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SUMMARY

Neural stem cells (NSCs) in the prenatal neocortex progressively generate different subtypes of 

glutamatergic projection neurons. Following that, NSCs have a major switch in their progenitor 

properties and produce γ-aminobutyric acid (GABAergic) interneurons for the olfactory bulb 

(OB), cortical oligodendrocytes, and astrocytes. Herein, we provide evidence for the molecular 

mechanism that underlies this switch in the state of neocortical NSCs. We show that, at around 

E16.5, mouse neocortical NSCs start to generate GSX2-expressing (GSX2+) intermediate 

progenitor cells (IPCs). In vivo lineage-tracing study revealed that GSX2+ IPC population gives 

rise not only to OB interneurons but also to cortical oligodendrocytes and astrocytes, suggesting 

that they are a tri-potential population. We demonstrated that Sonic hedgehog signaling is both 
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necessary and sufficient for the generation of GSX2+ IPCs by reducing GLI3R protein levels. 

Using single-cell RNA sequencing, we identify the transcriptional profile of GSX2+ IPCs and the 

process of the lineage switch of cortical NSCs.

Graphical Abstract

In Brief

Zhang et al. reveal that cortical radial glia-derived GSX2+ cells at the late embryonic stage are tri-

potential intermediate progenitors, which give rise to a subset of cortical oligodendrocytes, 

astrocytes, and olfactory bulb interneurons. SHH signaling is crucial for the generation of GSX2+ 

cells by reducing GLI3R protein level.

INTRODUCTION

Neural stem cells (NSCs) are the ultimate source of all neurons, oligodendrocytes, and 

astrocytes. Prenatally, NSCs correspond to radial glial cells (RGCs) that are regionally and 

temporally specified and generate diverse neuronal and glial cell types appropriate for their 

location and time (Bayraktar et al., 2014; Kriegstein and Alvarez-Buylla, 2009; Kwan et al., 

2012). Although much progress has been made toward understanding temporal cell-fate 

specification in the developing invertebrate ventral nerve cord and brain (Doe, 2017; Kohwi 

and Doe, 2013), the mechanisms responsible for temporal lineage specification of NSCs in 

the mammalian brain remain largely unknown.
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The mouse cerebral cortex is a six-layered structure, consisting of both glutamatergic, 

pyramidal-projection neurons (PyNs) derived from cortical ventricular zone (VZ) and 

subventricular zone (SVZ), and g-aminobutyric acid (GABAergic) interneurons that arise 

from subcortical progenitor domains. During development, embryonic NSCs located in the 

cortical VZ sequentially generate distinct subtypes of PyNs in an inside-out pattern: deep-

layer PyNs are born first, followed by PyNs of superficial layers (Kriegstein and Alvarez-

Buylla, 2009; Kwan et al., 2012; Leone et al., 2008). The local interneurons, however, derive 

from NSCs located in the medial and caudal ganglionic eminences (MGEs and CGEs, 

respectively) in the ventral forebrain and migrate tangentially into the cerebral cortex (Hu et 

al., 2017; Lim et al., 2018).

As the production of PyNs ceases, cortical NSCs switch to generating cortical glia and 

GABAergic olfactory bulb (OB) interneurons (Kessaris et al., 2006; Kohwi et al., 2007; 

Kriegstein and Alvarez-Buylla, 2009; Kwan et al., 2012; Merkle et al., 2007; Ventura and 

Goldman, 2007; Young et al., 2007). Using time-lapse imaging in vitro, we have previously 

demonstrated that individual embryonic day-11.5 (E11.5) mouse cortical RGCs generate 

TBR1-expressing (TBR1+) PyNs, followed by GAD1 and SP8 double-positive 

(GAD1+SP8+) OB interneurons (OB-INs) (Cai et al., 2013). A recent lineage analysis using 

barcoded virus libraries confirmed this result and revealed that individual early cortical 

RGCs generate both PyNs and OB-INs in vivo (Fuentealba et al., 2015). Lineage analysis of 

late embryonic cortical RGCs showed that, although they no longer produce PyNs, they 

generate cortical astrocytes and oligodendrocytes (Gao et al., 2014; Guo et al., 2013). Thus, 

cortical RGCs progress from generating PyNs to oligodendrocytes, astrocytes, and OB 

GABAergic interneurons at the end of cortical neurogenesis. Recently, it has been shown 

that Sonic hedgehog (SHH) signaling is critical for cortical RGCs to generate 

oligodendrocytes (Winkler et al., 2018), but the mechanism regulating the switch for cortical 

RGCs to generate OB-INs is unknown.

