A universal hippocampal memory code across animals and environments

2	
3	Hannah S Wirtshafter ^{1*} , Sara A Solla ¹ , John F Disterhoft ¹
4	
5	
6	
7	
8	
9	*Lead contact: hsw@northwestern.edu (HSW)
10	
11	
12	
13	
14	
15	
16	
17	1. Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago,
18	IL, USA.
19	

20 Abstract

21 How learning is affected by context is a fundamental question of neuroscience, as the ability to 22 generalize learning to different contexts is necessary for navigating the world. An example of swift 23 contextual generalization is observed in conditioning tasks, where performance is quickly 24 generalized from one context to another. A key question in identifying the neural substrate 25 underlying this ability is how the hippocampus (HPC) represents task-related stimuli across different 26 environments, given that HPC cells exhibit place-specific activity that changes across contexts 27 (remapping). In this study, we used calcium imaging to monitor hippocampal neuron activity as 28 animals performed a conditioning task across multiple spatial contexts. We investigated whether 29 hippocampal cells, which encode both spatial locations (place cells) and task-related information, 30 could maintain their task representation even when their spatial encoding remapped in a new spatial 31 context. To assess the consistency of task representations, we used advanced dimensionality 32 reduction techniques combined with machine learning to develop manifold representations of 33 population level HPC activity. The results showed that task-related neural representations remained 34 stable even as place cell representations of spatial context changed, thus demonstrating similar 35 embedding geometries of neural representations of the task across different spatial contexts. Notably, 36 these patterns were not only consistent within the same animal across different contexts but also 37 significantly similar across different animals, suggesting a standardized neural encoding or 'neural 38 syntax' in the hippocampus. These findings bridge a critical gap between memory and navigation 39 research, revealing how the hippocampus maintains cognitive consistency across different spatial 40 environments. These findings also suggest that hippocampal function is governed by a neural 41 framework shared between animals, an observation that may have broad implications for 42 understanding memory, learning, and related cognitive processes. Looking ahead, this work opens 43 new avenues for exploring the fundamental principles underlying hippocampal encoding strategies.

44 Introduction

How can learning can be generalized across contexts as well as remaining localized to one
context? This question is fundamental to both neuroscience and philosophy¹⁻⁴. Deficits in
generalization or inappropriate generalization are hallmarks of many disorders, including
autism^{5,6}, schizophrenia^{7,8}, and post-traumatic stress disorder^{9,10}. In spite of their importance,
many questions related to generalization remain to be answered.

50

51 The hippocampus (HPC) is important for learning, memory, and navigation, and damage to this region can disrupt contextual learning¹¹⁻¹⁷. Many aspects of context, including an animal's 52 53 spatial location and the presence of local and distal cues, can be represented by 'place cells' in 54 the HPC¹⁸⁻²². The activity of many HPC cells therefore changes drastically in different 55 environments (i.e. place cells remap), even when a task can be generalized across these different contexts²³⁻²⁵. A major open question is if and how representations of task-relevant stimuli, which 56 are also found in the HPC^{26-30} , can be maintained against the background of remapped place 57 58 cells. A further question is whether different animals solve this problem using the same, or 59 similar, neural strategies.

60

61 Until recently, the neural mechanisms behind contextual learning have been challenging to 62 investigate due to the need for tracking large numbers of cells across various environments and 63 learning stages— tasks which were unachievable prior to the development of calcium imaging³¹⁻ 64 ³⁶. The use of calcium imaging in this study has allowed for a detailed exploration of 65 hippocampal neuron dynamics, bridging previous gaps between studies of hippocampal

cognitive maps and the hippocampal bases of memory and learning. The traditional separation
 between memory and navigation fields of HPC research is thus in the process of narrowing^{37,38}.

68 This research addresses two fundamental questions of learning and memory. The first 69 question pertains to the persistence of learning across varying contexts. The modulation of 70 hippocampal cells by spatial variables results in substantial changes to cell activity in different 71 environments^{24,25,39,40}; how can conditioning-related neural representations remain stable amid 72 such remapping? The second question is the extent to which neural representations in the 73 hippocampus are invariant and consistent, not only within an individual across diverse contexts. 74 but across different individuals; is there a standardized neural encoding or 'neural syntax' in the 75 for learning and memory in the hippocampus? A commonality of encoding across animals would 76 imply that the functionality of the HPC is informed not solely by individual experiences but also 77 by a standardized framework of neural algorithms. Such a finding would provide key insights 78 into the underlying neural mechanisms that govern learning and memory, helping to identify 79 specific brain circuits and algorithms that drive behavior.

80 To answer these questions, we trained animals on an HPC-dependent conditioning task 81 which is rapidly generalized between spatial contexts^{41,42}. We examined the same task in 82 disparate contexts and looked for changes in a representation of spatial location provided by a 83 population of place cells while the representation of the task features remains unchanged. We 84 found that the representations of the conditioning task were maintained as the animal generalized 85 learning from one environment to another, even as the representation of place changed. 86 Surprisingly, we also found that the neural representation of the task was consistent across 87 animals.

88

89	This study demonstrates that despite the well-known phenomenon of place cell
90	remapping ^{24,25,39,40} , there exists a stable population-level neural representation of task features
91	that persists across diverse environments. These representations also show consistency across
92	different individuals, indicating a standardized neural encoding or 'neural syntax' for the
93	conditioning task within the hippocampus. This novel finding suggests the existence of a
94	universal coding mechanism for associative learning in the hippocampus, a principle that could
95	reorient our approach to studying memory and could challenge our current understanding of
96	cognitive processes.
97	
98	

99

100 Results

101 We trained a cohort of 5 freely moving rats in a conditioning task in one of two distinct 102 environments, labeled A and B: the rats had been previously familiarized with the environment 103 by the time the training began (Fig. 1a, Fig. S1). Environment A was an unscented rectangular 104 enclosure with wire floor and walls, and white lighting; environment B was a scented ovular 105 enclosure with white solid floor and walls, and red lighting (Fig. 1b). Both environments were 106 located at the same spot in the room relative to external cues (see Methods); animals could see 107 external cues out of the top of both environments, as well as out of the sides of environment A 108 (animals also reared often, allowing them to see out of the sides of environment B). During 109 training sessions, we recorded cellular activity in the hippocampal CA1 region via miniscopes, 110 using Gcamp8m for calcium imaging (CaImg). We used both calcium events and calcium traces, 111 as indicated when applicable, to perform data analysis (see methods).

112

113 Animals easily transfer a conditioning task across environments

114 During the initial phase of our study, freely-moving rats (Fig. 1b) underwent training for 115 trace eyeblink conditioning (tEBC) (Fig. S2), a hippocampus-dependent classical conditioning 116 task that serves as a robust model for associative memory formation⁴³⁻⁴⁶. This paradigm involves 117 presenting a 250ms conditioned stimulus (CS, in the form of a tone) followed by a 500ms trace 118 interval, followed by the 100ms presentation of an unconditioned stimulus (US, an eyelid shock) 119 (Fig. 1c). Both shock and blinking were recorded with wires inserted into the muscle of the 120 eyelid (see Methods). As rats were trained, they exhibited a conditioned blink (CR) to the tone. 121 Animals were considered to have learned the task after reaching criterion (70% CRs in 50 trials) 122 on three consecutive training sessions (termed 'criterion sessions') or when the previous four

123 training sessions averaged over 70% (in this instance, only the final three of those sessions were 124 considered 'criterion sessions') (Fig. 1d). There was substantial variability in the number of 125 sessions it took to learn the task, for an average of 20 ± 4.2 training sessions (note: number of 126 sessions always includes criterion sessions). The two rats that learned the fastest reached 127 criterion in 14 sessions, and the rat that learned the slowest reached criterion after 24 sessions 128 (Fig. S2). After reaching criterion, the rats were introduced to environment B, where their ability 129 to perform tEBC was assessed over a two-day period (one session per day). Comparative 130 analysis revealed no significant difference in performance (measured in % CRs) between the 131 criterion sessions in environment A and the testing phase in environment B (mean in 132 environment A criterion sessions was 74.75±6.49, mean in environment B test sessions was 133 77.70 ± 11.68 , two tailed t-test(24)=-0.83, p>0.05) (Fig. 1d), indicating the successful transfer of 134 tEBC learning to a new environment.

135

136 Calcium imaging (Calmg) enabled the longitudinal monitoring of the same hippocampal 137 cells over multiple sessions in both environments. For criterion and testing sessions, we observed 138 an average of 459.85±265.31 cells per session per animal, with no significant difference between 139 the number of cells recorded in environment A and environment B (two-tailed t-test(24)= -0.56, 140 p>0.05) On average, 132±95 cells were present in both the last criterion session in A and the first 141 testing session in B. This was not a significantly different numbers of cells that were present, on 142 average, in both the semi-final session in A, session A(n-1), and the final session in A, session 143 A(n) (155±115 cells).

144

145 Hippocampal place cell representations differ across environments

146	To identify place cells, we compared actual mutual information (MI) to MI computed
147	after bootstrapping circularly shifted position data 500 times. A cell was deemed a place cell if
148	its MI was above the 95 th percentile of null provided by the bootstrapped MI scores. Using this
149	95% cutoff, on average, 9.3%±4.2% of cells across criterion sessions in A and testing sessions in
150	B qualified as place cells. There was not a significant difference between the percent of cells that
151	qualified as place cells in environment A and environment B (average in environment A was
152	8.1%±3.3%, average in environment B was 11.1%±4.9%, two-tailed t-test t(23) =-1.9, p>0.05)
153	(Fig. 2a, Fig. S3). The average mutual information scores across all criterion and testing sessions
154	was 1.08±0.18, with no difference in average MI between environments (environment A mean
155	MI was 1.08±0.17, environment B mean MI was 1.08±0.21, two-tailed t-test t(4805)=-0.5,
156	p>0.05). (See methods for more detailed analysis).
157	

158 Our analysis revealed that individual hippocampal (HPC) cells exhibited distinct spatial 159 representations for environments A and B, altering their configurations of place cells and place 160 fields relative to distal cues — a process known as 'place cell remapping' (Fig. 2b). We 161 confirmed this remapping through several approaches. First, we quantified the shift in the 162 location of highest calcium event rate (putative place field centers) by comparing their distances 163 on the last two criterion sessions in environment A (sessions A(n-1) and A(n)) to the shift 164 observed when transitioning from environment A on session n to environment B on session 1 165 (the centers of both environments were aligned, see methods). The data indicated a significantly 166 greater change in these putative place field centers when the animals transitioned from A to B 167 than when remaining within environment A (medians tested with Wilcoxon rank sum test 168 p=0.002, means tested with double sided t-test t(1430) = -2.5, p=0.01, distributions tested with

two-sample Kolmogorov-Smirnov (KS) test, p=3.6*10⁻⁴) (Fig. 2c). Second, to compensate for 169 170 any differences in environment size, we also compared the distances between field centers to the 171 distances expected if all centers were shuffled 100 times, and found that the median distance 172 between field centers when comparing session A(n) to session A(n-1) was less than all median 173 shuffled values (p=0), while the median distance between field centers when comparing session 174 A(n) to session B(1) was greater or equal than 56% of shuffled values (p=0.56) (Fig. 2d). Third, 175 accounting for the fact that cells may have multiple place fields, we computed the population vector correlation (PVC^{39,47,48}, see methods) using calcium events for sessions A(n-1), A(n), and 176 177 B(1). When using cells that appeared in both sessions A(n-1) and A(n), we found a significant 178 positive correlation when computing the PVC for these two sessions (p = 0.0023, r = 0.11). 179 Conversely, when using cells that appeared in both sessions A(n) and B(1), we found no 180 correlation (p>0.05, r=-0.04). This result indicates significantly similar calcium event patterns 181 between sessions A(n-1) and session A(n), with no significant similarity in patterns between 182 session A(n) and B(1). (Fig. 2e).

183

184 We then used a machine learning algorithm to determine the variation in neural embeddings between environments A and B. To do this, we applied the CEBRA algorithm⁴⁹ to 185 186 calcium trace imaging data labelled with spatial coordinates from environment A, session A(n)187 (all were trained on 75% of data with 25% held out for verification). The choice of CEBRA was 188 motivated by its efficacy and interpretability in decoding neural activity patterns when compared to alternative methods such as PCA⁵⁰ and Isomap⁵¹ (see Methods for additional details). We then 189 190 tested this model's ability to decode the animals' position in environment A and environment B 191 when applied to neural data not used for training. The results showed that the model, when run

192 500 times, predicted the positions in session A(n-1) with significantly greater accuracy than what 193 would be expected by chance; the null was constructed as determined when compared to a model 194 trained on shuffled position data and also run 500x. (All double sided t-tests, for each rat: rat1: 195 t(998):-34.3 p=5.0*10⁻¹⁷¹, rat2: t(998):-72.5 p=0, rat3: t(998)=-1.96 p=0.05, rat4: t(998):-53.7 196 $p=2.6*10^{-299}$, rat5: t(998):-20.0 $p=4.1*10^{-75}$) (Fig. 3a-b). In contrast, when a model trained on 197 data from A(n) was applied to environment B, the model's predictions were significantly below 198 the accuracy of a model trained on shuffled position data, implying that the place cell coding 199 across environments A and B are actually more different than would be expected by chance (all double sided t-tests, for each rat: rat1: t(998):84.1 p=0, rat2: t(998):18.8 p=7.4*10⁻⁶⁸, rat3: 200 201 t(998)=74.7 p=0, rat4: $t(998):13.1 \text{ p}=2.0*10^{-36}$, rat5: t(998):154.4 p=0) (Fig. 3c-d). Collectively, 202 these findings suggest a significant remapping of place cells when transitioning between 203 environments, and also that the neural embeddings for place coding in individual rats change 204 when the animal switches contexts.

205

The hippocampus represents the conditioning task in both environments, and representations of the conditioning task are not spatial representations

208

We then investigated whether conditioning related data was represented equally in both environments A and B. It was obvious on visual inspection that individual cells varied their calcium event rate (Fig. 4a) and calcium trace (Fig. 4b) during the conditioning periods. To quantify this variation, we devised the metric 'CSUS mutual information' (CSUS-MI), analogous to spatial mutual information; this enabled us to assess the extent of task-related information captured by the calcium activity of each cell. We calculated the CSUS-MI for each cell and

215	benchmarked it against a control distribution generated by shuffling CS and US periods and
216	recalculating the MI 500 times. Using calcium event data, we found that 10.7±4.9% of cells held
217	significant CSUS information related to whether the animal was in a CS or US period (termed
218	CSUS-MI2 as the conditioning period was divided into 2 bins; see Methods) (Fig. S4a). An even
219	stronger relationship was noted if using calcium traces: 19.9±8.2 percent of cells contained
220	significant information related to whether the animal was in a CS or US period (Fig. S4a).
221	Importantly, neither of these MI metrics were significantly different between environments A
222	and B (double sided t-tests, using calcium events, t(23)=0.48, p>0.05, using calcium traces,
223	t(23)=-0.52, p>0.05).

