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SHORT COMMUNICATION

Using mid‑infrared spectroscopy to increase 
GWAS power to detect QTL associated 
with blood urea nitrogen
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Abstract 

Blood urea nitrogen (BUN) is an indicator trait for urinary nitrogen excretion. Measuring BUN level requires a blood 
sample, which limits the number of records that can be obtained. Alternatively, BUN can be predicted using mid-infra‑
red (MIR) spectroscopy of a milk sample and thus records become available on many more cows through routine milk 
recording processes. The genetic correlation between MIR predicted BUN (MBUN) and BUN is 0.90. Hence, genetically, 
BUN and MBUN can be considered as the same trait. The objective of our study was to perform genome-wide associa‑
tion studies (GWAS) for BUN and MBUN, compare these two GWAS and detect quantitative trait loci (QTL) for both 
traits, and compare the detected QTL with previously reported QTL for milk urea nitrogen (MUN). The dataset used for 
our analyses included 2098 and 18,120 phenotypes for BUN and MBUN, respectively, and imputed whole-genome 
sequence data. The GWAS for MBUN was carried out using either the full dataset, the 2098 cows with records for BUN, 
or 2000 randomly selected cows, so that the dataset size is comparable to that for BUN. The GWAS results for BUN and 
MBUN were very different, in spite of the strong genetic correlation between the two traits. We detected 12 QTL for 
MBUN, on bovine chromosomes 2, 3, 9, 11, 12, 14 and X, and one QTL for BUN on chromosome 13. The QTL detected 
on chromosomes 11, 14 and X overlapped with QTL detected for MUN. The GWAS results were highly sensitive to the 
subset of records used. Hence, caution is warranted when interpreting GWAS based on small datasets, such as for 
BUN. MBUN may provide an attractive alternative to perform a more powerful GWAS to detect QTL for BUN.
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Background
The dairy industry is under increasing pressure to 
improve its sustainability and reduce its environmen-
tal footprint. Reducing urinary nitrogen excretion from 
grazing dairy cattle would lead to a reduced environ-
mental impact [1]. While it would be difficult to collect 
a large enough dataset with urinary nitrogen excretion 
records to allow genetic selection, related indicator 
traits are more readily available. Blood urea nitrogen 
(BUN) is a biomarker for urinary nitrogen excretion [2]. 

However, direct measures of BUN level remain challeng-
ing to obtain because collecting blood samples routinely 
may not be feasible on most dairy farms. Alternatively, 
BUN can be predicted using mid-infrared (MIR) spec-
troscopy of a milk sample [3, 4]. Previous studies have 
reported genetic correlations between MIR predicted 
BUN (MBUN) and BUN that range from 0.90 [5] to 0.98 
[6]. Hence, for the purpose of genetic analyses, MBUN 
and BUN can be considered as the same trait. Includ-
ing MBUN in a reference population for genomic pre-
diction can increase the prediction accuracy for BUN 
[6]. To further increase the accuracy of genomic predic-
tion, genome-wide association studies (GWAS) could 
be used to select sequence variants associated with 
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BUN. Including sequence variants among the prediction 
markers can increase the accuracy of genomic predic-
tion [7–9]. Similar to genomic prediction, large datasets 
are required to increase the power of GWAS. While the 
power of a GWAS for BUN may be limited due to the 
difficulties in obtaining a sufficient number of samples, 
MBUN may provide an alternative to detect quantita-
tive trait loci (QTL) associated with BUN. While sev-
eral GWAS have been published for milk urea nitrogen 
(MUN) [10–12], a trait that is highly related to BUN [5, 
13], to our knowledge, no GWAS has been published for 
either BUN or MBUN. Therefore, the objective of our 
study was to perform GWAS for BUN measured from 
blood samples and MBUN predicted from milk sam-
ples using spectroscopy, compare these two GWAS and 
detect QTL for both traits, and compare the detected 
QTL with previously reported QTL for MUN.