Here, we show that at the end of PyN production, cortical NSCs begin generating GSX2+ 

intermediate progenitor cells (IPCs) in the SVZ. Importantly, we demonstrate that GSX2+ 

cells are tri-potent IPCs (tri-IPCs) at the population level, giving rise to OB-INs, cortical 

oligodendrocytes, and astrocytes. We show that SHH signaling is both necessary and 

sufficient for cortical RGCs to switch from generating PyNs to producing GSX2+ tri-IPCs 

and OB-INs; this switch requires blocking the formation of the GLI3 repressor (Gli3R) 

transcription factor. Finally, single-cell RNA sequencing (scRNA-seq) analysis confirms 

these findings and identifies the molecular signatures of GSX2+ IPCs in the cortex.

RESULTS

GSX2 Is Expressed in a Subpopulation of IPCs in the Cortex

We have recently identified a genetic pathway (Gsx2/1–Dlx1/2–Sp8/Sp9–Tshz1–Prokr2) 

that is crucial for generating virtually all OB-INs (Guo et al., 2019; Li et al., 2018). In this 

transcriptional cascade, Gsx2 is at the top of the hierarchy, and its expression and functions 

in NSCs and IPCs in the lateral ganglionic eminence (LGE) have been well documented 

(Guo et al., 2019; Toresson and Campbell, 2001; Waclaw et al., 2009; Wang et al., 2013). It 

is known that a subpopulation of OB-INs is derived from cortical progenitors (Kriegstein 
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and Alvarez-Buylla, 2009). However, it is unclear whether the above transcription factors are 

expressed by cortical progenitors. To answer that question, we examined the expression of 

GSX2 in the cortex.

At E16.5, the time when the production of PyNs ceases, only a few cells in the cortical SVZ 

weakly expressed GSX2 (Figure 1A). From E17.5 to P21, GSX2+ cells were observed in the 

cortical SVZ and intermediate zone (Figures 1A and S1A). We analyzed co-expression of 

GSX2 and MKI67 in the E18.5 cortex and found that 86.1% of GSX2+ cells expressed 

MKI67 and 30.4% of MKI67+ cells in the SVZ expressed GSX2 (Figures S1B and S1C). 

This suggests that GSX2+ cells represent a subpopulation of the cycling progenitors in the 

cortex. Although GSX2 is expressed in NSCs and IPCs in the VZ and SVZ of the LGE (Guo 

et al., 2019; Wang et al., 2009), we did not observe GSX2+ cells in the cortical VZ, 

indicating that they are IPCs, rather than the primary VZ RGCs.

We next asked how numerous GSX2+ cells are in the cortex in prenatal and postnatal stages. 

To address this question, we quantified the numbers of GSX2+ cells in the cortex at E18.5, 

P1, P3, P5, and P7 in the rostro-caudal and medio-lateral axes (Figures S1D–S1F). In 

general, GSX2+ cells showed a lateral-to-medial spatial gradient with the numbers of 

GSX2+ cells highest in the intermediate cortex and fewer in the rostral and caudal cortices at 

all stages (Figures S1D–S1F). Interestingly, it appeared that there were more cortical GSX2+ 

cells at P0 and P5 than at other stages (Figure S1F). Taken together, these results suggest 

that a subset of IPCs in the cortex express GSX2 in the prenatal and postnatal mouse 

telencephalon.

Eomesodermin (EOMES; TBR2) is a transcription factor of the T-box family expressed by 

IPCs in the PyN lineage of the cortex (Bulfone et al., 1999; Hevner, 2019; Lv et al., 2019). 

We did not observe co-expression of GSX2 and EOMES in the cortex (Figures S1D and 

S1E). The ratios of GSX2+ cells to EOMES+ cells increase with developmental stages from 

0.25 at E18.5 to 2.7 at P7 (Figure S1G), as the numbers of EOMES+ cells drop sharply in 

the postnatal cortex (Kowalczyk et al., 2009).

Cortical NSCs Generate GSX2+ IPCs at Late Embryonic Stages

To determine whether the GSX2+ IPCs in the cortex originated from the cortical VZ or 

migrated from the LGE, we performed intersectional (IS) analysis using Cre and Flpo 
recombinases in combination with an IS reporter mouse line (He et al., 2016) (Figure 1B). 