224 We then extended this analysis to determine if calcium events or traces of individual cells 225 contained information about what temporal segment portion of the conditioning task the animal 226 was in. To do this, we divided the CSUS period into 5 equal sized bins, computed CSUS-MI 227 using these bins (termed CSUS-MI5, see methods), then compared these mutual information 228 values to the controls provided by shuffled data. Using calcium event data, we found that 229 $15.5\pm7.8\%$ of cells contained this information, compared to $10.0\pm7.8\%$ of cells when we 230 calculated the MI using trace information (Fig. S4b). Again, neither of these mutual information 231 metrics were significantly different between environments A and B (double sided t-tests, using 232 calcium event data, t(23)=-0.32, using calcium trace data, t(23)=-1.1, p>0.05). There was not a 233 significant difference in CSUS-MI2 values when comparing values in session A(n) to session 234 A(n-1), versus comparing values in session A(n) to session B(1) (Wilcoxon rank sum test 235 p>0.05, double sided t-test, t(1431)=0.86, p>0.05). In contrast, there was a small but significant 236 difference in CSUS-MI5 when comparing session A(n) to session A(n-1) versus comparing A(n)237 to session B(1) (Wilcoxon rank sum test p=0.049, double sided t-test, t(1431)=-2.2, p=0.03) (Fig.

S4c).Collectively, these results demonstrate that the conditioning task is represented in both
environments A and B, and that the percentage of cells representing the conditioning task was
not different between the two environments.

241 We then examined the overlap between cells that contained spatial information and those 242 with CSUS information, identifying a significant positive correlation between spatial MI and CSUS-MI2 (linear regression, $r^2 = 0.04$, $p=2.1*10^{-104}$) and spatial MI and CSUS-MI5 (linear 243 244 regression, $r^2 = 0.09$, $p=1.7*10^{-237}$; note that the statistics have been computed for unbinned data 245 but the graph presents binned data for visualization purposes due to the large number of points) 246 (Fig. 4c). Further analysis revealed that cells with significant spatial modulation had a 247 significantly higher likelihood of being significantly modulated by CSUS compared to cells without spatial modulation: 1.35 times higher chance of having significant spatial MI if the cell 248 249 has a significant CSUS-MI2 (Fisher's exact test, p=0.001) and 1.27 times higher chance if the 250 cell has a significant CSUS-MI5 (Fisher's exact test, p=0.002). We then inquired whether the 251 calcium events that occurred during conditioning periods were confined to the 'firing' fields of 252 place cells. We thus calculated the average location of calcium events during conditioning 253 periods versus the average location during periods of movement that were not conditioning 254 periods. We analyzed this data using the Mantel test, which statistically evaluates the correlation 255 between two distance matrices to determine if the spatial patterns they represent are significantly 256 related. Across all sessions, we found a Mantel statistic of 534.58; we compared this statistic to 257 the result of 10,000 shuffles to determine the statistic was not significant (p>0.05); i.e. the spatial 258 firing patterns during conditioning periods are not generally similar to those that occur during 259 non-conditioning periods (Fig. 4d). In other words, the spatial distribution of firing during

conditioning differs fundamentally from that during non-conditioning periods, a result which would not be expected if conditioning related responses were restricted to the cells' place fields We next assessed the consistency of task representation across environments. When we compared cells that appeared in both sessions A(n) and B(1), there was no difference in cell responses to either CS or US (double sided t-tests for CS: t(1174) = 0.68 p>0.05 and ks test p>0.05, for US: t(1174) = 1.20 p>0.05, and ks-test p>0.05) (Fig. 4e).

266

267 Conditioning task representations are consistent across environments

268 We then trained a CEBRA model using calcium imaging data and time-stamped CS/US 269 periods from environment A, using only cells that were recorded in both environment A and B. 270 We then used this trained model to decode if the animal was in a CS or US period during an 271 additional session in environment A, as well as in environment B. All models successfully 272 decoded CS and US periods the additional session in environment A, as compared to shuffled data (all double sided t-tests, for each rat; rat1; t(998):6.7 p= $2.5*10^{-11}$, rat2; t(998):16.1 273 274 p=7.4*10⁻⁵², rat3: t(998)=83.5 p=0, rat4: t(998):80.1 p=0, rat5: t(998):61.0 p=0) (Fig. 5a,c). All 275 five models significantly outperformed chance level in environment B as determined by shuffled 276 data (all double sided t-tests, for each rat: rat1: t(998):10.4 p=2.6*10⁻²⁴, rat2: t(998):2.7 p=7.6*10⁻³, rat3: t(998)=75.3 p=0, rat4: t(998):63.7 p=0, rat5: t(998):106.3 p=0) (Fig. 5b-c). 277 278 279 We then trained an additional model on data from environment A during session A(n)to 280 ascertain whether it could decode the temporal order within the conditioning period (CSUS5).

both in an alternate session in environment A (session A(n-1)) and in environment B (session

282 B(1)). After being trained on session A(n), all models were able to decode environment A(n-1)283 well better than chance levels (all double sided t-tests for accuracy, for each rat: rat1: t(998):41.5 $p=3.3*10^{-220}$, rat2: t(998):28.7 p=7.8*10⁻¹³³, rat3: t(998)=122.6 p=0, rat4: t(998):118.5 p=0, rat5: 284 285 t(998):62.6 p=0) (Fig. 5d,f,g). Remarkably, our results for decoding environment B(1) showed 286 that temporal aspects of CS/US temporal order were decodable across environments, suggesting 287 that a refined level of task encoding is stable across both environments (all double sided t-tests for accuracy, for each rat: rat1: t(998):55.1 p=4.9*10⁻³⁰⁵, rat2: t(998):9.3 p=1.1*10⁻¹⁹, rat3: 288 289 t(998)=71.4 p=0, rat4: t(998):62.6 p=0, rat5: t(998):106.2 p=0; results were also significant 290 compared to those for shuffled data for precision, recall, F1 score, and area under the receiver 291 operating characteristic curve, data not shown, see Methods) (Fig. 5e-g). 292 293 Remarkably, for both CSUS2 and CSUS5, the model trained on session A(n) was no less 294 accurate decoding session B(1) than it was decoding session A(n-1) (double sided t-tests, for 295 CSUS2 t(8)=-0.13, p>0.05, for CSUS5, t(8)=0.32, p>0.05) (Fig. 5h). 296 297 We then used CEBRA to analyze the embedding geometries of cell representations during 298 CS/US periods in both environments. First, we examined the embedding geometries for the 299 conditioning task divided into CS and US periods (CSUS2), for 2, 3, 5, 7, and 10 latents. We 300 compared sessions A(n-1), A(n), B(1), and B(2) to each other, as well as shuffled versions of 301 each session. 302 For all 5 rats, the geometries displayed a high and significant degree of similarity as 303

304 compared to the shuffled control. This significance was maintained when examining up to 10

305	latents, the largest number of latents we utilized (averaging results from all animals, all double
306	sided t-tests, for 2 latents all comparisons were $p<1*10^{-5}$, for 3 latents $p<1*10^{-4}$, for 5 latents
307	$p < 1*10^{-5}$, for 7 latents $p < 1*10^{-5}$, and for 10 latents $p < 1*10^{-4}$) (Fig. 6a-c). This high degree of
308	similarity was maintained when the CS/US periods were divided into 5 segments (CSUS5, (all
309	double sided t-tests, for 2 latents all comparisons were $p<1*10^{-12}$, for 3 latents $p<1*10^{-7}$, for 5
310	latents $p < 1*10^{-6}$, for 7 latents $p < 1*10^{-5}$, and for 10 latents $p < 1*10^{-5}$) (Fig. 6d-f).
311	
212	These highly significant similarity signifies that the neural representations of the task

312 These highly significant similarity signifies that the neural representations of the task 313 were consistent between environments A and B.

314

315 Conditioning task representations are consistent across animals

316 Considering the similarity between representations of the task in environments A and B, we 317 wondered if there was a universal, inter-animal, representation of the conditioning task. To 318 answer this question, we investigated if there were coding similarities of the conditioning task 319 across subjects. For each animal, we developed a unique model based on calcium signal patterns 320 and the structure of the conditioning task. We then calculated a similarity score among all 321 animal-specific models. We observed a markedly significant consistency across these trained 322 models compared to those trained on shuffled data. Notably, this consistency was apparent in 323 models trained to differentiate between CS and US periods, as well as in more granular models 324 that recognized five discrete time segments during CS presentation, the trace interval, and US 325 delivery (akin to the models in Figures 6d-g). When the conditioning period is divided into 2 326 periods (CSUS2), the similarity across animal models is not significantly different than the

- 327 similarity between models in one animal for all tested number of latents (2 latents: ttest(188) = -
- 0.45 p > 0.05, 3 latents: ttest(188) = -1.57 p>0.05, 5 latents: ttest(188) = -0.40 p>0.05, 7 latents:
- 329 ttest(188) = -0.22, p>0.05, 10 latents: ttest(188) = 0.40, p>0.05) (Fig. 7a-b). This relationship
- also holds when the conditioning period is divided into 5 periods (CSUS5): the similarity across
- animal models is not significantly different than the similarity between models in one animal (2
- 332 latents: ttest(188) = -0.79 p > 0.05, 3 latents: ttest(188) = 0.25 p > 0.05, 5 latents: ttest(188) = -0.42
- 333 p>0.05, 7 latents: ttest(188) = 0.70, p>0.05, 10 latents: ttest(188) = 0.30, p>0.05) (Fig. 7c-d).

334

335 Discussion

336	Our study provides significant insights into hippocampal function, as it demonstrates that
337	the hippocampus not only responds to environmental change with changes in neural coding but
338	also maintains consistent task-related information across varying contexts. These mechanisms
339	underpin cognitive flexibility and the ability to apply learned behaviors in new situations. Below
340	we will discuss this interplay between variability and consistency of representations through
341	several theoretical lenses, including predictive coding and cognitive mapping theories, while
342	exploring the stability of these processes within and across subjects.
343	
344	Task abstraction across environments
345	A critical aspect of our study highlights that the hippocampus retains stable task
346	representations, such as those required for eyeblink conditioning, despite variations in
347	environmental contexts. This ability to generalize learned tasks across different settings supports
348	models that posit a cognitive map that extends beyond simple spatial navigation, such as the
349	Tolman-Eichenbaum Machine's (TEM) ⁵² . According to this model, "spatial" maps integrate
350	task-related information and enable the hippocampus to utilize learned behaviors in novel

351 environments that share cognitive demands but differ in sensory or environmental specifics. This

352 flexible functionality exemplifies the hippocampus' role in abstracting and applying learned

knowledge, a hallmark of high-dimensional cognitive mapping. This integrated framework

354 facilitates the adaptation of learned behaviors across diverse contexts, an essential capability for

and abstract environments.

356 Our findings further reveal that the hippocampus abstracts task-related information from 357 the surrounding sensory environment and suggests that the hippocampus connects experiences 358 across different contexts by recognizing underlying similarities; these features help generalize 359 learning and adjust behavior. Our results thus support the TEM's perspective that the 360 hippocampus can encode higher-order, abstract information crucial for task execution. The 361 ability to detach task representation from immediate sensory inputs allows for a generalized 362 version of learned information⁵³⁻⁵⁵, enhancing the hippocampus's utility in supporting the organism's application of learned skills and behaviors in new albeit similar situations^{55,56}. This 363 364 capacity for abstraction is indicative of a sophisticated neural coding mechanism and of an 365 adaptable and extensive cognitive mapping system, as it provides a buffer against potential 366 interference that could arise from the myriad of sensory stimuli an organism encounters. By 367 maintaining a conceptual, generalized version of learned information, the hippocampus supports 368 the organism's ability to apply learned skills and behaviors in new situations that share 369 underlying similarities with previous experiences but differ in sensory or contextual details.

370

371 Pattern Separation vs. Completion

372 Evidence from various areas of neuroscience has led to the development of a theory of HPC 373 function holding that the HPC treats states that involve equivalent actions or relationships such 374 as similar tasks as equivalent, resulting in learning that is easily transferred between environments^{52-54,56,57}. This theory contrasts with the theory that the HPC acts primarily to 375 376 perform competitive "pattern separation"⁵⁸⁻⁶². The prevailing theory as well as the cellular and 377 systems level bases for contextual memory remain to be elucidated. In our study, the distinct 378 coding of different environments by hippocampal place cells provides evidence for pattern 379 separation: the hippocampus differentiates between distinct contexts. This separation reduces 380 interference between memories, allowing for more accurate recall based on specific

environmental cues. On the other hand, consistent decoding of the eyeblink task across different
environments suggests pattern completion. This process allows the hippocampus to reconstruct a
complete memory or learned response from partial or generalized cues, enabling the execution of
the learned task even when contextual details change.

385 Our results complement previous work that identifies the HPC as both a pattern 386 completer and a pattern separator. Studies have demonstrated that place cells can differentially 387 represent the same environment when task demands change^{60,63,64}, yet show similar firing patterns when locations have similar task demands⁶⁵. In more recent work⁶⁶, rats were exposed to 388 389 two distinct environments while performing variations of the same task: approaching object A in 390 the first environment and object B in the second; the study revealed anticorrelated hippocampal 391 firing patterns for events in the two contexts. This suggests that the hippocampus encodes 392 context-specific associations between items and locations, rather than just specific behavior. This 393 study underscored the role of the hippocampus in robust pattern separation when environments 394 differ but require similar behaviors, showing that even minor task variations can lead to 395 significant neuronal pattern separation⁶⁶. In contrast, our study used a task that remained 396 identical across both environments and found consistent hippocampal population-level task 397 representations in both contexts. This consistency likely reflects that the task could be 398 generalized between environments, without necessitating the hippocampus to differentiate 399 between task demands. Therefore, the hippocampus seems to balance pattern separation and 400 completion based on how similar or distinct task demands are across different contexts.