Methods
Details of the BUN and MBUN phenotypes, and the 
genotypes used for this analysis have been previously 
described [5, 14]. We used one record per cow, with 
records from 2098 cows for BUN and from 18,120 cows 
for MBUN. The cows with BUN records were a subset 
of the cows with MBUN records. The majority of these 
records were from Holstein animals, but Jersey, Aus-
tralian Red, Ayrshire and crossbred animals were also 
included in the dataset to maximise mapping power and 
precision [15]. While the number of Australian Red and 
Ayrshire animals was very small, they were included 
in the dataset because 987 of the crossbreds were part 
Australian Red and/or Ayrshire. Table  1 shows a break-
down of the number of records, their mean and standard 
deviation per breed for each trait. BUN was derived from 
blood samples, and MBUN from milk samples, according 
to the protocols described in Luke et al. [3] and Ho et al. 
[4].

For all cows, high-density genotypes from the Bovine 
high-density (HD) Genotyping BeadChip and imputed 

whole-genome sequence data were available. The gen-
otyping and imputation pipelines are described in 
van den Berg et  al. [14]. Briefly, cows were genotyped 
with low- to medium-density single nucleotide poly-
morphism (SNP) panels. Raw genotypes were filtered 
based on the GenCall score, and then imputed to the 
BovineSNP50K BeadChip using a mixed Holstein and 
Jersey imputation reference population. Genotypes 
were subsequently further imputed to HD and finally 
to whole-genome sequence. The reference popula-
tions used for imputation to 50K, HD and sequence 
data included 14,722, 2700 and 4190 Bos taurus cattle, 
respectively. The latter corresponded to Run8 of the 
1000 Bull Genomes Project [16, 17]. Missing genotypes 
in the reference whole-genome sequence data were 
imputed using the Beagle software v.4.1 [18], and only 
bi-allelic variants with an allele count of at least 3 and a 
Beagle R2 higher than 0.9 were retained. Imputation to 
50K and HD was done using the Fimpute software v.3 
[19], whereas imputation to sequence level was carried 
out with the Minimac4 software [20]. All variants were 
mapped to the ARS-UCD1.2 reference genome [21]. 
After filtering on minor allele frequency (MAF; ≥ 0.005) 
and Minimac imputation R2 (≥ 0.4), 15,625,438 SNPs 
were retained for subsequent GWAS.

HD genotypes (717,463 SNPs) were used to con-
struct a genomic relationship matrix (GRM) and per-
form a principal component analysis (PCA) using the 
GCTA tool [22]. Scores for the first principal compo-
nent (PC1) were included in the analyses to account for 
differences between the Holstein and Jersey breeds as 
described in van den Berg et al. [5]. PC1 was highly cor-
related (0.9997) with ADMIXTURE ancestry fractions 
[5]. Previous estimates [5] of fixed effects and covari-
ates (the PC1, test month, herd-year-season, days in 
milk and age) were used to adjust phenotypes before 
performing the GWAS. GWAS was done using the 
GCTA tool [22], including the GRM (based on HD) for 
the following scenarios:

Table 1  Number of records (N), mean and standard deviation (SD) per breed for blood urea nitrogen (BUN) and MIR predicted BUN 
(MBUN)

Breed BUN MBUN

N Mean SD N Mean SD

Holstein 1569 5.6 2.1 12,660 4.9 1.9

Jersey 59 4.2 1.3 1857 5.8 1.6

Australian Red 2 5.3 0.5 95 6.9 2.2

Ayrshire 0 – – 12 6.3 1.9

Crossbred 468 5.2 2.6 3496 4.8 2.1

All 2098 5.5 2.2 18,120 5.0 1.9
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1.	 GWAS_BUN_ALL: GWAS for BUN, using all 2098 
cows with BUN records;

2.	 GWAS_MBUN_ALL: GWAS for MBUN, using all 
18,120 cows with MBUN records;

3.	 GWAS_MBUN_BUN: GWAS for MBUN, using only 
the records from the 2098 cows with BUN records;

4.	 GWAS_MBUN_2K, using the records from the 2000 
randomly selected cows (repeated 5 times).

Because of the reduced dataset, GWAS_BUN_ALL, 
GWAS_MBUN_BUN and GWAS_MBUN_2K were car-
ried out only for variants with a MAF ≥ 0.05. We con-
sidered that all the variants with a p-value ≤ 10–6 were 
significant, and calculated the false discovery rate (FDR) as 
FDR = (nVariants × 10

−6)/nSignificant , where nVariants is the 
total number of variants in the GWAS and nSignificant is 
the number of variants in the GWAS with a p-value ≤ 10–6. 
QTL intervals were subsequently defined by grouping 
variants that were separated by less than 1 Mb in the same 
QTL interval. Genomic inflation factors of the GWAS were 

estimated using the “estlambda” function in the GenABEL 
R package [23]. To test the association between previously 
reported dairy cattle QTL [24, 25] and the QTL detected for 
BUN and MBUN, we repeated the GWAS for which QTL 
associated with BUN or MBUN were located in the same 
region as previously reported QTL including the previously 
reported QTL as covariates.