We generated the Gsx2Flpo allele by inserting a P2A-Flpo-T2A-Flpo cassette immediately 

before the stop codon of the endogenous Gsx2 gene (Figure S2A). We confirmed the 

specificity of Flpo activity in the Gsx2+ cells by breeding the Gsx2Flpo/+ mice with Rosa26-
tdTomato-FRT mice (He et al., 2016). TdTomato (tdT) expression was observed in the LGE 

and MGE at E13.5 and E14.5 (Figure S2B), consistent with the expression pattern of GSX2 

protein. To perform intersectional lineage analysis, we delivered pCAG-Cre plasmids 

specifically into the cortical VZ of Gsx2Flpo/+; IS embryos on E14.5 by in utero 
electroporation (IUE). In this experiment, cells generated from electroporated cortical RGCs 

that did not go through a Gsx2+ stage expressed tdT. On the other hand, cells generated from 

the electroporated RGCs that did go through a Gsx2+ stage expressed GFP (Figure 1B). We 

examined the brains at E18.5. The electroporation sites were confirmed by examining tdT 
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expression (Figure 1C). We observed many tdT+ cells that extended from the IUE VZ/SVZ 

to the cortical plate. Fewer GFP+ cells were observed; most of them were in the cortical 

SVZ, intermediate zone and some in the cortical plate (Figure 1C). GFP+ cells were not 

observed in the cortical VZ. Moreover, the GFP+ cells in the cortical SVZ did not have a 

bipolar shape with elongated radial fibers that projected toward the pial surface (Figure 1C), 

providing evidence that they were not RGCs.

We next analyzed the identities of GFP+ cells in the E18.5 cortex. We found that 36.4% of 

GFP+ cells expressed SP8, 46.9% expressed OLIG2, and only 5.0% expressed GSX2 

(Figures S2C–S2G), suggesting that GSX2 is transiently expressed in the IPCs. At E18.5, 

nearly all GSX2+GFP+ cells retained tdT expression (Figure S2G) because of the perdurance 

of the tdT protein. We also observed many cortical RGC-derived tdT+GSX2+ cells that did 

not express GFP (Figure S2G), suggesting a lower recombination efficiency of the Flp-FRT 
system. Taken together, our results demonstrated that the GSX2+ IPCs in the cortex are 

derived from the cortical RGCs.

Lineage Tracing Reveals the Tri-potency of GSX2+ IPCs in the Cortex

We next examined the lineages of the GSX2+ cortical IPCs. We electroporated pCAG-Cre 
plasmids into the cortical VZ of Gsx2Flpo/+; IS embryos on E14.5 and analyzed the brains 

and OBs at P21. We observed many tdT+ and/or GFP+ interneurons in the OB; 42.6% of 

lineage-traced cells were GFP+, 28.7% tdT+, and 28.7% of cells expressed both GFP and 

tdT (Figures 1D and 1E). The GFP+tdT+ interneurons in the OB were due to the perdurance 

of the tdT protein, and these neurons were possibly generated later than the GFP+-only cells. 

The total percentage of GFP+ and GFP+tdT+ cells among all the lineage-traced OB-INs were 

about 71.3%. Although we cannot exclude the possibility that a small number of cortical 

RGCs directly give rise to OB-INs without going through a GSX2+ IPC stage, this number 

was likely an underestimate because of the lower recombination efficiency of the Flp-FRT 
system compared with the Cre-Loxp system (Buchholz et al., 1998). Thus, most, if not all, 

of the OB-INs originating from the cortical VZ were the progeny of GSX2+ cortical IPCs.

We also observed a substantial number of GFP+ cells in the cortex; their morphology and 

expression of OLIG2 and S100b indicated that these were oligodendrocytes and astrocytes 

(Figures 1F–1H). The ratio of oligodendrocytes to astrocytes was 6:1 (Figure 1I). These 

results demonstrated that cortical GSX2+ IPCs give rise not only to interneurons in the OB 

but also to cortical oligodendrocytes and astrocytes, suggesting that, at the population level, 

the GSX2+ cells are tri-potent IPCs or tri-IPCs. However, it is unclear whether individual 

GSX2+ IPCs give rise to all three lineages or the GSX2+ IPCs consist of different uni-potent 

or bi-potent IPC populations that produce one or two cell lineages.