401

402 Non-spatial hippocampal representations

403 There is ongoing debate about whether hippocampal pyramidal cells encode both spatial and non-spatial aspects of a context^{38,67,68}. Our findings show that responses to the conditioning 404 405 task were independent of place field location, with a fraction of the recorded individual cells 406 found able to represent both spatial location and the conditioning task (Fig. 4). This contrasts 407 with studies where conditioning responses were more closely tied to specific spatial locations^{69,70}. The difference likely stems from task design: in previous studies, spatially 408 409 contingent rewards or freezing behavior after a shock made location highly salient, by 410 associating the place where the shock occurred with the aversive event. In our experiment, 411 spatial position was irrelevant; this allowed pyramidal cells to encode task-relevant features 412 independent of location. This finding aligns with previous work showing that hippocampal cells 413 often respond to non-spatial aspects like sensory cues or task demands, particularly in non-spatial tasks^{19,71-73}. 414

415 The discovery that population level patterns in the hippocampus are organized into 416 manifolds provides an elegant solution to the problem of single cells representing both spatial 417 coordinates and task features. Previous hippocampal work has described distinct encoding for 418 spatial location along the center stem of a T maze vs accumulation of evidence for a left-right 419 turning decision at the end of this branch through two distinct, orthogonal directions in a two-420 dimensional neural manifold⁷⁴. Other brain regions, such as the prefrontal cortex and cingulate cortex, appear to use a similar orthogonal coding strategy $^{75-77}$; this strategy has also emerged in 421 neural network simulations of a context-dependent classification task⁷⁸. 422

423

424 Intra-Subject and Inter-Subject Consistency

425 The stability of neural representations within subjects across different testing sessions 426 indicates that once hippocampal circuits are trained, their functional architecture remains 427 remarkably consistent, even in varying contexts. This intra-subject consistency supports theories 428 suggesting that neural circuits are not just reactive but possess a robust, predefined role in processing and responding to specific stimuli^{79,80}. Furthermore, the observation of similar neural 429 430 encoding patterns across different animals performing the same task suggests a species specific, possibly evolutionary conserved, neural code^{79,80}. These findings highlight a generalized neural 431 432 processing strategy that may have been shaped by natural selection to optimize cognitive and 433 behavioral responses across environmental challenges faced by a species. Such a generalized 434 coding strategy may be indicative of evolutionary pressures that have favored neural mechanisms 435 promoting cognitive flexibility and rapid adaptation to environmental challenges⁸¹⁻⁸³. 436 The results of our study highlight the preservation of hippocampal task encoding across 437 different contexts and species; this presents a surprising parallel to recent findings in motor

cortex^{84,85} and insular cortex⁸⁶. Motor functions, especially those fundamental to survival and 438 439 interaction with the physical environment, are expected to exhibit conserved neural dynamics 440 due to their innate and reflexive nature; motor tasks typically involve stereotyped and predictable 441 patterns of behavior that are essential for immediate responses and interactions with the 442 environment⁸⁷⁻⁹⁰. Similarly, the motivational states preserved across animals in the insular cortex 443 are those central to basic biological needs, such as thirst and hunger. These states and tasks are 444 often highly conserved across individuals because they rely on well-established neural circuits 445 that perform specific, crucial functions necessary for survival^{88,90-94}.

In contrast, hippocampal tasks involve complex cognitive processes that include memory,
learning, and spatial navigation; these require a higher degree of cognitive flexibility^{82,95-97}. and

448	are generally influenced by individual experiences (and, at the species level, specific ecological
449	and evolutionary pressures)98-102. Therefore, the conservation of hippocampal task encoding
450	across different individuals, as observed in our study, challenges these traditional views and
451	suggests a deeper, possibly adaptive significance to these cognitive functions.
452	The surprising conservation of the neural representation of tasks within the hippocampus
453	suggests that certain aspects of cognitive mapping and memory processing might be as
454	evolutionarily essential as motor functions. This conservation might reflect universal cognitive
455	strategies that are critical for survival across a range of environmental contexts, providing
456	individuals within a species with the ability to adapt behavior based on past experiences and
457	anticipated future conditions. Such a mechanism would not only enhance an organism's ability to
458	navigate complex environments but also facilitate learning and decision-making across
459	generational timescales.
460	
461	Conclusion
462	
463	The consistent decoding of eyeblink conditioning tasks across different environmental
464	contexts indicates that the hippocampus can maintain a stable representation of task-specific
465	information irrespective of the external sensory environment. This suggests an advanced
466	capability for abstract cognitive mapping, where the hippocampus constructs and utilizes
467	cognitive maps not only for physical locations but also for abstract tasks and concepts, allowing
468	for effective application in varying contexts. These findings expand our understanding of how
469	memories are formed, stored, and retrieved. They suggest that memories are not just static

- 470 recollections of past events but dynamic and adaptable representations that can be applied to new
- 471 situations.
- 472
- 473

474 Citations

- 4751Bouton, M. E. A learning theory perspective on lapse, relapse, and the maintenance of476behavior change. *Health psychology* 19, 57 (2000).
- 477 2 Herszage, J. & Censor, N. Modulation of learning and memory: a shared framework for
 478 interference and generalization. *Neuroscience* **392**, 270-280 (2018).
- 479 3 Linda, Q. Y., Wilson, R. C. & Nassar, M. R. Adaptive learning is structure learning in time. *Neuroscience & Biobehavioral Reviews* 128, 270-281 (2021).
- 481 4 Censor, N. Generalization of perceptual and motor learning: a causal link with memory
 482 encoding and consolidation? *Neuroscience* 250, 201-207 (2013).
- 4835Brown, S. & Bebko, J. Generalization, overselectivity, and discrimination in the autism484phenotype: A review. *Research in Autism Spectrum Disorders* 6, 733-740 (2012).
- 485 6 Church, B. A. *et al.* Learning, plasticity, and atypical generalization in children with 486 autism. *Psychonomic Bulletin & Review* **22**, 1342-1348 (2015).
- 487 7 Weiler, J. A., Bellebaum, C., Brüne, M., Juckel, G. & Daum, I. Impairment of
- 488 probabilistic reward-based learning in schizophrenia. *Neuropsychology* **23**, 571 (2009).
- 489 8 Shohamy, D. *et al.* Learning and generalization in schizophrenia: effects of disease and antipsychotic drug treatment. *Biological psychiatry* **67**, 926-932 (2010).
- 491 9 Anastasides, N. *et al.* Increased generalization of learned associations is related to re492 experiencing symptoms in veterans with symptoms of post-traumatic stress. *Stress* 18, 493 484-489 (2015).
- 494 10 Lis, S. *et al.* Generalization of fear in post-traumatic stress disorder. *Psychophysiology*495 57, e13422 (2020).
- Calandreau, L., Desgranges, B., Jaffard, R. & Desmedt, A. Switching from contextual to
 tone fear conditioning and vice versa: the key role of the glutamatergic hippocampallateral septal neurotransmission. *Learn Mem* 17, 440-443 (2010).
- 499 <u>https://doi.org:10.1101/lm.1859810</u>
 500 12 Desmedt, A., Garcia, R. & Jaffard, R. Vasopressin in the lateral septum promotes
- besited, *H.*, Ourela, *R. et surfaca*, *R. vasopressii* in the lateral septem promotes
 elemental conditioning to the detriment of contextual fear conditioning in mice. *Eur J Neurosci* 11, 3913-3921 (1999).
- Vouimba, R. M., Garcia, R. & Jaffard, R. Opposite effects of lateral septal LTP and
 lateral septal lesions on contextual fear conditioning in mice. *Behav Neurosci* 112, 875884 (1998).
- 50614Anagnostaras, S. G., Gale, G. D. & Fanselow, M. S. Hippocampus and contextual fear507conditioning: recent controversies and advances. *Hippocampus* 11, 8-17 (2001).508https://doi.org:10.1002/1098-1063(2001)11:1

 specificity of latent inhibition and conditioning. <i>Behav Neurosci</i> 107, 23-33 (1993). https://doi.org.10.1037/0735-7044.107.1.23 Plitt, M. H. & Giocomo, L. M. Experience-dependent contextual codes in the hippocampus. <i>Nat Neurosci</i> 24, 705-714 (2021). https://doi.org.10.1038/s41593-021- 00816-6 Devito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org.10.1002/hipo.20610 Btoschimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org.10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 c177 (2018). https://doi.org.10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org.10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org.2026608 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org.10.1523/JNEUROSCI.2864-06.2007 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org.10.1022/hipo.10047 Colgin, L. L., Moser, E. I., May-Britt Moser. Understanding memory through hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> <i>Bippocampal Hippocampal Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: ac	509	15	Honey, R. C. & Good, M. Selective hippocampal lesions abolish the contextual
 https://doi.org:10.1037//0735-7044.107.1.23 Plitt, M. H. & Giocono, L. M. Experience-dependent contextual codes in the hippocampus. <i>Nat Neurosci</i> 24, 705-714 (2021). https://doi.org:10.1038/s41593-021- 00816-6 Devito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org:10.1002/hipp.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.L., May-Britt Moser. Understanding memory through hippocampal-dependent spa	510		specificity of latent inhibition and conditioning. <i>Behav Neurosci</i> 107 , 23-33 (1993).
 Pitt, M. H. & Giocomo, L. M. Experience-dependent contextual codes in the hippocampus. <i>Nat Neurosci</i> 24, 705-714 (2021). https://doi.org:10.1038/s1159-021- 00816-6 Devito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org:10.1002/hipp.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:2012/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1022/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal-remapping. <i>Cell</i> (2003). https://doi.org.10.1101/Jm.59603 Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org.10.1101/Jm.59603 Christian, K. M. & Thompson, R. F. Neural substrates of cyebli	511		https://doi.org:10.1037//0735-7044.107.1.23
 hippocampus. <i>Nat Neurosci</i> 24, 705-714 (2021). https://doi.org.10.1038/s41593-021- 00816-6 Devito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org.10.1002/hipo.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org.10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org.10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org.10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org.27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org.10.1523/JNEUROSCI.6175-11.2012 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.102/hipo.10047 Colgin, L. L., Moser, E. L., May-Britt Moser. Understanding memory through hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> hippocampal-mapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of cyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org.10.1101/hip.59603 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in	512	16	Plitt, M. H. & Giocomo, L. M. Experience-dependent contextual codes in the
 O0816-6 Devito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org;10.1002/hipo.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org;10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org;10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org;17.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org;27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org;10.1523/JNEUROSCI.6175-11.2012 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org;10.1052/JNEUROSCI.6175-11.2012 Jefferty, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org;10.1002/hipp.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal cell (2008). Christian, K. M. & Thompson, R. F. Neural substrates of cyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). htttps://doi.org;10.1102/hipp.10047 McEchron, M. D	513		hippocampus. Nat Neurosci 24, 705-714 (2021). https://doi.org:10.1038/s41593-021-
 Pevito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org;10.1002/hipo.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org;10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org;10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org;10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org;27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org;20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Cogin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trac	514		<u>00816-6</u>
 expression during transitive inference in mice. <i>Hippocampus</i> 20, 208-217 (2010). https://doi.org:10.1002/hipo.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyebli	515	17	Devito, L. M., Kanter, B. R. & Eichenbaum, H. The hippocampus contributes to memory
 https://doi.org:10.1002/hipo.20610 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchorn, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1	516		expression during transitive inference in mice. <i>Hippocampus</i> 20 , 208-217 (2010).
 Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org.27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org.20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org.10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org.10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/m.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and	517		https://doi.org:10.1002/hipo.20610
 representations during learning: when is the map required? <i>J Neurosci</i> 33, 3094-3106 (2013). https://doi.org.10.1523/JNEUROSCI.1348-12.2013 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. <i>Neuron</i> 99, 179-193 e177 (2018). https://doi.org.10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org.10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org.27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org.20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org:10.1523/JNEUROSCI.615-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Secture <i>Viewet biology</i> (<i>CR</i> 29, 3177-3192 (2019). 	518	18	Schimanski, L. A., Lipa, P. & Barnes, C. A. Tracking the course of hippocampal
 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 (2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013 (2013). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 (2017). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org:10.1523/JNEUROSCI.157-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.002/hipo.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the lateral Serier <i>Convert biology : CB</i> 20, 3177-3102 (2019) 	519		representations during learning: when is the map required? J Neurosci 33, 3094-3106
 19 Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the Hippocampus. Neuron 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 20 Mamad, O. et al. Place field assembly distribution encodes preferred locations. PLoS Biol 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 21 Hok, V. et al. Goal-related activity in hippocampal place cells. J Neurosci 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 22 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. J Neurosci 22, 6254-6264 (2002). https://doi.org:20026608 23 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. J Neurosci 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 24 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 25 Colgin, L. L., Moser, E. I., May-Britt Moser. Understanding memory through hippocampal remapping. Cell (2008). 26 Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 27 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J Neurosci 23, 1535-1547 (2003). 28 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Semtum Current biology : CB 29, 3177-3192 (2010) 	520		(2013). https://doi.org:10.1523/JNEUROSCI.1348-12.2013
 Hippocampus. Neuron 99, 179-193 e177 (2018). https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. et al. Place field assembly distribution encodes preferred locations. PLoS Biol 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. et al. Goal-related activity in hippocampal place cells. J Neurosci 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. J Neurosci 22, 6254-6264 (2002). https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. J Neurosci 32, 14752-14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. Hippocampus 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. Cell (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. Learn Mem 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J Neurosci 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the lateral Sentum Current biology : CB 29, 3177-3192 (2019) 	521	19	Gauthier, J. L. & Tank, D. W. A Dedicated Population for Reward Coding in the
 https://doi.org:10.1016/j.neuron.2018.06.008 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org.20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum. <i>CR</i> 20, 3177-3192 (2019) 	522		Hippocampus. Neuron 99, 179-193 e177 (2018).
 Mamad, O. <i>et al.</i> Place field assembly distribution encodes preferred locations. <i>PLoS Biol</i> 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the lateral Sentum. <i>Current biology: CB</i> 29, 3177-3192 (2019). 	523		https://doi.org:10.1016/j.neuron.2018.06.008
 15, e2002365 (2017). https://doi.org:10.1371/journal.pbio.2002365 16k, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 27 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org:20026608 23 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 24 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 25 Colgin, L. L., Moser, E. I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). 26 Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org.10.1101/lm.59603 24 Signa, J. S. Star, S. Star, S. Stingle neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). 28 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the lateral Sentum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	524	20	Mamad, O. et al. Place field assembly distribution encodes preferred locations. PLoS Biol
 Hok, V. <i>et al.</i> Goal-related activity in hippocampal place cells. <i>J Neurosci</i> 27, 472-482 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752-14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum. <i>Current biology</i>: <i>CB</i> 29, 3177-3192 (2019) 	525		15 , e2002365 (2017). <u>https://doi.org:10.1371/journal.pbio.2002365</u>
 (2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/m.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	526	21	Hok, V. et al. Goal-related activity in hippocampal place cells. J Neurosci 27, 472-482
 Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org.20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org.10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org.10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org.10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	527		(2007). https://doi.org:27/3/472 [pii] 10.1523/JNEUROSCI.2864-06.2007
 intrinsic circuitry in hippocampal place cells. <i>J Neurosci</i> 22, 6254-6264 (2002). https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019) 	528	22	Knierim, J. J. Dynamic interactions between local surface cues, distal landmarks, and
 https://doi.org:20026608 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum. <i>Current hiology</i> : <i>CB</i> 29, 3177-3192 (2019) 	529		intrinsic circuitry in hippocampal place cells. J Neurosci 22, 6254-6264 (2002).
 Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can encode multiple trial-dependent features through rate remapping. <i>J Neurosci</i> 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	530		https://doi.org:20026608
 encode multiple trial-dependent features through rate remapping. J Neurosci 32, 14752- 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	531	23	Allen, K., Rawlins, J. N., Bannerman, D. M. & Csicsvari, J. Hippocampal place cells can
 14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019) 	532		encode multiple trial-dependent features through rate remapping. J Neurosci 32, 14752-
 Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	533		14766 (2012). https://doi.org:10.1523/JNEUROSCI.6175-11.2012
 hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i> 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	534	24	Jeffery, K. J., Gilbert, A., Burton, S. & Strudwick, A. Preserved performance in a
 13, 175-189 (2003). https://doi.org:10.1002/hipo.10047 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	535		hippocampal-dependent spatial task despite complete place cell remapping. <i>Hippocampus</i>
 Colgin, L. L., Moser, E.I., May-Britt Moser. Understanding memory through hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019) 	536		13 , 175-189 (2003). https://doi.org:10.1002/hipo.10047
 hippocampal remapping. <i>Cell</i> (2008). Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). <u>https://doi.org:10.1101/lm.59603</u> McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum. <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	537	25	Colgin, L. L., Moser, E.I., May-Britt Moser, Understanding memory through
 Christian, K. M. & Thompson, R. F. Neural substrates of eyeblink conditioning: acquisition and retention. <i>Learn Mem</i> 10, 427-455 (2003). <u>https://doi.org:10.1101/lm.59603</u> McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. <i>J</i> <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Sentum <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019) 	538		hippocampal remapping. <i>Cell</i> (2008).
 acquisition and retention. Learn Mem 10, 427-455 (2003). <u>https://doi.org:10.1101/lm.59603</u> 27 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum Current biology : CB 29, 3177-3192 (2019). 	539	26	Christian, K. M. & Thompson, R. F. Neural substrates of eveblink conditioning:
 https://doi.org:10.1101/lm.59603 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum Current biology : CB 29, 3177-3192 (2019) 	540		acquisition and retention. Learn Mem 10, 427-455 (2003).
 542 27 McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus 543 encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J 544 Neurosci 23, 1535-1547 (2003). 545 28 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in 546 the Lateral Septum Current biology : CB 29, 3177-3192 (2019) 	541		https://doi.org:10.1101/lm.59603
 encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum Current biology : CB 29, 3177-3192 (2019) 	542	27	McEchron, M. D., Tseng, W. & Disterhoft, J. F. Single neurons in CA1 hippocampus
 <i>Neurosci</i> 23, 1535-1547 (2003). Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in the Lateral Septum <i>Current biology</i> : <i>CB</i> 29, 3177-3192 (2019). 	543		encode trace interval duration during trace heart rate (fear) conditioning in rabbit. J
545 28 Wirtshafter, H. S. & Wilson, M. A. Locomotor and Hippocampal Processing Converge in 546 the Lateral Septum <i>Current biology</i> : <i>CB</i> 29 3177-3192 (2019)	544		Neurosci 23 1535-1547 (2003)
546 the Lateral Sentum Current hiology · CR 29 3177-3102 (2010)	545	28	Wirtshafter H S & Wilson M A Locomotor and Hippocampal Processing Converge in
J_{10} (IN FAUSTAL OUTAIL, UN FOULDINEV, UD 47 , J_{11} , J_{21} , J_{11} .	546		the Lateral Septum. <i>Current biology</i> : <i>CB</i> 29 , 3177-3192 (2019).
547 https://doi.org:10.1016/j.cub.2019.07.089	547		https://doi.org:10.1016/i.cub.2019.07.089
548 29 Berger T W Rinaldi P C Weisz D J & Thompson R F Single-unit analysis of	548	29	Berger T W Rinaldi P C Weisz D J & Thompson R F Single-unit analysis of
549 different hippocampal cell types during classical conditioning of rabbit nictitating	549	_,	different hippocampal cell types during classical conditioning of rabbit nictitating
550 membrane response <i>J Neurophysiol</i> 50 1197-1219 (1983)	550		membrane response <i>J Neurophysiol</i> 50 (197-1219 (1983)
551 https://doi.org/10.1152/in 1983.50.5.1197	551		https://doi.org.10.1152/in.1983.50.5.1197
552 30 Wirtshafter H S & Wilson M A Differences in reward biased spatial representations	552	30	Wirtshafter H S & Wilson M A Differences in reward biased spatial representations
553 in the lateral septum and hippocampus <i>eLife</i> 9 (2020)	553	20	in the lateral septum and hippocampus <i>eLife</i> 9 (2020)
554 https://doi.org:10.7554/eLife 55252	554		https://doi.org:10.7554/eLife.55252