Results and discussion
In total, 640 and 5 significant variants were detected for 
MBUN and BUN, respectively, corresponding to an FDR 
of 0.02 and 2.27, respectively. Additional file  1: Figure 
S1 shows the Q-Q-plots of the observed and expected 
p-values in the GWAS for BUN and MBUN. Genomic 
inflation factors were equal 0.98 and 1.07 for BUN and 
MBUN, respectively. The much larger number of records 
for MBUN (18,120) than for BUN (2098) resulted in an 
increased power to detect QTL for MBUN compared to 
BUN (Fig.  1). Table  2 lists the QTL that were detected 
for each trait. Only one QTL on chromosome 13 was 

Fig. 1  Manhattan plots of the GWAS for BUN and MBUN. BUN blood urea nitrogen, MBUN BUN predicted using mid-infrared spectroscopy, GWAS_
BUN_ALL GWAS for BUN using all available BUN phenotypes (n = 2098), GWAS_MBUN_ALL GWAS for MBUN using all available MBUN phenotypes 
(n = 18,120), GWAS_MBUN_BUN GWAS for MBUN using only MBUN phenotypes of cows that also had BUN phenotypes (n = 2098)
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detected for BUN (15,837,206  bp, pBUN = 4.8 × 10–7). 
The variant associated with this QTL was an intergenic 
variant, located between the ENSBTAG00000048047 and 
GATA binding protein 3 (GATA3) genes, and was not sig-
nificant in the GWAS for MBUN (pMBUN = 0.07). Given 
the extremely high FDR for BUN, this QTL is likely a 
false positive.

We detected 12 QTL for MBUN, located on chromo-
somes 2, 3, 9, 11, 12, 14 and X. The most significant vari-
ant associated with MBUN was located at 631,698 bp on 
chromosome 14 (p = 8.6 × 10–14), upstream of the BOP1 
ribosomal biosis factor (BOP1) gene. Several previous 
studies reported BOP1 as a candidate gene associated 
with milk production traits [26–28]. The QTL interval on 
chromosome 14 encompassed the diacylglycerol O-acyl-
transferase homolog 1 (DGAT1) gene, a well-known 
causal gene for milk production traits in dairy cattle [24]. 
After including the causal variant for the DGAT1 QTL in 
the model as a fixed effect, none of the remaining vari-
ants on chromosome 14 were significant (see Additional 
file  2: Figure S2). Hence, DGAT1 was in high LD with 
all variants within the peak and is likely the causal vari-
ant that underlies the QTL. The second most significant 
QTL was a synonymous variant in the glycosyltrans-
ferase 6 domain containing 1 (GLT6D1) gene, located at 
103,271,858  bp on chromosome 11. GLT6D1 is associ-
ated with periodontitis in humans [29]. The QTL interval 
on chromosome 11 also included the progestagen-associ-
ated endometrial protein (PAEP) gene, a candidate gene 
for milk production traits in dairy cattle [25], and the 
alpha 1–3-N-acetylgalactosaminyltransferase and alpha 