To confirm our IUE-based lineage-tracing results, we examined Emx1Cre/+; Gsx2Flpo/+; IS 
triple-transgenic mice in which Cre recombinase was activated in cortical RGCs at 

approximately E10.5 (Gorski et al., 2002) (Figure S3). At P21, we observed many GFP+ 

interneurons in the OB (Figure S3F) and GFP+OLIG2+ oligodendrocytes and GFP+S100b+ 

astrocytes in the cortex (Figures S3A–S3C). About 10% of OLIG2+ cells and ~ 4% of S100b
+ cells were labeled by GFP (Figure S3D), suggesting that GSX2+ IPCs contribute to small 

portions of cortical oligodendrocytes and astrocytes. The ratio of oligodendrocytes to 
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astrocytes among the GFP+ glial cells was ~ 6:1 (84.7% versus 15.3%) (Figure S3E), similar 

to those observed with the pCAGIG-Cre IUE approach (Figures 1F–1I). Together, these 

results demonstrated that the cortical GSX2+ cell population at late embryonic and early 

postnatal stages generates OB-INs and both types of cortical glia.

The SHH Signaling Pathway Is Required for the Cortical RGCs to Generate OB-Ins

Neurogenesis in the ventral telencephalon largely generates GABAergic neurons. SHH 

signaling promotes ventral identities during development throughout the neuroaxis (Hébert 

and Fishell, 2008). OB-INs production from the dorsal cortex was observed concurrently 

with increased expression in the cortical VZ/SVZ at P0 and P7 of Gli1, which encodes a 

transcription factor that promotes SHH signaling (Tong et al., 2015). To explore the 

possibility that OB-IN production requires SHH signaling, we deleted the Smoothened 

(Smo) gene utilizing an hGFAP-Cre allele (Zhuo et al., 2001). Smo encodes a G-protein-

coupled receptor that is an essential signal transducer for the SHH pathway. hGFAP-Cre is 

active in the cortical RGCs from E13.5 and in the LGE and CGE from E16.5.

We compared the expression of OB-IN lineage markers in the hGFAP-Cre; SmoF/F (Smo 
cko) mice with littermate control hGFAP-Cre; SmoF/+ mice at P2 using in situ RNA 

hybridization and immunohistochemistry (Figure 2). Reduced expression of Gli1 mRNA 

confirmed decreased SHH signaling in the cortical VZ/SVZ of Smo cko mice (Figure 2A). 

Almost all GSX2+ cells were lost in the rostral and caudal cortical SVZ (Figures 2B–2D), as 

were cells expressing OB-IN markers Sp9, Tshz1, and Prokr2 and the pan-GABAergic 

neuron marker Gad1 (Figure 2A). The number of SP8+ cells in the cortical SVZ was also 

significantly reduced (Figures 2B–2D); the remaining SP8+ cells in the Smo cko cortical 

SVZ were probably CGE-derived cortical interneurons (Ma et al., 2012).

The lack of OB-INs in the cortical VZ/SVZ of Smo cko mice could be due to a defect in fate 

specification or to reduced cell proliferation. To distinguish between these possibilities, we 

examined numbers of EOMES+ cells and cell proliferation by administrating EdU to label S-

phase cells 2 h before sacrificing the mice. At P0, the number of EdU+ cells in the mutant 

VZ was not significantly different from that in the control brains. However, in the Smo cko 
SVZ, there were fewer EOMES+ cells, and there was a significant reduction of the EdU+ 

cells (Figures S4A and S4C). This observation was consistent with a previous report that 

SHH signaling is not required for cortical RGC proliferation, but rather, it promotes the 

proliferation of cortical IPCs (Komada et al., 2013). Unlike at P0, by P3, the number of 

EOMES+ cells was not significantly affected (Figure S4B and S4C). We postulate that the 

restored EOMES+ IPC cells at P3 likely originated from the cortical RGCs. The reduced OB 

lineage cells and normal EOMES+ cell number at P3 provide further evidence that SHH 

signaling drives cortical RGCs to switch from generating EOMES+ IPCs to GSX2+ IPCs 

and OB-INs.