555	31	Aharoni, D. & Hoogland, T. M. Circuit Investigations With Open-Source Miniaturized
556		Microscopes: Past, Present and Future. Frontiers in cellular neuroscience 13, 141 (2019).
557		https://doi.org:10.3389/fncel.2019.00141
558	32	Aharoni, D., Khakh, B. S., Silva, A. J. & Golshani, P. All the light that we can see: a new
559		era in miniaturized microscopy. <i>Nat Methods</i> 16 , 11-13 (2019).
560		https://doi.org:10.1038/s41592-018-0266-x
561	33	Silva, A. J. Miniaturized two-photon microscope: seeing clearer and deeper into the
562		brain. Light: Science & Applications 6, e17104-e17104 (2017).
563	34	Wirtshafter, H. S. & Disterhoft, J. F. In Vivo Multi-Day Calcium Imaging of CA1
564		Hippocampus in Freely Moving Rats Reveals a High Preponderance of Place Cells with
565		Consistent Place Fields. J Neurosci (2022). https://doi.org:doi:
566		10.1523/JNEUROSCI.1750-21.2022
567	35	Cunningham, J. P. & Byron, M. Y. Dimensionality reduction for large-scale neural
568		recordings. Nature neuroscience 17, 1500-1509 (2014).
569	36	Bassett, D. S. & Sporns, O. Network neuroscience. Nature neuroscience 20, 353-364
570		(2017).
571	37	Ekstrom, A. D. & Ranganath, C. Space, time, and episodic memory: The hippocampus is
572		all over the cognitive map. <i>Hippocampus</i> 28 , 680-687 (2018).
573	38	Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M. & Tanila, H. The hippocampus,
574		memory, and place cells: is it spatial memory or a memory space? <i>Neuron</i> 23, 209-226
575		(1999). https://doi.org:S0896-6273(00)80773-4 [pii]
576	39	Fenton, A. A. Remapping revisited: how the hippocampus represents different spaces.
577		Nat Rev Neurosci 25, 428-448 (2024), https://doi.org:10.1038/s41583-024-00817-x
578	40	Sanders, H., Wilson, M. A. & Gershman, S. J. Hippocampal remapping as hidden state
579		inference. <i>eLife</i> 9 (2020). https://doi.org:10.7554/eLife.51140
580	41	Bouton, M. E., Nelson, J. B. & Rosas, J. M. Stimulus generalization, context change, and
581		forgetting. <i>Psychological bulletin</i> 125 , 171-186 (1999), https://doi.org.10.1037/0033-
582		2909.125.2.171
583	42	Lovibond P F Preston G & Mackintosh N Context specificity of conditioning
584		extinction and latent inhibition Journal of Experimental Psychology Animal Behavior
585		Processes 10 360 (1984)
586	43	Mover I R Ir Devo R A & Disterboft I F Hippocampectomy disrupts trace eve-
587	15	blink conditioning in rabbits <i>Behav Neurosci</i> 104 243-252 (1990)
588	44	McEchron M D & Disterboft J F Hippocampal encoding of non-spatial trace
589	••	conditioning <i>Hippocampus</i> 9 385-396 (1999) https://doi.org/10.1002/(SICD)1098-
590		1063(1999)9:4<385···AID-HIPO5>3.0 CO·2-K
591	45	Woodruff-Pak D S & Disterboft I F Where is the trace in trace conditioning? <i>Trends</i>
592	ч.	<i>Neurosci</i> 31 105-112 (2008) https://doi.org.10.1016/j.tins.2007.11.006
593	46	Weiss C & Disterboft L F The impact of hippocampal lesions on trace-eveblink
594	70	conditioning and forebrain-cerebellar interactions <i>Rehav Neurosci</i> 129 512-522 (2015)
595		https://doi.org.10.1037/bpe0000061
596	47	Nevmotin S A Talbot Z N Jung I O Fenton A A & Lytton W W Tracking
597	т,	recurrence of correlation structure in neuronal recordings I Naurosci Mathads 775 1 0
508		(2017) https://doi.org/10.1016/j.jneumeth.2016.10.000
590		(2017). <u>maps.//doi.org.10.1010/j.jncumeti.2010.10.007</u>

500	19	Drup V H at al Prograssiva ingrassa in grid scale from dersal to ventral modial
599	40	onterbinal cortex. <i>Hinne communa</i> 19 , 1200, 1212 (2008)
000		$h_{1200-1212} (2008).$
601	40	$\frac{\text{nttps://doi.org:10.1002/ntpo.20004}}{11.14.44.14.14.14.14.14.14.14.14.14.14.1$
602	49	Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint
603		behavioural and neural analysis. <i>Nature</i> 61 7, 360-368 (2023).
604		https://doi.org:10.1038/s41586-023-06031-6
605	50	Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. <i>The</i>
606		London, Edinburgh, and Dublin philosophical magazine and journal of science 2, 559-
607		572 (1901).
608	51	Tenenbaum, J. B., Silva, V. d. & Langford, J. C. A global geometric framework for
609		nonlinear dimensionality reduction. science 290, 2319-2323 (2000).
610	52	Whittington, J. C. R. et al. The Tolman-Eichenbaum Machine: Unifying Space and
611		Relational Memory through Generalization in the Hippocampal Formation. <i>Cell</i> 183 ,
612		1249-1263 e1223 (2020), https://doi.org:10.1016/j.cell.2020.10.024
613	53	Wirtshafter H S & Wilson M A Artificial intelligence insights into hippocampal
614	00	processing Front Comput Neurosci 16 1044659 (2022)
615		https://doi.org/10/3389/fncom 2022 1044659
616	54	Lehnert J. Littman M. J. & Frank M. J. Reward-predictive representations generalize
617	54	across tasks in reinforcement learning PLoS Commut Riol 16 e1008317 (2020)
618		https://doi.org:10.1271/journal.pabi.1008217
610	55	Colling A C E & Frank M I Neural signature of hierarchically structured
620	55	connis, A. O. E. & Flank, M. J. Neural signature of metalenically structured
020		Consistion 152, 100, 100 (2010)
621	57	Cognition 152, 160-169 (2016).
622	56	Stachenfeld, K. L., Botvinick, M. M. & Gershman, S. J. The hippocampus as a predictive
623		map. Nat Neurosci 20, 1643-1653 (2017). <u>https://doi.org/10.1038/nn.4650</u>
624	57	Eichenbaum, H. Hippocampus: cognitive processes and neural representations that
625		underlie declarative memory. Neuron 44, 109-120 (2004).
626	58	Wills, T. J., Lever, C., Cacucci, F., Burgess, N. & O'Keefe, J. Attractor dynamics in the
627		hippocampal representation of the local environment. <i>Science</i> 308 , 873-876 (2005).
628		https://doi.org:10.1126/science.1108905
629	59	Colgin, L. L. et al. Attractor-map versus autoassociation based attractor dynamics in the
630		hippocampal network. J Neurophysiol 104, 35-50 (2010).
631		https://doi.org:10.1152/jn.00202.2010
632	60	Smith, D. M. & Mizumori, S. J. Learning-related development of context-specific
633		neuronal responses to places and events: the hippocampal role in context processing. J
634		Neurosci 26, 3154-3163 (2006). https://doi.org:10.1523/JNEUROSCI.3234-05.2006
635	61	Colgin, L. L. et al. Attractor-map versus autoassociation based attractor dynamics in the
636		hippocampal network. Journal of neurophysiology 104, 35-50 (2010).
637	62	Lee I Yoganarasimha D Rao G & Knierim J J Comparison of population
638	0-	coherence of place cells in hippocampal subfields CA1 and CA3 <i>Nature</i> 430 456-459
639		(2004)
640	63	Bahar A S Shirvalkar P R & Shaniro M I Memory-guided learning: CA1 and CA3
641	05	neuronal ensembles differentially encode the commonalities and differences between
642		situations I Nourosci 31 12270-12281 (2011)
6/2		https://doi.org:10.1522/INELIBOSCI.1671.11.2011
043		<u>https://doi.org.10.1525/JNE/0KOSCI.10/1-11.2011</u>

644	64	Markus, E. J. et al. Interactions between location and task affect the spatial and
645		directional firing of hippocampal neurons. J Neurosci 15, 7079-7094 (1995).
646	65	Singer, A. C., Karlsson, M. P., Nathe, A. R., Carr, M. F. & Frank, L. M. Experience-
647		dependent development of coordinated hippocampal spatial activity representing the
648		similarity of related locations. J Neurosci 30 , 11586-11604 (2010).
649		https://doi.org:10.1523/JNEUROSCI.0926-10.2010
650	66	McKenzie, S. <i>et al.</i> Hippocampal representation of related and opposing memories
651		develop within distinct, hierarchically organized neural schemas. Neuron 83, 202-215
652		(2014). https://doi.org:10.1016/j.neuron.2014.05.019
653	67	O'Keefe, J. & Krupic, J. Do hippocampal pyramidal cells respond to nonspatial stimuli?
654		<i>Physiol Rev</i> 101 , 1427-1456 (2021). https://doi.org:10.1152/physrev.00014.2020
655	68	Knierim, J. J. From the GPS to HM: Place cells, grid cells, and memory. <i>Hippocampus</i>
656		25 , 719-725 (2015). https://doi.org:10.1002/hipo.22453
657	69	Moita, M. A., Rosis, S., Zhou, Y., LeDoux, J. E. & Blair, H. T. Hippocampal place cells
658		acquire location-specific responses to the conditioned stimulus during auditory fear
659		conditioning. Neuron 37, 485-497 (2003). https://doi.org:10.1016/s0896-6273(03)00033-
660		3
661	70	Shan, K. Q., Lubenov, E. V., Papadopoulou, M. & Siapas, A. G. Spatial tuning and brain
662		state account for dorsal hippocampal CA1 activity in a non-spatial learning task. <i>eLife</i> 5
663		(2016). <u>https://doi.org:10.7554/eLife.14321</u>
664	71	Wood, E. R., Dudchenko, P. A. & Eichenbaum, H. The global record of memory in
665		hippocampal neuronal activity. Nature 397, 613-616 (1999).
666		https://doi.org:10.1038/17605
667	72	Kennedy, P. J. & Shapiro, M. L. Motivational states activate distinct hippocampal
668		representations to guide goal-directed behaviors. Proc Natl Acad Sci USA 106, 10805-
669		10810 (2009). https://doi.org:10.1073/pnas.0903259106
670	090325	59106 [pii]
671	73	Holscher, C., Jacob, W. & Mallot, H. A. Reward modulates neuronal activity in the
672		hippocampus of the rat. Behav Brain Res 142, 181-191 (2003).
673	74	Nieh, E. H. et al. Geometry of abstract learned knowledge in the hippocampus. Nature
674		595 , 80-84 (2021).
675	75	Johnston, W. J., Fine, J. M., Yoo, S. B. M., Ebitz, R. B. & Hayden, B. Y. Semi-
676		orthogonal subspaces for value mediate a binding and generalization trade-off. <i>Nature</i>
677		Neuroscience, 1-13 (2024).
678	76	Machens, C. K., Romo, R. & Brody, C. D. Functional, but not anatomical, separation of
679		"what" and "when" in prefrontal cortex. Journal of Neuroscience 30 , 350-360 (2010).
680	77	Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent
681		computation by recurrent dynamics in prefrontal cortex. <i>nature</i> 503 , 78-84 (2013).
682	78	Flesch, T., Juechems, K., Dumbalska, T., Saxe, A. & Summerfield, C. Orthogonal
683		representations for robust context-dependent task performance in brains and neural
684		networks. Neuron 110, 1258-1270. e1211 (2022).
685	79	Mizumori, S. J., Canfield, J. G. & Yeshenko, O. Parallel and interrelated neural systems
686		underlying adaptive navigation. Integrative and Comparative Biology 45, 547-554
687		(2005).

