest that approximately five neural modes are sufficient to achieve a 1401 

residual variance of 5-10%. However, the shape of the Isomap embedding does not correlate 1402 

with any discernable properties of neural activity or behavior, suggesting limited interpretability 1403 

of the embedding structure in this context. 1404 
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 1405 

Figure S8. MIND outputs for sessions A(n), B(1), and concatenated sessions. 1406 

Top row: MIND15,18 embeddings during movement, excluding trial periods, with color bars 1407 

representing frames. The temporal structure of the data is well captured, with clear separation 1408 

between A(n) and B(1). Bottom row: MIND embeddings during conditioning periods are highly 1409 

unstable. Small changes in parameters result in substantial shifts in the embedding structure, 1410 

transitioning from a linear structure (left) to an undefined, unstable cloud (middle and right). 1411 

 1412 
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 1413 

Figure S9. Grid search over decoding parameters for position. 1414 

A grid search was performed over three parameters: minimum temperature, learning rate, and 1415 

number of iterations for decoding position. Models were trained using cells from session A(n) 1416 

that also appeared in session A(n-1). The figure shows decoding accuracy for session A(n-1) 1417 

using the trained model. Yellow areas indicate higher decoding accuracy. 1418 
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 1419 

Figure S10. Position decoding error as a function of latent values (Rat 5). 1420 

This figure shows the decoding error for position as the number of latent values increases. Upper 1421 

right panel: As specificity increases with more latent values, the model's ability to decode a 1422 

different session (but within the same environment) decreases. This effect is not consistent across 1423 

all rats. Lower right panel: Even when using 10 latent variables, the model is unable to 1424 

accurately decode the animal's position in environment B when trained in environment A. 1425 
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 1426 

Figure S11. CSUS2 decoding accuracy with increasing latent values (Rat 3). 1427 

The figure plots the percent of incorrect decoding (not correct percent) for the CSUS2 model as 1428 

the number of latent values increases. A model built with just two latent values results in 1429 

decoding that is significantly better than chance (shuffled data), and the decoding accuracy 1430 

improves as more latent values are used. Each model was run 100 times.  1431 

 1432 
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1433 

Figure S12. CSUS5 decoding accuracy with increasing latent values (Rat 5). 1434 

Same as Figure S11, but for CSUS5 (conditioning period divided into five segments instead of 1435 

two). The percent of incorrect decoding is plotted. The model with two latent values already 1436 

shows significantly better decoding than shuffled data, and accuracy improves significantly with 1437 

three latent values. Each model was run 100 times. 1438 
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 1439 

Figure S13. Grid search over decoding parameters for conditioning. 1440 

A grid search over minimum temperature, learning rate, and number of iterations was performed 1441 

for conditioning decoding. Models were created using cells from session A(n) that also appeared 1442 

in session B(1). The figure shows decoding accuracy for CSUS2 session B(1) using these 1443 

models. Yellow areas indicate higher accuracy. For Rats 1 and 4, the 'euclidean' distance with 1444 

'constant' temperature mode was used. For Rats 2 and 5, 'cosine' distance with 'constant' 1445 

temperature mode was used. For Rat 3, 'cosine' distance with 'auto' temperature mode was used. 1446 

 1447 

 1448 

  1449 
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