1–3-galactosyltransferase (ABO) gene, which has been 
reported as a candidate gene for protein yield in dairy 
cattle [30] and determines human blood type [31]. The 
most significant variant in the GWAS for MBUN was 
located in an intron of the PAEP gene at 103,262,933 bp. 
When including this variant as a fixed effect in the model, 
the large peak in the area disappeared (see Additional 
file  3: Figure S3), and none of the previously reported 
top variants for the QTL were significant anymore, 
which indicates that rather than the three QTL detected 
on chromosome 11, we detected only one QTL that is 
in high LD with PAEP. When the variant in PAEP was 
included as a fixed effect in the model, the only remain-
ing significant variant was an intron in the vav guanine 
nucleotide exchange factor 2 (VAV2) gene located at 
104,765,599 bp with a p-value of 9.7 × 10–7. Ariyarathne 
et al. [10] reported a QTL for MUN in the same region on 
chromosome 11. MUN and MBUN had a genetic correla-
tion of 0.77 in the dataset used in the current study [5], 
hence QTL for MBUN and MUN were expected to over-
lap. Both MBUN and MUN are derived using MIR spec-
troscopy data of a milk sample, which may contribute to 
the strong genetic correlation between MBUN and MUN 
and similarity in the GWAS results. In a GWAS for MUN 
using the same individuals as in our current analysis, 
QTL for MUN were detected that overlapped with QTL 
for MBUN on chromosomes 11, 14 and X [14]. On chro-
mosome 11, the variant located at 103,271,858  bp was 
the most significant variant on this chromosome for both 
MBUN and MUN, with a p-value of 5.4 × 10–16 for MUN. 
The variants that were detected for MBUN at 631,698 bp 

Table 2  Positions of potential QTL detected for BUN and MBUN

BUN, blood urea nitrogen; MBUN, BUN predicted using mid-infrared spectroscopy; chr, chromosome; pos, position of the most significant variant associated with the 
QTL; trait, trait for which the QTL is significant; bp, base pair according to the ARS-UCD1.2 annotation; pBUN, p-value in the GWAS for BUN; pMBUN, p-value in the GWAS 
for MBUN; annotation, annotation of the most significant variant; gene, gene in which the most significant region was located or, if the most significant variant was 
intergenic, the genes between which the most significant variant was located, start, start of the QTL interval; end, end of the QTL interval; N, number of variants with 
p ≤ 10–6 in the QTL interval

Chr Pos (bp) Trait pBUN pMBUN Annotation Genes Start (bp) End (bp) N

2 47,485,307 MBUN 6.5 × 10–1 9.4 × 10–7 Intron EPC2 47,485,307 47,485,307 1

3 18,190,277 MBUN 3.1 × 10–2 6.3 × 10–7 Upstream CRCT1 18,190,277 18,190,277 1

3 55,238,179 MBUN 1.2 × 10–3 3.5 × 10–7 Intergenic PKN2-ENSBTAG00000051499 55,238,179 55,257,795 33

9 97,711,991 MBUN 3.0 × 10–2 8.4 × 10–7 Intron PRKN 97,711,991 97,711,991 1

11 99,897,676 MBUN 4.1 × 10–1 2.7 × 10–7 Intron ENSBTAG00000054738 99,897,676 99,916,846 6

11 103,271,858 MBUN 7.7 × 10–1 7.7 × 10–11 Synonymous GLT6D1 101,401,373 103,606,366 382

11 105,110,370 MBUN 8.0 × 10–1 6.8 × 10–7 Intron RXRA 105,110,370 105,110,370 1

12 84,682,464 MBUN 2.8 × 10–1 6.0 × 10–7 Intergenic IRS2-RF00001 84,682,431 84,699,022 3

13 15,837,206 BUN 4.8 × 10–7 6.6 × 10–2 Intergenic ENSBTAG00000048047-GATA3 15,835,519 15,839,775 5

14 631,698 MBUN 1.5 × 10–1 8.6 × 10–14 Upstream BOP1 512,818 1,278,273 209

X 31,752,695 MBUN 2.7 × 10–2 9.0 × 10–7 Intergenic ENSBTAG00000018311-IDS 31,752,695 31,752,695 1

X 100,768,475 MBUN 4.2 × 10–1 2.7 × 10–7 Intergenic MAOA-PPP1R2C 100,768,475 100,768,475 1

X 107,587,617 MBUN 3.1 × 10–1 8.7 × 10–7 Intergenic MAGEB16-ENSBTAG00000040406 107,587,617 107,587,617 1
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Fig. 2  Manhattan plots of the GWAS for MBUN using different subsets of records. MBUN blood urea nitrogen (BUN) predicted using mid-infrared 
spectroscopy. The five repeats show GWAS carried out using MBUN phenotypes from 2000 randomly selected cows
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on chromosome 14 and 107,587,617 bp on chromosome 
X have p-values of 1.2 × 10–21 and 1.1 × 10–6 for MUN, 
respectively (unpublished observations). MBUN had 
moderate genetic correlations with fat yield (0.28) and 
fat percentage (0.35) [5], which may explain the overlap 
between QTL detected for MBUN and the well-known 
milk production QTL on chromosomes 11 and 14 [24, 
25]. However, given that the majority of the significant 
peaks identified in the GWAS for MBUN were associated 
with milk production, the GWAS results for any MIR-
predicted trait may be heavily biased by milk characteris-
tics. Several GWAS for MIR wave numbers have detected 
major QTL on chromosomes 3 [32], 11 [32–34] and 14 
[32, 33, 35, 36] in the same regions where we detected 
QTL for MBUN.