688	80	Mizumori, S. J., Cooper, B. G., Leutgeb, S. & Pratt, W. E. A neural systems analysis of
689		adaptive navigation. <i>Mol Neurobiol</i> 21 , 57-82 (2000). <u>https://doi.org:10.1385/MN:21:1-</u>
690		<u>2:057</u>
691	81	Mizumori, S. & Smith, D. Directing Neural Representations of Space. Animal Spatial
692		Cognition: Comparative, Neural, and Computational Approaches (2006).
693	82	Buzsáki, G. & Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-
694		entorhinal system. Nature neuroscience 16, 130-138 (2013).
695	83	Bunsey, M. & Eichenbaum, H. Conservation of hippocampal memory function in rats
696		and humans. Nature 379, 255-257 (1996). https://doi.org:10.1038/379255a0
697	84	Safaie, M. et al. Preserved neural dynamics across animals performing similar behaviour.
698		Nature 623, 765-771 (2023). https://doi.org:10.1038/s41586-023-06714-0
699	85	Gallego, J. A. et al. Cortical population activity within a preserved neural manifold
700		underlies multiple motor behaviors. Nature communications 9, 1-13 (2018).
701	86	Talpir, I. & Livneh, Y. Stereotyped goal-directed manifold dynamics in the insular
702		cortex. Cell reports 43 (2024).
703	87	Kogan, E., Lu, J. & Zuo, Y. Cortical circuit dynamics underlying motor skill learning:
704		from rodents to humans. Frontiers in Molecular Neuroscience 16, 1292685 (2023).
705	88	Manoli, D. S., Meissner, G. W. & Baker, B. S. Blueprints for behavior: genetic
706		specification of neural circuitry for innate behaviors. Trends in neurosciences 29, 444-
707		451 (2006).
708	89	LeDoux, J. & Daw, N. D. Surviving threats: neural circuit and computational
709		implications of a new taxonomy of defensive behaviour. <i>Nature Reviews Neuroscience</i>
710		19 , 269-282 (2018).
711	90	LeDoux, J. E. As soon as there was life, there was danger: the deep history of survival
712		behaviours and the shallower history of consciousness. <i>Philosophical Transactions of the</i>
713		Royal Society B 377 , 20210292 (2022).
714	91	Harris, K. D. & Shepherd, G. M. The neocortical circuit: themes and variations. <i>Nature</i>
715		neuroscience 18, 170-181 (2015).
716	92	Shmuelof, L. & Krakauer, J. W. Are we ready for a natural history of motor learning?
717		Neuron 72, 469-476 (2011).
718	93	Tierney, A. Evolutionary implications of neural circuit structure and function.
719		Behavioural processes 35, 173-182 (1995).
720	94	Martínez-García, F. & Lanuza, E. Evolution of vertebrate survival circuits. <i>Current</i>
721		Opinion in Behavioral Sciences 24, 113-123 (2018).
722	95	Sweis, B. M., Mau, W., Rabinowitz, S. & Cai, D. J. Dynamic and heterogeneous neural
723		ensembles contribute to a memory engram. <i>Curr Opin Neurophiol</i> 67 , 199-206 (2021).
724		https://doi.org/10.1016/i.conb.2020.11.017
725	96	Davidson, T. J., Kloosterman, F. & Wilson, M. A. Hippocampal replay of extended
726		experience. <i>Neuron</i> 63 , 497-507 (2009), https://doi.org.10.1016/i.neuron.2009.07.027
727		S0896-6273(09)00582-0 [pii]
728	97	Rubin, R. D., Watson, P. D., Duff, M. C. & Cohen, N. J. The role of the hippocampus in
729		flexible cognition and social behavior <i>Frontiers in human neuroscience</i> 8 742 (2014)
730	98	Poulter S Hartley T & Lever C The neurobiology of mammalian navigation <i>Current</i>
731	20	<i>Biology</i> 28 R1023-R1042 (2018)
, 51		

- Tucker, M. A., Ord, T. J. & Rogers, T. L. Evolutionary predictors of mammalian home
 range size: body mass, diet and the environment. *Global Ecology and Biogeography* 23, 1105-1114 (2014).
- Schilder, B. M., Petry, H. M. & Hof, P. R. Evolutionary shifts dramatically reorganized
 the human hippocampal complex. *Journal of Comparative Neurology* 528, 3143-3170
 (2020).
- Sherry, D. F., Jacobs, L. F. & Gaulin, S. J. Spatial memory and adaptive specialization of
 the hippocampus. *Trends in neurosciences* 15, 298-303 (1992).
- Pravosudov, V. V. & Roth II, T. C. Cognitive ecology of food hoarding: the evolution of
 spatial memory and the hippocampus. *Annual Review of Ecology, Evolution, and Systematics* 44, 173-193 (2013).
- 743

746 Fig 1. Experimental training paradigm and results.

747	a.	Animals explored environment A for one session before undergoing eyeblink
748		conditioning until they reached the learning criterion. Criterion was defined as achieving
749		70% conditioned responses (CRs) in 50 trials across three consecutive training sessions
750		(A(n-2), A(n-1), and A(n)) or averaging over 70% CRs across the previous four training
751		sessions. After meeting the criterion in environment A, animals were allowed one session
752		of exploration in environment B, followed by two test sessions of trace eyeblink
753		conditioning (sessions B(1) and B(2)) in environment B.
754	b.	(Top) Schematics of environments A and B. Environment A is a rectangular enclosure
755		with wire walls, floor, and ceiling, lit with white light, and unscented. Environment B is
756		oval-shaped with solid white floors and walls, without a ceiling, lit with red light, and
757		scented with clove oil. Both environments provided distal cues visible from the top and
758		sides. (Bottom) Animal trajectories in environments A and B during a single session.

759	c.	Trace eyeblink conditioning (tEBC) paradigm. A 250 ms tone (conditioned stimulus, CS)
760		was followed by a 500 ms trace interval, then a 100 ms eyelid shock (unconditioned
761		stimulus, US). Eyelid activity was recorded using an EMG electrode implanted above the
762		eye. Untrained animals only blinked in response to the US (unconditioned response, UR),
763		whereas trained animals began blinking during the trace interval after the CS and before
764		the US (conditioned response, CR).
765	d.	Performance of animals (n=5) in the tEBC task. Animals learned tEBC while freely
766		moving in environment A and successfully transferred this learning to environment B.
767		The dotted line indicates the performance criterion. No significant difference was found
768		between performance in the criterion sessions in environment A (mean $74.75 \pm 6.49\%$)
769		and the test sessions in environment B (mean 77.70 \pm 11.68%; two-tailed t-test, t(24) = -
770		0.83, $p > 0.05$). Error bars represent standard error.

772 Fig 2. Place cells remap between environment A and environment B.

773a. Percent of place cells during criterion sessions in environment A and test sessions in774environment B. Light-colored bars represent averages across individual sessions, and775dark-colored bars represent overall averages in environments A and B. Overlaid bars776indicate standard deviation. On average, $9.3\% \pm 4.2\%$ of cells were classified as place777cells. There was no significant difference in the percentage of place cells between778environments A and B (average in environment A: $8.1\% \pm 3.3\%$; average in environment779B: $11.1\% \pm 4.9\%$; two-tailed t-test, t(23) = -1.9, p > 0.05).

780	b.	Example activity map of the same single cell in environments A and B. Yellow indicates
781		the highest firing rates. This cell exhibited remapping between environments, showing
782		different place fields relative to external cues in the two contexts.
783	c.	Distribution of distances between place field centers (determined by the highest calcium
784		event rate), comparing sessions A(n) and A(n-1) versus sessions A(n) and B(1). Place
785		field centers shifted significantly more when the animal was moved to environment B
786		compared to within-session shifts in environment A (Wilcoxon rank sum test, $p = 0.002$;
787		two-sided t-test, $t(1430) = -2.5$, $p = 0.01$; two-sample Kolmogorov-Smirnov test, $p = 3.6$
788		\times 10). The brown shaded area represents the overlap between distance histograms.
789	d.	Distribution of the median distance between place field centers after shuffling center
790		locations 500 times. The actual median value for session $A(n)$ to $A(n-1)$ was smaller than
791		all shuffled medians ($p = 0$, dashed blue line), while the median for session A(n) to B(1)
792		was greater than or equal to 56% of shuffled medians ($p = 0.56$, dashed yellow line). The
793		brown shaded area represents the overlap between shuffled distributions.
794	e.	Population vector correlation (PVC) based on calcium events for sessions A(n-1), A(n),
795		and B(1). A significant positive correlation was found between sessions $A(n-1)$ and $A(n)$
796		for cells present in both sessions ($p = 0.0023$, $r = 0.11$). In contrast, there was no
797		significant correlation between sessions $A(n)$ and $B(1)$ for shared cells (p > 0.05, r = -
798		0.04). These findings suggest that calcium event patterns are significantly similar
799		between sessions $A(n-1)$ and $A(n)$ but not between session $A(n)$ and $B(1)$. Dashed lines
800		represent lines of best fit. (a.u. = arbitrary units).
801		

- -

805 a. A model trained on calcium trace and position data from session A(n) (using cells present 806 in both A(n) and A(n-1)) predicted positions in environment A(n-1) with significantly 807 greater accuracy compared to a model trained on shuffled position data. The model was 808 run 500 times, and the accuracy of predictions was assessed. The model trained on actual 809 data significantly outperformed the shuffled model across rats (double-sided t-tests: Rat 810 1: t(998) = -34.3, p = 5.0×10^{-171} ; Rat 2: t(998) = -72.5, p = 0; Rat 3: t(998) = -1.96, p =

811		0.05; Rat 4: t(998) = -53.7, p = 2.6×10^{-299} ; Rat 5: t(998) = -20.0, p = 4.1×10^{-75}). Error
812		bars represent standard error. A single asterisk (*) indicates $p \le 0.05$, and three asterisks
813		(***) indicate $p < 10^{-74}$.
814	b.	(Top row) Visualization of model performance for decoding animal position in
815		environment A(n). Left: The trained model demonstrated on the training data from
816		session A(n). Middle: The same model applied to held-out trace data (25%) from session
817		A(n). Right: The model applied to predict the animal's position in session A(n-1).
818		(Bottom row) The same models trained on shuffled position data. Shown here is the
819		model for Rat 4, where the model trained on real data significantly outperformed the
820		shuffled model for decoding position in session A(n-1) (500 simulations, $t(998) = -53.7$,
821		$p = 2.6 \times 10^{-299}$). (For visualization purposes, distance from the corner of the environment
822		is plotted using normalized values in arbitrary units [a.u.]).
823	c.	A model trained on data from session $A(n)$ (using cells present in both $A(n)$ and $B(1)$)
824		was applied to environment B(1). The model's predictions were significantly less
825		accurate than those of a model trained on shuffled position data (double-sided t-tests: Rat
826		1: $t(998) = 84.1$, $p = 0$; Rat 2: $t(998) = 18.8$, $p = 7.4 \times 10^{-68}$; Rat 3: $t(998) = 74.7$, $p = 0$;
827		Rat 4: $t(998) = 13.1$, $p = 2.0 \times 10^{-36}$; Rat 5: $t(998) = 154.4$, $p = 0$). Error bars represent
828		standard error. Three asterisks (***) indicate $p < 10^{-35}$.
829	d.	(Top row) Model trained on position and calcium trace data from session A(n), using
830		cells present in both $A(n)$ and $B(1)$. Left: The model demonstrated on the training data
831		from session A(n). Middle: The same model applied to held-out trace data (25%) from
832		session $A(n)$. Right: The model applied to decode the animal's position in session $B(1)$.
833		(Bottom row) The same models trained on shuffled position data. Shown here is the
834		model for Rat 4, where the shuffled model performed significantly better than the model

- trained on session A(n) for decoding position in session B(1) (500 simulations, t(998) =
- 836 $13.1, p = 2.0 \times 10^{-36}$). (For visualization purposes, distance from the corner of the
- 837 environment is plotted using normalized values in arbitrary units [a.u.]).
- 838
- 839

841 Figure 4. Identifying CS and US modulation in individual cells

842	a.	Peristimulus time histograms (PSTHs) of six example cells responding to the CS, US,
843		and/or trace period. Bars represent calcium events summed across 50 trials. The
844		shaded regions indicate different stimulus periods: blue (CS), green (trace), and red
845		(US).
846	b.	Mean calcium traces of eight example cells in response to the CS, US, and/or trace
847		period, averaged across 50 trials. Shaded regions are consistent with panel a (a.u. =
848		arbitrary units).
849	c.	Scatter plots illustrating the significant positive correlation between spatial mutual
850		information (MI) and CSUS mutual information (MI). Data points represent binned
851		observations with error bars showing standard errors, while the solid red line
852		represents the best fit from a linear regression analysis of the original, unbinned
853		dataset. Top schematics indicate division of conditioning period into 2 or 5 bins. Left:
854		CSUS-MI2 ($r^2 = 0.04$, $p = 2.1 \times 10^{-104}$). Right: CSUS-MI5 ($r^2 = 0.09$, $p = 1.7 \times 10^{-104}$).
855		237).
856	d.	Place field remapping during conditioning and non-conditioning periods. (Left) Heat
857		map comparing the spatial distances between place field centers during conditioning
858		(e.g., during CS/US trials) versus non-conditioning periods (e.g., intertrial intervals).
859		Color represents the absolute difference in distances between field centers: regions
860		with minimal color variation (blue) suggest similar place field centers between the
861		two conditions, while more yellow areas represent significant differences in distance
862		(Mantel statistic = 534.58, $p > 0.05$). (Right) Example of two cells showing spatial
863		calcium activity. Top: Heat maps showing calcium event rates during periods of
864		movement but not conditioning (e.g., intertrial intervals). Bottom: Calcium event