Increased Exposure to SHH during Neurogenesis of Deep-Layer Pyramidal Neurons 
Causes a Premature Fate Switch to Generate OB-INs and Oligodendrocytes

Recently, it was reported that SHH signaling promotes cortical RGCs to generate 

oligodendrocytes (Winkler et al., 2018). Both GSX2+ and OLIG2+ cells appear in the 
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cortical SVZ around E16.5 during normal development (Figure 1A) (Winkler et al., 2018). Is 

this because cortical RGCs are exposed to increased SHH signal at the end of cortical 

neurogenesis or because they become competent to respond to SHH signaling to generate 

these cell types only at that time? To address those questions, we ectopically expressed SHH 

in the cortical VZ by electroporating the pCAG-ShhN-ires-GFP plasmid into wild-type 

(WT) mice at E13.5 (the peak time for generating layer-5 cortical projection neurons) and 

examined the brains at E18.5 (Figure 3A). Controls were electroporated with the pCAG-
GFP plasmid. Brains electroporated with the pCAG-ShhN-ires-GFP had increased Gli1 and 

Ptch1 expression, consistent with increased activation of the SHH signaling pathway (Figure 

3A) (Shikata et al., 2011). Furthermore, more cells expressed OB-IN lineage markers: 

GSX2, ASCL1, DLX2, SP8, SP9, Tshz1, Prokr2, and Gad1 (Figures 3A and 3B). The 

number of OLIG2+ cells also increased (Figure 3B), consistent with a previous report 

(Winkler et al., 2018). Bulk RNA-seq analysis confirmed the increased expression of genes 

associated with OB-INs (Gsx2, Ascl1, Dlx1/2, Gad1, Sp8/9, Tshz1, and Prokr2) and 

oligodendrocytes (Olig1/2, Pdgfra, and Sox10) in the cortices electroporated with pCAG-
ShhN-ires-GFP at P0 (Figure 3C). Thus, cortical RGCs can respond to increased SHH 

signaling to generate OB-INs and oligodendrocytes even during the peak time of producing 

PyNs.

We also investigated the effect of increased SHH pathway activation on OB-IN generation 

using the conditional Rosa26SmoM2 allele, which, upon CRE-mediated recombination, 

expresses a constitutively active SMO protein, independent of SHH (Jeong et al., 2004). We 

examined the cortex of hGFAP-Cre; Rosa26SmoM2/+ and littermate control mice 

(Rosa26SmoM2/+) at E17.5. Similar to SHH overexpression, in hGFAP-Cre; Rosa26SmoM2/+ 

mice we observed increased the numbers of cells expressing OB-IN and oligodendrocyte 

lineage markers (Figure S5A–S5C). Most PyNs are generated between E11.5 and E16.5 in 

the neocortex. Our RNA-seq data from the P0 cortex of hGFAP-Cre; Rosa26SmoM2/+ mice 

showed mis-regulation of many genes associated with PyNs (Figure S5D). Consistently, 

misregulated PyN gene expression in the Shh-IUE cortex was also observed at P0 (Figure 

S5E). These results indicate that cortical PyN development is compromised after 

overexpression of ShhN or SmoM2 at E13.5 (Yabut et al., 2015).

SHH Signaling Promotes OB-IN and Cortical Oligodendrocyte Fates through Reducing 
GLI3R

Both Gli2 and Gli3 have been shown to mediate the downstream signaling of SHH; GLI2 

can both activate (GLI2A) and repress (GLI2R) gene expression, whereas GLI3 acts mostly 

as a transcription repressor (Gli3R) (Hui and Angers, 2011). Gli2 and Gli3 are expressed in 

the cortical VZ/SVZ throughout embryonic development (Sousa and Fishell, 2010) and in 

the SVZ of the lateral ventricle postnatally (Petrova et al., 2013; Wang et al., 2014). To 

determine whether the SHH pathway promotes cortical RGCs to generate Gsx2+ IPCs 

through activating GLI2A or through reducing GLI3R, we examined the brains of hGFAP-
Cre; Gli2F/F (Gli2 cko) (Corrales et al., 2006), hGFAP-Cre; Gli3F/F (Gli3 cko) (Blaess et al., 

2008), and hGFAP-Cre; Gli2/F/F; Gli3F/F (Gli2 Gli3 dcko) mice at P0 (Figures 4A–4D). 

Compared with the WT mice, the numbers of GSX2+, SP8+, and OLIG2+ cells were not 

significantly affected in the Gli2 cko mice (Figure 4E), but their numbers were significantly 
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increased in cortical VZ/SVZ of the Gli3 cko mice (Figures 4C and 4E). These results 

suggested that Gli2 is not required for the lineage switch, whereas Gli3 inhibits the cortical 

RGCs from generating OB-INs and oligodendrocytes. Consistent with that, significantly 

more GSX2+, SP8+, and OLIG2+ cells were present in the cortical VZ/SVZ of the Gli2 Gli3 
dcko than in the WT brains (Figure 4E).