The GWAS results for BUN and MBUN were very 
different, which was surprising given the genetic cor-
relation of 0.90 between the two traits [5]. None of the 
QTL detected for MBUN were close to significance in 
the GWAS for BUN. Hence, it is possible that, in spite 
of the strong genetic correlation between MBUN and 
BUN, some of the variation in MBUN picked up in the 
GWAS is related to the variation of the MIR spectrum 
rather than to variation in BUN. Alternatively, the dif-
ferences between the GWAS for MBUN and BUN may 
be due to the smaller subset of animals that had BUN 
records. To explore this, we repeated the GWAS for 
MBUN using only the animals with BUN phenotypes 
(GWAS_MBUN_BUN, Fig.  1). Using this dataset the 
peaks that we detected in the GWAS_MBUN_ALL analy-
sis disappeared, which strongly suggests that the GWAS 
results were very sensitive to the set of individuals used. 
The dataset that we analysed contained multiple breeds, 
including crossbreds, hence the difference in GWAS 
results between subsets could also be due to differences 
in breed composition.

To test if the differences between GWAS_MBUN_
ALL and GWAS_MBUN_BUN were caused by (1) par-
ticular characteristics of the subset of animals with 
BUN records or (2) by the smaller sample size, we car-
ried out a GWAS with records from 2000 randomly 
selected cows (GWAS_MBUN_2K), and as shown in 
Fig.  2, the results differed between datasets. None of 
the GWAS_MBUN_2K detected any of the larger QTL 
detected in the GWAS_MBUN_ALL. In each of the 
GWAS_MBUN_2K, small peaks with minimum p-values 
of approximately 10–6  to  10–8 were identified, but they 
were at different positions in each of the datasets. This 
implies that the GWAS results obtained by using small 
datasets (in this case, around 2000 cows) should be inter-
preted with caution, and larger datasets may be required 
to detect peaks that are less sensitive to the particular set 
of data analysed. A MIR predicted trait for which records 

can easily be generated for a large number of animals, 
such as MBUN, may provide an attractive alternative to 
perform a more powerful GWAS for hard-to-measure 
traits, such as BUN. Since there is a strong genetic corre-
lation between MBUN and BUN, they can be considered 
as the same trait [5, 6], and hence the QTL detected for 
MBUN could be interpreted as QTL for BUN. This indi-
cates the potential of using MIR equations from a breed-
ing perspective. However, although Ho et al. [4] reported 
a comparable prediction accuracy from herd/animal 
independent validation and herd-year by herd-year vali-
dation, further research is required to develop predic-
tion equations for MBUN that can be transfered across 
environments.

Conclusions
The GWAS results for BUN and MBUN were very dif-
ferent, in spite of the strong genetic correlation between 
the two traits. We detected 12 QTL for MBUN, located 
on chromosomes 2, 3, 9, 11, 12, 14 and X. The QTL on 
chromosomes 11, 14 and X overlapped with previous 
QTL detected for milk production traits and/or MUN. 
We detected one QTL for BUN using a dataset of about 
2000 cows that was located on chromosome 13. How-
ever, when we repeated the GWAS for MBUN on smaller 
(2000) subsets of the dataset i.e. so that their size was 
comparable to that for BUN, the GWAS results were 
very sensitive to the subset of records used. Hence, using 
approximately 2000 cow phenotypes as was done for the 
GWAS for BUN may not be sufficient for accurate QTL 
detection, and caution is warranted when interpreting 
GWAS results based on small datasets. Based on the 
strong genetic correlation between MBUN and BUN 
that was estimated in previous studies, MBUN may pro-
vide an attractive alternative to perform a more powerful 
GWAS to detect QTL for BUN.
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