865		rates during CS/US conditioning periods. Dark blue signifies the lowest event rate,
866		and yellow represents the highest event rate. These results show that calcium events
867		during trials are not confined to a cell's place field.
868	e.	Distribution of calcium events during CS (left) and US (right) periods in sessions
869		A(n) (blue) and B(1) (yellow). No significant difference was observed in
870		hippocampal firing during the CS (left) or US (right) periods between environments
871		A and B (CS: two-tailed t-test, $t(1174) = 0.68$, $p > 0.05$; US: two-tailed t-test, $t(1174)$
872		= 1.20, $p > 0.05$; KS tests, $p > 0.05$ for both comparisons).
873		
874		

885		0; Rat 5: $t(998) = 61.0$, $p = 0$). Error bars represent standard error, and asterisks denote
886		significance ($p < 10^{-10}$).
887	b.	The same models from panel a were also applied to environment B and significantly
888		outperformed chance level (all double-sided t-tests: Rat 1: $t(998) = 10.4$, $p = 2.6 \times 10^{-24}$;
889		Rat 2: $t(998) = 2.7$, $p = 7.6 \times 10^{-3}$; Rat 3: $t(998) = 75.3$, $p = 0$; Rat 4: $t(998) = 63.7$, $p = 0$;
890		Rat 5: t(998) = 106.3, p = 0). Error bars represent standard error, $*p < 10^{-3}$, $***p < 10^{-25}$.
891	c.	(Top row) A CEBRA model trained on CS/US periods, divided into two time bins (data
892		from Rat 4). The model was trained using position and calcium trace data from session
893		A(n), using cells present in both A(n) and A(n-1). Left: The trained model applied to
894		training data from session A(n). Middle: The model applied to decode CS/US periods
895		from held-out data (25%) from session $A(n)$. Right: The model applied to session $A(n-1)$.
896		(Bottom row) The same model trained on shuffled data. The model trained on session
897		A(n) significantly outperformed shuffled data in decoding both session A(n-1) and
898		session B(1) (double-sided t-tests, $t(998) = 83.5$, $p = 0$, and $t(998) = 75.3$, $p = 0$,
899		respectively).
900	d.	A CEBRA model was trained on data from environment A to decode temporal order
901		within the CS, trace, and US periods, split into five divisions, applied to an alternate
902		session in environment A (session $A(n-1)$). The model significantly outperformed chance
903		(all double-sided t-tests for accuracy: Rat 1: $t(998) = 41.5$, $p = 3.3 \times 10^{-220}$; Rat 2: $t(998)$
904		= 28.7, p = 7.8×10^{-133} ; Rat 3: t(998) = 122.6, p = 0; Rat 4: t(998) = 118.5, p = 0; Rat 5:

905 t(998) = 62.6, p = 0). Bars indicate standard error; significance denoted as *p < 10⁻⁵⁰.

906 e. The same five models from panel d were also applied to environment B and

907 outperformed shuffled data in decoding the temporal aspects of the CS/US periods,

908 indicating that fine-grained temporal encoding is stable across environments (all double-

909		sided t-tests for accuracy: Rat 1: $t(998) = 55.1$, $p = 4.9 \times 10^{-305}$; Rat 2: $t(998) = 9.3$, $p =$
910		1.1×10^{-19} ; Rat 3: t(998) = 71.4, p = 0; Rat 4: t(998) = 62.6, p = 0; Rat 5: t(998) = 106.2,
911		p = 0).
912	f.	Same analysis as in panel c, but a CEBRA model was trained on CS/US periods split into
913		five divisions. Top: Five divisions are shown for context. Data from Rat 3 show that the
914		model trained on session A(n) outperformed shuffled models for decoding both session
915		A(n-1) and session B(1) (double-sided t-tests, $t(998) = 88.9$, $p = 0$, and $t(998) = 71.4$, $p = 0$
916		0, respectively).
917	g.	Confusion matrices displaying CEBRA decoding of five CS/US time bins, as shown in
918		panel f. Top row: Models trained on data from session A(n). Bottom row: Models trained
919		on shuffled data. Darker colors indicate higher model accuracy.
920	h.	Model accuracy for decoding sessions A(n-1) and B(1) using CSUS2 and CSUS5
921		divisions. For both CSUS2 and CSUS5, a model trained in session A(n) decoded session
922		B(1) with accuracy similar to decoding session A(n-1) (CSUS2: double-sided t-test, t(8)
923		= -0.13, p > 0.05; CSUS5: $t(8) = 0.32$, p > 0.05). Bars represent standard error
924		
925		

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.24.620127; this version posted October 24, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

927 Fig 6. High consistency in neural representations between environments A and B.

928	a.	Consistency scores for each rat, calculated with 2, 3, 5, 7, and 10 latents. Lighter bars
929		represent consistency percentage for actual data, while adjacent darker bars represent
930		consistency for shuffled data. The schematic below the x-axis illustrates the data sets
931		included in each comparison (for position and labelling of data sets see figure 6b).
932		For the CSUS2 division of conditioning periods (split into CS and US components),
933		all five rats show significantly higher consistency between environments A and B in
934		the actual data compared to shuffled data. This consistency remains significant with
935		up to 10 latents.
936	b.	Example consistency measurements from Rat 5 for CSUS2 with 2, 3, 5, 7, and 10
937		latents.
938	c.	Average consistency scores across all rats for CSUS2. The figure legend follows the
939		format of panel a. Bars represent standard error. Consistency scores for actual data
940		versus shuffled data were significantly different across all latent dimensions (all
941		double-sided t-tests: 2 latents, p < 1 \times 10^-5; 3 latents, p < 1 \times 10^-4; 5 latents, p < 1 \times
942		10 ⁻⁵ ; 7 latents, $p < 1 \times 10^{-5}$; 10 latents, $p < 1 \times 10^{-4}$).
943	d.	Consistency scores for each rat, as in panel a, but for CSUS5, where the conditioning
944		period is divided into five temporal components. All five rats show significantly
945		higher consistency between environments A and B in the actual data compared to
946		shuffled data, maintained across up to 10 latents.
947	e.	Example consistency measurements from Rat 3 for CSUS5 with 2, 3, 5, 7, and 10
948		latents.
949	f.	Average consistency scores across all rats for CSUS5. The figure legend matches that
950		of panel c. Bars represent standard error. Significant differences between actual and

- 951 shuffled data were observed for all latent dimensions (all double-sided t-tests: 2
- 952 latents, $p < 1 \times 10^{-12}$; 3 latents, $p < 1 \times 10^{-7}$; 5 latents, $p < 1 \times 10^{-6}$; 7 latents, $p < 1 \times 10^{-6}$; 7
- 953 10^{-5} ; 10 latents, p < 1 × 10⁻⁵).
- 954
- 955
- 956

958

959 Figure 7. There is a high degree of consistency between the conditioning representations 960 across animals 961 **a.** Consistency across animals for CSUS2 with 2, 3, 5, 7, 10 latents. The larger graph 962 highlights the bracketed area from the graph with two latents. **b.** When the conditioning period is divided into 2 components (CSUS2), the similarity 963 964 between models across animals is not significantly different from the similarity 965 within each individual animal's model, regardless of the number of latents (2 latents: 966 t(188) = -0.45, p > 0.05; 3 latents: t(188) = -1.57, p > 0.05; 5 latents: t(188) = -0.40, p

967		> 0.05; 7 latents: t(188) = -0.22, p > 0.05; 10 latents: t(188) = 0.40, p > 0.05). Error
968		bars represent standard error.
969	c.	Consistency across animals for CSUS5 with 2, 3, 5, 7, 10 latents. The larger graph
970		highlights the bracketed area from the graph with two latents.
971	d.	When the conditioning period is divided into 5 components (CSUS5), the similarity
972		across animal models remains comparable to within-animal model similarity,
973		regardless of the number of latents (2 latents: $t(188) = -0.79$, $p > 0.05$; 3 latents:
974		t(188) = 0.25, p > 0.05; 5 latents: t(188) = -0.42, p > 0.05; 7 latents: t(188) = 0.70, p > 0.05; 7 late
975		0.05; 10 latents: $t(188) = 0.30$, $p > 0.05$). Error bars represent standard error.

976 Methods

977 LEAD CONTACT AND MATERIALS AVAILABILITY

978 Questions and requests for information should be directed to and will be fulfilled by the

979 Lead Contact, Hannah Wirtshafter (<u>hsw@northwestern.edu</u>). This study did not generate new

980 unique reagents. The data that support the findings of this study are available from the

981 corresponding author.

982

983 EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were performed within Northwestern Institutional Animal Care and Use

985 Committee and NIH guidelines. Five male Long Evans rats (275–325 g) were sourced from

986 Charles River Laboratories, injected with AAV9-GCaMP8m, implanted with a 2-mm GRIN lens,

and trained and tested on eyeblink conditioning in two apparatuses (Fig. 1). Animals were

988 individually housed in an animal facility with a 12/12 h light/dark cycle.

989

990 METHOD DETAILS

991 GCaMP7c injection, lens implantation, EMG implantation

GCaMP8 injection and lens implantation were completed as reported in Wirtshafter and
Disterhoft, 2022 and Wirtshafter and Disterhoft, 2023^{1,2}. Briefly, rats were anesthetized with
isoflurane (induction 4%, maintenance 1-2%) and a craniotomy was performed at stereotaxic
coordinates Bregma AP –4.00mm, ML 3.00mm. 0.06uL of GCaMP8m (obtained from
AddGene, packaged AAV9 of pGP-AAV-syn-jGCaMP8m-WPRE, lot v175525, titer 1.3E+13

- 997 GC/mL) was injected over 12 minutes (approximate coordinates Bregma AP -4.00mm, ML
- 3mm, DV 2.95mm relative to skull); then the syringe was raised 0.2mm and an additional 0.6ul

- 999 of GCaMP7 was injected. We repeated this process once more and at slightly different
- 1000 coordinates in the craniotomy hole, resulting in 4 total injections.
- 1001 We then aspirated tissue from the craniotomy site using a vacuum pump and 25 gauge 1002 needle. Tissue was aspirated up to and including the horizontal striations of the corpus collosum. 1003 A 2mm GRIN lens (obtained from Go!Foton, CLH lens, 2.00mm diameter, 0.448 pitch, working 1004 distance 0.30mm, 550nm wavelength) was then inserted into the craniotomy hole and cemented 1005 in place using dental acrylic. Animals were given buprenorphine (0.05mg/kg) and 20mL saline. 1006 taken off anesthesia, and allowed to recover in a clean cage placed upon a heat pad. 1007 Six to eight weeks after surgery, animals were again anesthetized with isoflurane and 1008 checked for GCaMP expression. If expression was seen, baseplates were attached using UV-1009 curing epoxy and dental acrylic. Electrode implantation to record obicularis oculi 1010 electromyographic (EMG) activity occurred in the same surgery as baseplate attachment, as 1011 described previously^{3,4}. Briefly, a connector containing 5 wires was cemented on the front of the 1012 animal's head: 4 wires were implanted directly above the eye in the surrounding muscle (2 for 1013 recording, 2 for electrical stimulation). An additional wire was attached to a connector attached 1014 to a ground screw located above the cerebellum; this screw was implanted during lens 1015 implantation surgery.
- 1016
- 1017 Behavioral environment and training

1018 Two behavioral apparatuses were used in these experiments: Environment A was a 1019 78.7cm x 50.8cm unscented rectangular enclosure with wire floor and walls and white lighting. 1020 Environment B was a 50.1cm x 34.9cm scented (with two dabs of clove essential oil on opposite 1021 walls) ovular enclosure with white solid floor and walls, and red lighting. Both environments 1022 were located at the same spot in the room relative to external cues (see Figures 1b and S1).

A tether containing a plug to relay the EMG activity and to deliver a shock to the rat's eye was attached to a the eyeblink connector on the rat's head. The miniscope was plugged into the cemented baseplate. The miniscope and EMG cords were all attached to a commutator for ease of animal movement.

1027 The CS was a 250ms, 85dB free-field tone (5ms rise-fall time). The US was a 100ms 1028 shock directed to the left eye. Shock amount varied per session per animal and was calibrated, if 1029 needed, at the end of a training session for the next session's training. Shock level was deemed 1030 appropriate when a shock was met with a firm shake of the animal's head.

1031The trace interval was 500ms and the intertrial interval (ITI) was randomized between103230s and 60s, with a 45s average. EMG signal output was amplified (5000×) and filtered (100 Hz

1033 to 5 kHz), then digitized at 3 kHz and stored by computer.

A conditioned response (CR) was identified as an increase in integrated EMG activity that exceeded the baseline mean amplitude by more than four standard deviations, sustained for a minimum duration of 15ms. Baseline mean amplitude was calculated during the 500ms preceding CS onset. Additionally, the response had to commence at least 50ms after the conditioned stimulus (CS) onset and before the unconditioned stimulus (US) onset.

1039 The animal's first exposure to each environment was a 38min exploration session, in 1040 which the animal was able to freely move and explore the environment without any conditioning 1041 (Figure 1a). Animals were then trained in one environment per session, with no more than one 1042 session per day, and were considered to have learned the task after reaching criterion (70% CRs 1043 in 50 trials) on three consecutive training sessions (termed 'criterion sessions') or when the 1044 previous four training sessions averaged over 70% (in this instance, only the final three of those sessions were considered 'criterion sessions'). Following the last session in environment A. the 1045 1046 animal was given an exploratory session in environment B. The session after that, the animal was

- 1047 tested on eye blink conditioning in environment B, using the same parameters as used in
- 1048 environment A.
- 1049
- 1050 Calcium imaging
- 1051 Calcium imaging was completed as reported in Wirtshafter and Disterhoft, 2022 and
- 1052 Wirtshafter and Disterhoft, 2023^{1,2}. Briefly, calcium imaging was done using UCLA V4
- 1053 Miniscopes^{5,6}, assembled with two 3mm diameter, 6mm FL achromat lens used in the objective
- 1054 module and one 4mm diameter, 10mm FL achromat lens used in the emission module.
- 1055

1056 QUANTIFICATION AND STATISTICAL ANALYSIS

- 1057 Means are presented as mean+-standard deviation. All analysis code is available
- 1058 at https://github.com/hsw28/ca_imaging and https://github.com/hsw28/Hannahs-CEBRAs. Code
- 1059 to create specific figures is also available at the former github repository.
- 1060

1061 **Position and speed analysis**

Position was sampled by an overhead camera at 30Hz. Position tracking was done post recording using DeepLabCut⁷. Position was then converted from pixels to cm. Position was
 smoothed using a Gaussian filter with standard deviation of 2cm. Speed was calculated by taking

1065 the hypotenuse of the coordinates one before and after the time of interest.

1066

1067 Video pre-processing and cell identification

1068 Video pre-processing and cell identification were performed as reported in Wirtshafter

and Disterhoft, 2022 and Wirtshafter and Disterhoft, 2023^{1,2}. In brief, videos were recorded with

1070 Miniscope software at 15frames/second. Video processing was done using CIATAH software⁸.

1071 Videos were down sampled in space and normalized by subtracting the mean value of each

- 1072 frame from the frame. Each frame was then normalized using a bandpass FFT filter (70-
- 1073 100cycles/pixel) and motion corrected to a using TurboReg⁹. Videos were then converted to
- 1074 relative florescence (dF/F_0) ; F_0 was the mean over the entire video.
- 1075 Cells were automatically identified using CIATAH⁸ using CNMF-E¹⁰. Images were
- 1076 filtered with a gaussian kernel of width 2 pixels and neuron diameter was set at a pixel size of 8.
- 1077 The threshold for merging neurons was set at a calcium trace correlation of 0.65; neurons were
- 1078 merged if their distances were smaller than 4 pixels and they had highly correlated spatial shapes
- 1079 (correlation>0.8) and small temporal correlations (correlation <0.4).

1080 In vivo calcium imaging involves detecting changes in intracellular calcium levels, which

1081 serve as proxies for neuronal activity. Calcium events refer to transient increases in calcium

1082 concentration above a threshold level; these crossings putatively correspond to spikes in neuronal

1083 firing. These events typically appear as peaks in the data and indicate an active response from the

1084 neuron. Calcium traces are continuous recordings of calcium levels over time. Thus, calcium

1085 events highlight specific neuronal activations, while calcium traces provide a full temporal

1086 picture of these activations together with baseline activity.

1087 All cells identified using CNMF-E were then scored as neurons or not by a human scorer. 1088 Scoring was also done within CIATAH software in a Matlab GUI. Scoring was done while 1089 visualizing and considering a calcium activity trace, average waveform, a montage of the 1090 candidate cell's Ca2+ events, and a maximum projection of all cells on which the candidate cell 1091 was highlighted. The relative fluorescence ($\Delta F/F_0$) local maxima of each identified cell were 1092 considered calcium event times.

1093

1094 Cell cross registration across sessions and within session

1095	Validation and registration were completed as documented in Wirtshafter and Disterhoft ² .
1096	Briefly, videos underwent five rounds of registration using Turboreg image rotation9 with the
1097	CIATAH software ^{8,11} . Background noise, axons, and dendrites were removed using an image
1098	binarization threshold of 40% of the images' maximum value. Cells were matched across
1099	sessions using a distance threshold of a maximum of five pixels, with a minimum 2-D correlation
1100	coefficient of 0.5. Sessions were aligned to session $A(n)$, the last session in environment A.
1101	

1102 Place cell identification and computing spatial mutual information

Place cells were identified using mutual information computed when the animals were running at speeds greater than or equal to 4cm/s. MI was computed for all cells; there was no calcium event rate criterion for included cells. To be considered significant, the computed mutual information (MI) must be greater than 95% of MI scores computed 500 times from shuffled positions¹². To compute the MI for each cell, the training environments were divided into 2.5cm x 2.5cm bins. The calcium event rate of each cell and the occupancy of the animal were found for

each bin. Rate and occupancy were smoothed with a Gaussian kernel with filter width of 3cm
and Sigma of 0.5cm. Mutual information was computed during periods of movement as
follows^{2,12,13}:

1113		$p = \frac{P_s}{P_o}$
1114		$M_s = \sum P_s$
1115		$M_o = \sum P_o$
1116		$MI = \sum p * \log_2(\frac{p}{M_s * M_o})$
1117	where:	3 0
1118		P_s = calcium event probability in each bin
1119		P _o = occupancy probability at each bin
1120		

1121 Mutual information using calcium traces was computed as above, except instead of P_s

being calcium event probability per bin, the value of Ps was the average value of calcium trace in 1122

1123 the bin.

1124	We computed MI using both calcium events and calcium trace data. There was no
1125	significant difference between the number of place cells detected using calcium event data and
1126	calcium trace data, (paired t-test t(24)=1.01, p>0.05). Note that all place cell and place field
1127	measurements are presented with conditioning periods included, as the animal was frequently
1128	moving during conditioning periods. We also computed results while excluding conditioning
1129	periods and found no significant differences.
1130	
1131	Computing CSUS mutual information

1132 The computation of CSUS mutual information was very similarly to that for spatial 1133 mutual information. A 1.3 second period beginning at the start of the CS tone was either divided 1134 into 2 bins (CSUS-MI2) or 5 bins (CSUS-MI5) (Fig. 3c-3d). Mutual information was then 1135 computed using the following:

- 1136
- $p = \frac{P_s}{P_o}$ $M_s = \sum_{i} P_s$ $M_o = \sum_{i} P_o$ $MI = \sum_{i} p * \log_2(\frac{p}{M_s * M_o})$ 1137
- 1138
- 1139 Where: 1140
 - P_s = calcium event probability in each CSUS bin P_0 = probability of individual CSUS occuring out of all CSUS bins
- 1143 1144

1141

1142

1145 Mutual information using calcium traces was computed as above, except that P_s did not 1146 represent the calcium event probability per bin, but the average value of calcium trace within the 1147 bin.

1148

1149 **Remapping quantification**

1150The place cell center was defined as the occupancy-normalized location with maximum1151number of calcium events while the animal was moving at 5cm/s or faster. Position was binned1152into 2.5cm square bins. The centers of environments A and B (as well as environment A across1153days and environment B across days) used to align each environment across days, as well as to1154align environment A to environment B.

1155 Population vector correlation was calculated between two environments using calcium

event data. Neurons present in both datasets (such as sessions A(n) and A(n-1), or A(n) and B(1))

1157 were identified and their calcium event times were converted to rates using 0.75 second binning.

1158 These firing rates were then normalized using z-score normalization across each neuron's activity

1159 across time. The and the mean calcium event rate for each neuron in each environment was then

1160 computed. The population vector correlation between these mean rates was determined, and a

1161 linear regression was performed to evaluate the relationship between firing rates in the two

- 1162 environments.
- 1163

1164 population vector correlation =
$$\frac{\sum_{i=1}^{N} \left(r_{\{i,A\}} - \overline{\{r\}}_{A} \right) \left(r_{\{i,B\}} - \overline{\{r\}}_{B} \right)}{\sqrt{\sum_{i=1}^{N} \left(r_{\{i,A\}} - \overline{\{r\}}_{A} \right)^{2}} \sqrt{\sum_{i=1}^{N} \left(r_{\{i,B\}} - \overline{\{r\}}_{B} \right)^{2}}}$$
1165

1166

1167

1168 $r_{\{i,A\}}$ and $r_{\{i,B\}}$ = firing rates of neuron *i* in environments A and B1169 $\overline{\{r\}}_A$ and $\overline{\{r\}}_B$ = mean firing rates across neurons in environments A and B1170The factors in the denominator compute the standard deviation of the components of each1171population vector relative to their mean, computed in each environment.1172

Where:

1174 We explored multiple different methods before settling on the use of CEBRA for this

1175 study. A short summary of each tested method can be found below:

1177 •	Principal Component Analysis (PCA) ¹⁴ : Principal component analysis (PCA) is a
1178	statistical method used to reduce the dimensionality of data while retaining as much
1179	variability as possible. This linear technique identifies the axes (principal components) in
1180	the dataset that maximize variance. The first principal component explains the most
1181	variance, the second explains the second most, and so on. Principal components are
1182	combinations of original features and may not always have clear or intuitive meanings. In
1183	agreement with previous hippocampal data ¹⁵ , PCA required upwards of 15-25
1184	components to capture 95% of the variance of the data. In addition, across and within all
1185	sessions and representations (spatial and task representations), the manifolds spanned by
1186	the largest PCs remained highly similar, with small principal angles in pairwise
1187	comparisons. This similarity in the orientation of the leading subspaces suggested that
1188	PCA did not distinguish between spatial or behavioral components of the task (Figure
1189	S5).
1190 •	Independent Component Analysis (ICA) ¹⁶ : Independent Component Analysis (ICA) is
1191	a computational technique used to separate a multivariate signal into additive,
1192	independent components. ICA operates under the assumption that observed data are
1193	linear mixtures of underlying, independent sources. It aims to find a linear transformation
1194	that maximizes the statistical independence of the estimated components. We found that
1195	ICA embeddings were unstable throughout the length of the recordings, and also did not
1196	clearly map onto behavioral states (Figure S6).

1197	•	Isomap ¹⁷ : Isomap is a manifold learning technique that seeks to capture the intrinsic
1198		geometric structure of data. Isomap is useful when linear methods like PCA cannot
1199		capture the intrinsic structure of the data, as it preserves the geodesic (curved) distances
1200		in the reduced dimensionality space. Unlike linear methods such as PCA, Isomap can
1201		capture nonlinear relationships in the data. Interestingly, using Isomap, only about 5
1202		neural modes were required to achieve a residual variance of 5-10%. However, the
1203		embedding shape did not relate to any discernable property of neural data or behavior
1204		(Figure S7). Dimensionality reduction was achieved, but the resulting representations
1205		were not interpretable (Figure S7).
1206	•	MIND ^{15,18} : MIND is a decoding method designed for integrating multiple data modalities
1207		to predict various features, particularly sensory and motor functions. MIND uses
1208		recurrent neural networks whose hidden variables provide a memory mechanism for
1209		remembering previous inputs; this approach is particularly apt for the analysis of time
1210		series data such as neural recordings. While MIND was very robust at distinguishing the
1211		different environments, it was not equipped to handle relatively short signals separated in
1212		time, such as the conditioning trials separated by intertrial intervals. Our analyses using
1213		MIND resulted in poor and unstable embeddings that could not be analyzed (Figure S8).
1214	CEBR	A^{19} was chosen for this project for its ability to capture nonlinear relationships in the data
1215	and to	create stable embeddings over short and long time periods. Additionally, spatial

1216 separations of components were well isolated and correlated well with observed behaviors.

1217

1218 Use of CEBRA for position decoding

1219 Optimal parameters for decoding the position of each animal from neural activity were 1220 determined using an extensive grid search across learning rate, temperature, and number of

1221 iterations (Figure S9). Models created to compare different sessions of neural activity, such as a

1222 model trained on data from session A(n) used to decode session B(1), were only trained on cells

1223 that occurred in both sessions. Models were trained on spike traces of these cells, labeled with

1224 the animal's (X,Y) position. In all cases, 75% of data was used to train the model while 25% of

1225 data was held out for verification. All models were run 500 times. Optimal embeddings were

1226 determined based on the minimum median absolute error between the predicted and true

1227 positions. The optimal parameters for each rat are as follows:

	Rat 1	Rat 2	Rat 3	Rat 4	Rat 5
Model Architecture					
Batch size			512		
Learning rate	5.5*10-5	6.625*10 ⁻⁴	5.5*10-4	1.0*10 ⁻³	1.0*10 ⁻³
Temperature			'Auto'		
mode					
Minimum	No minimum	1.5	0.95	1.0*10 ⁻⁹	No minimum
temperature					
Output 3					
dimensions					
(# of latents)					
Max	25000	8000	26500	30000	18000
iterations					
Distance	'Cosine'				
Conditional	'Time delta'				
Number of	32				
hidden units					
Time offsets	1				

1228

1229 The number of output dimensions was chosen based on the fewest number of dimensions under

1230 which all 5 models consistently outperformed shuffled data for both position and conditioning

1231 decoding (Figure S10-12).

1232

1233 Use of CEBRA for conditioning decoding

- As in position decoding, the optimal parameters for decoding conditioning were
- 1235 determined for each animal using an extensive grid search across learning rate, temperature, and
- number of iterations (Figure S11). Models created to compare different sessions of neural
- 1237 activity, such as a model trained on data from session A(n) used to decode session B(1), were
- 1238 only trained on cells that occurred in both sessions. Models were trained on spike traces of these
- 1239 cells, with labels corresponding to the CSUS bin during which the signal occurred (either one out
- 1240 of 2 bins or out of 5 bins, see Figures 3c-d). In all cases, 75% of data was used to train the model
- 1241 while 25% of data was held out for verification. All models were run 500 times. Optimal
- 1242 embeddings were determined based on the percent of correctly binned time points. The optimal
- 1243 parameters for each rat are as follows:
- 1244

	Rat 1	Rat 2	Rat 3	Rat 4	Rat 5		
Model	'Offset10-model'						
Architecture							
Batch size	512						
Learning rate	3.5*10-3	7.0*10 ⁻³	3.5*10-3	7.5*10 ⁻³	9.5*10 ⁻³		
Temperature	'Constant'	'Constant'	'Auto'	'Constant'	'Constant'		
mode							
Minimum	2.33	1.75	1.67	1.67	2.66		
temperature							
Output	3						
dimensions							
(# of latents)							
Max	50000	7500	20000	18000	25000		
iterations							
Distance	'Euclidian'	'Cosine'	'Cosine'	'Euclidian'	'Cosine'		
Conditional	'Time delta'						
Number of	32						
hidden units							
Time offsets	1						

1245

1246 The number of output dimension was chosen based on the fewest number of dimensions

1247 under which all 5 models consistently outperformed shuffled data for both position and

- 1248 conditioning decoding (Figure S10-12). The parameters listed above were used for decoding into
- 1249 2 or 5 bins, including the use of 3 output dimensions (# of latents).

1250 The accuracy of results was computed from the entries in the confusion matrix:

1251

1252
$$Accuracy = \frac{Sum \ of \ number \ of \ diagonal \ (correct) \ elements}{Sum \ of \ number \ of \ total \ elements}$$

1253 1254 Precision was calculated for each class $i, 1 \le i \le n$, where *n* is the number of classes: 1255

1256 $Precision_i = \frac{(TP_i)}{TP_i + FP_i}$

where:

1258
$$TP = true positives$$
1259 $FP = false positives$

1261 The global precision is given by the average:

1262
$$Pecision = \frac{1}{n} \sum_{i=1}^{n} Precision_i$$

1263 1264

1269

1273

1257

1260

1265 Recall, also known as sensitivity, was calculated for each class i, $1 \le i \le n$, where n is the 1266 number of classes: 1267

1268
$$Recall_i = \frac{(TP_i)}{TP_i + FN_i}$$

1270 where:

1271 $TP = true \ positives$ 1272 $FN = false \ negatives$

1274 The global recall given by the average:1275

1276
$$Recall = \frac{1}{n} \sum_{i=1}^{n} Recall_i$$
1277

1278 The F1 score was calculated for each class i, $1 \le i \le n$, where n is the number of classes: 1279

1280
$$F1_{i} = 2 * \frac{Precision_{i} * Recall_{i}}{Precision_{i} + Recall_{i}}$$

1281 The global F1 score is given by the average:

$$F1 = \frac{1}{n} \sum_{i=1}^{n} F1_i$$

1284 1285

1288 1289 1290

1295

1296 1297 1298

1286 The area under the receiver operating characteristic (ROC) curve was calculated for each class *i*, 1287 $1 \le i \le n$, where *n* is the number of classes:

$$AUC_i = roc_auc_score(y_{true-bin}[:,i], y_{pred-prob}[:,i])$$

1292
1293
$$ROC AUC = \frac{1}{n} \sum_{i=1}^{n} AUC_i$$
1294

where:

 $y_{true-bin} = binarized true labels$ $y_{pred-prob} = predicted probabilities for each class$

1299 Model consistency

1300	Model consistency was computed using a built-in CEBRA function which relies on the
1301	function 'sklearn.metrics.consistency_score'20. The function compares the embeddings from
1302	different models by calculating pairwise consistency scores. This comparison involves
1303	measuring the similarity of the embeddings using statistical metrics; i.e. this metric calculates
1304	how similar a model's labels are for similar instances in the data set.
1305	To determine consistency between environments and across animals, the data was fit to
1306	each model 20 times. The model with the lowest loss was selected and compared to other models
1307	with the lowest loss. Models were created using each individual animal's optimal parameters
1308	(see above).
1309	
1310	

1311	Acknowledgements: This work was supported by an NIA T32 (T32-AG020506/AG/NIA), an
1312	NIA R37 (R37-AG008796/AG/NIA), an NINDS R01 (R01 NS113804/NS/NINDS), and a K99
1313	award (K99 MH135062).
1314	
1315	This research was supported in part through the computational resources and staff assistance
1316	provided by the Quest high performance computing facility at Northwestern University, which is
1317	jointly supported by the Office of the Provost, the Office for Research, and Northwestern
1318	University Information Technology.
1319	
1320	We would like to thank all members of the Disterhoft lab, especially Mackenzie Kneisly. We
1321	would like to thank the following individuals for their assistance with CEBRA: Mackenzie
1322	Mathis and Steffen Schneider. And additional thank you to David Wirtshafter for his feedback.
1323	
1324	
1325	Author contributions: Investigation, H.S.W.; Formal Analysis, H.S.W.; Writing –Original
1326	Draft, H.S.W.; Writing – Review & Editing, H.S.W., S.A.S., J.F.D.; Funding: H.S.W, J.F.D.,
1327	Supervision, S.A.S., J.F.D.
1328	
1329	Declaration of interests: The authors declare no competing interests.

1331 Additional Information

- 1332 Supplementary Information is available for this paper.
- 1333 Correspondence and requests for materials should be addressed to Hannah S
- 1334 Wirtshafter, hsw@northwestern.edu.
- 1335 Reprints and permissions information is available at www.nature.com/reprints.
- 1336

1338 Supplementary figures

1339

Figure S1

1340

1341 Figure S1. Photos of testing chambers.

Photos of testing chambers. Top: Environment A, an unscented rectangular enclosure with wire floor and walls, and white lighting. Bottom: Environment B, a scented ovular enclosure with white solid floor and walls, and red lighting. Both environments were located at the same spot in the room relative to external cues. Note that during testing, the door to the chamber was closed which accentuated the distinction between the white and red lighting.

1348 Figure S2. Learning curves for the five rats.

1349 There was substantial variability in the number of sessions required to learn the task, with the

1350 average number of sessions being 20 ± 4.2 (including the criterion sessions). The fastest learners

- 1351 (2 rats) reached criterion after 14 sessions, while the slowest rat required 24 sessions to reach
- 1352 criterion.
- 1353

1355 Figure S3. Percent of place cells by session for each animal.

1356 The percentage of cells classified as place cells is plotted for each session and each animal

1357

1358 Figure S4. CSUS-MI2 and CSUS-MI5 differences between sessions.

1359a. The trial period was divided into two segments: the CS and trace period (750 ms) and the1360US and post-US period (500 ms). Mutual information (MI) was calculated for cells based1361on these two periods and compared to shuffled data, where period IDs were shuffled 5001362times across all trials. Left: Using calcium event data, we found that 10.7% ± 4.9% of1363cells contained significant CSUS information related to whether the animal was in a CS1364or US period. Right: Using calcium traces, 19.9% ± 8.2% of cells contained significant1365information distinguishing the CS from the US period. No significant differences in

1366 CSUS-MI were observed between environments A and B (double-sided t-tests, calcium

1367	events: $t(23) = 0.48$.	p > 0.05; calcium traces: t((23) =	= -0.52, p > 0.05	5).
				<i>,</i> ,	

- 1368 **b.** The trial period was divided into five equal-sized segments (each 250 ms), and MI was
- 1369 calculated for each cell based on these five periods. We compared the observed values to
- 1370 those obtained after shuffling period IDs 500 times. Left: Using calcium event data,
- 1371 $15.5\% \pm 7.8\%$ of cells contained significant information distinguishing the five periods,
- 1372 compared to $10.0\% \pm 7.8\%$ when using calcium trace data. No significant differences in
- 1373 these MI metrics were found between environments A and B (double-sided t-tests,
- 1374 calcium events: t(23) = -0.32, p > 0.05; calcium traces: t(23) = -1.1, p > 0.05).
- 1375 **c.** Left: There was no significant difference in CSUS-MI2 values when comparing session
- 1376 A(n) to session A(n-1) versus session A(n) to session B(1) (Wilcoxon rank sum test: p >
- 1377 0.05; double-sided t-test: t(1431) = 0.86, p > 0.05). Right: A small but significant
- 1378 difference was observed in CSUS-MI5 when comparing session A(n) to session A(n-1)
- 1379 versus session A(n) to session B(1) (Wilcoxon rank sum test: p = 0.049; double-sided t-
- 1380
- test: t(1431) = -2.2, p = 0.03).
- 1381

1382

Figure S5. PCA computations for session A(n) and session B(1), using only cells present in both sessions.

- 1385 Principal component analysis¹⁴ (PCA) revealed that approximately 15-25 principal components
- 1386 (PCs) are needed to account for 95% of the variance in the data. When using the complete cell
- 1387 population (not shown), more than 25 PCs are required to achieve the same variance. Across and
- 1388 within all sessions and representations (spatial and task), the principal angles between manifolds
- 1389 remain highly similar.

1390

1391 Figure S6. ICA computations across different segments of a session.

1392 Top: Independent component analysis¹⁶ (ICA) was computed over the entire session, with three

1393 independent components (ICs). Blue dots represent non-trial times, while red dots represent trial

1394 times. Middle: ICA computed over the last two-thirds of the same session, showing variability in

- 1395 ICs across session segments. Bottom: ICA computed over the second half of the session shows
- 1396 additional variability in components depending on how the session is divided. These results
- 1397 indicate that components are highly variable over the course of the session and are sensitive to
- 1398 how the session is partitioned.

Figure S7

1399

1400 Figure S7. Isomap computations for session A(n) and B(1).

1401 Isomap¹⁷ computations suggest that approximately five neural modes are sufficient to achieve a

residual variance of 5-10%. However, the shape of the Isomap embedding does not correlate

- 1403 with any discernable properties of neural activity or behavior, suggesting limited interpretability
- 1404 of the embedding structure in this context.

1406 Figure S8. MIND outputs for sessions A(n), B(1), and concatenated sessions.

1407 Top row: MIND^{15,18} embeddings during movement, excluding trial periods, with color bars

1408 representing frames. The temporal structure of the data is well captured, with clear separation

1409 between A(n) and B(1). Bottom row: MIND embeddings during conditioning periods are highly

1410 unstable. Small changes in parameters result in substantial shifts in the embedding structure,

1411 transitioning from a linear structure (left) to an undefined, unstable cloud (middle and right).
Figure S9

1413

1414 Figure S9. Grid search over decoding parameters for position.

1415 A grid search was performed over three parameters: minimum temperature, learning rate, and

1416 number of iterations for decoding position. Models were trained using cells from session A(n)

- 1417 that also appeared in session A(n-1). The figure shows decoding accuracy for session A(n-1)
- 1418 using the trained model. Yellow areas indicate higher decoding accuracy.

1419

1420 Figure S10. Position decoding error as a function of latent values (Rat 5).

1421 This figure shows the decoding error for position as the number of latent values increases. Upper

1422 right panel: As specificity increases with more latent values, the model's ability to decode a

- 1423 different session (but within the same environment) decreases. This effect is not consistent across
- 1424 all rats. Lower right panel: Even when using 10 latent variables, the model is unable to
- 1425 accurately decode the animal's position in environment B when trained in environment A.

1426

1427 Figure S11. CSUS2 decoding accuracy with increasing latent values (Rat 3).

1428 The figure plots the percent of incorrect decoding (not correct percent) for the CSUS2 model as

1429 the number of latent values increases. A model built with just two latent values results in

1430 decoding that is significantly better than chance (shuffled data), and the decoding accuracy

1431 improves as more latent values are used. Each model was run 100 times.

1432

1433

1434 Figure S12. CSUS5 decoding accuracy with increasing latent values (Rat 5).

1435 Same as Figure S11, but for CSUS5 (conditioning period divided into five segments instead of

- 1436 two). The percent of incorrect decoding is plotted. The model with two latent values already
- shows significantly better decoding than shuffled data, and accuracy improves significantly with
- 1438 three latent values. Each model was run 100 times.

1440 Figure S13. Grid search over decoding parameters for conditioning.

1441 A grid search over minimum temperature, learning rate, and number of iterations was performed

1442 for conditioning decoding. Models were created using cells from session A(n) that also appeared

1443 in session B(1). The figure shows decoding accuracy for CSUS2 session B(1) using these

1444 models. Yellow areas indicate higher accuracy. For Rats 1 and 4, the 'euclidean' distance with

1445 'constant' temperature mode was used. For Rats 2 and 5, 'cosine' distance with 'constant'

1446 temperature mode was used. For Rat 3, 'cosine' distance with 'auto' temperature mode was used.

1447

1448

1449

1450) Methods References	
1451		
1452	1	Wirtshafter, H. S. & Disterhoft, J. F. Place cells are nonrandomly clustered by field
1453		location in CA1 hippocampus. <i>Hippocampus</i> 33 , 65-84 (2023).
1454		https://doi.org:10.1002/hipo.23489
1455	2	Wirtshafter, H. S. & Disterhoft, J. F. In Vivo Multi-Day Calcium Imaging of CA1
1456		Hippocampus in Freely Moving Rats Reveals a High Preponderance of Place Cells with
1457		Consistent Place Fields. J Neurosci (2022). https://doi.org:doi: 10.1523/JNEUROSCI.1750-
1458		21.2022
1459	3	Weiss, C. & Thompson, R. F. The effects of age on eyeblink conditioning in the freely
1460		moving Fischer-344 rat. Neurobiol Aging 12, 249-254 (1991).
1461		https://doi.org:10.1016/0197-4580(91)90105-s
1462	4	Skelton, R. W. Bilateral cerebellar lesions disrupt conditioned eyelid responses in
1463		unrestrained rats. <i>Behav Neurosci</i> 102, 586-590 (1988). <u>https://doi.org:10.1037//0735-</u>
1464		7044.102.4.586
1465	5	Aharoni, D., Khakh, B. S., Silva, A. J. & Golshani, P. All the light that we can see: a new
1466		era in miniaturized microscopy. Nat Methods 16, 11-13 (2019).
1467		https://doi.org:10.1038/s41592-018-0266-x
1468	6	Silva, A. J. Miniaturized two-photon microscope: seeing clearer and deeper into the
1469		brain. Light: Science & Applications 6 , e17104-e17104 (2017).
1470	7	Mathis, A. et al. DeepLabCut: markerless pose estimation of user-defined body parts
1471		with deep learning. Nature neuroscience 21 , 1281-1289 (2018).
1472	8	Corder, G. et al. An amygdalar neural ensemble that encodes the unpleasantness of
1473		pain. <i>Science</i> 363 , 276-281 (2019). <u>https://doi.org:10.1126/science.aap8586</u>
1474	9	Thevenaz, P., Ruttimann, U. E. & Unser, M. A pyramid approach to subpixel registration
1475		based on intensity. IEEE Trans Image Process 7, 27-41 (1998).
1476		https://doi.org:10.1109/83.650848
1477	10	Zhou, P. et al. Efficient and accurate extraction of in vivo calcium signals from
1478		microendoscopic video data. <i>eLife</i> 7 (2018). <u>https://doi.org:10.7554/eLife.28728</u>
1479	11	CIAtah: a software package for analyzing one- and two-photon calcium imaging
1480		datasets. v. v1.0.0 (Zenodo, 2018).
1481	12	Kinsky, N. R., Sullivan, D. W., Mau, W., Hasselmo, M. E. & Eichenbaum, H. B.
1482		Hippocampal Place Fields Maintain a Coherent and Flexible Map across Long Timescales.
1483		<i>Current biology : CB</i> 28 , 3578-3588 e3576 (2018).
1484		https://doi.org:10.1016/j.cub.2018.09.037
1485	13	Olypher, A. V., Lansky, P., Muller, R. U. & Fenton, A. A. Quantifying location-specific
1486		information in the discharge of rat hippocampal place cells. J Neurosci Methods 127,
1487		123-135 (2003). <u>https://doi.org:10.1016/s0165-0270(03)00123-7</u>
1488	14	Pearson, K. LIII. On lines and planes of closest fit to systems of points in space. The
1489		London, Edinburgh, and Dublin philosophical magazine and journal of science 2 , 559-572
1490		(1901).
1491	15	Nieh, E. H. et al. Geometry of abstract learned knowledge in the hippocampus. Nature
1492		595 , 80-84 (2021).
1493	16	Ans, B., Hérault, J. & Jutten, C. Architectures neuromimétiques adaptatives: Détection
1494		de primitives. Proceedings of Cognitiva 85, 593-597 (1985).

- 149517Tenenbaum, J. B., Silva, V. d. & Langford, J. C. A global geometric framework for1496nonlinear dimensionality reduction. *science* **290**, 2319-2323 (2000).
- 149718Low, R. J., Lewallen, S., Aronov, D., Nevers, R. & Tank, D. W. Probing variability in a1498cognitive map using manifold inference from neural dynamics. *BioRxiv*, 418939 (2018).
- 149919Schneider, S., Lee, J. H. & Mathis, M. W. Learnable latent embeddings for joint1500behavioural and neural analysis. Nature 617, 360-368 (2023).1501bulker ((ds) and 4020 (M1505, 022, 05021, 6))
- 1501 https://doi.org:10.1038/s41586-023-06031-6
- 150220Pedregosa, F. *et al.* Scikit-learn: Machine learning in Python. *the Journal of machine*1503Learning research **12**, 2825-2830 (2011).
- 1504