We next examined the brains of hGFAP-Cre; SmoF/F; Gli3F/F (Smo Gli3 dcko) mice. 

Although the numbers of GSX2+, SP8+, and OLIG2+ cells were reduced in the Smo cko 
mice (Figures 2B–2D, 4B, and 4E), they were restored in the Smo Gli3 dcko mice. 

Compared with the WT, more GSX2+, SP8+, and OLIG2+ cells were observed in the cortical 

VZ/SVZ of Smo Gli3 dcko mice at P0 (Figures 4D and 4E). These results indicate that GLI3 

inhibits cortical RGCs from generating OB-INs and oligodendrocytes, and that SHH 

pathway activation blocks this inhibition to enable the production of those cell lineages.

We analyzed neurogenesis in the adult SVZ (P90). Whole mount of the lateral wall of lateral 

ventricle stained with antibody against DCX showed a marked decrease in neuroblast chains 

in Smo cko mice (Figure S4D), but this defect was largely rescued in Smo Gli3 dcko mice 

(Figure S4D). Thus, GLI3 also inhibits neurogenesis of OB-INs in the adult SVZ.

scRNA-Seq Analysis Supports the Existence of Gsx2+ Tri-IPCs in the Developing Cortex

We performed scRNA-seq to analyze the cortical progenitors undergoing the lineage switch. 

Neocortices from E16.5 WT mice (wt sample) and from E16.5 cortices that were 

electroporated with pCAG-ShhN-ires-GFP plasmids on E13.5 (ShhN-IUE sample) were 

dissected, dissociated into single-cell suspensions, and sequenced using the 103 genomics 

platform. After removing outlier cells that had a high percentage of ribosomal or 

mitochondrial genes, 7,494 cells in the wt sample and 8,311 cells in the ShhN-IUE sample 

were used for analysis, with an average of 2,450 genes detected per cell (Figures 5A and 

5B).

After confirming no batch effect between the two samples, dimensionality reduction 

followed by unsupervised clustering using Louvian community detection (Blondel et al., 

2008) and visualization with t-Distributed Stochastic Neighbor Embedding (t-SNE) 

(Macosko et al., 2015) revealed 31 clusters in the wt sample (Figure S6) and 36 clusters in 

the ShhN-IUE sample (Figure S7). Gene ontology analysis classified those clusters into 

discrete populations, including RGCs, IPCs, PyNs, cortical interneurons (CINs), endothelial 

cells (ECs) and microglia, and Cajal-Retzius cells (CRs) (Figure 5A). In the ShhN-IUE 
sample, we identified additional clusters with molecular signatures of tri-IPCs, 

oligodendrocyte progenitor cells (OPCs), and OB-IN IPCs (OB-IPCs) that were not 

identified in the wt sample (Figures 5A, 5B, S6, and S7). This was likely due to the small 

numbers of tri-IPCs, OPCs, and OB-IPCs present in the WT cortical SVZ at E16.5. Indeed, 

we observed only 8 Gsx2+ (0.10% of the population) and 27 Olig2+ (0.36%) progenitor cells 

in the wt sample, whereas there were 214 Gsx2+ (2.57%) and 222 Olig2+ (2.67%) 

progenitor cells after ShhN-IUE (Figures 5C and 5D). Five days after ShhN-IUE, we 

observed Tshz1+ and Prokr2+ OB immature interneurons in the E18.5 cortices by in situ 
RNA hybridization (Figure 3A), but we did not find Tshz1+ and Prokr2+ cells 3 days after 

ShhN-IUE in the E16.5 cortices in our scRNA-seq results. This is likely due to the OB-IPCs 
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not having enough time to differentiate into postmitotic OB-INs at E16.5. An astrocyte 

cluster was not identified at this time; astrocytes are generated mainly after PyN 

neurogenesis.

The gene regulatory network Gsx2/1–Dlx1/2–Sp8/Sp9–Tshz1–Prokr2 is crucial for the 

generation and differentiation of virtually all OB-INs, and the homeobox transcription factor 

genes, Dlx1/2, are central and essential components in this transcriptional code (Guo et al., 

2019; Li et al., 2018). Previous fate mapping studies demonstrated that Dlx1/2-Cre and 

Dlx5/6-Cre only label neurons, but not oligodendrocytes or astrocytes (Potter et al., 2009; 

Stenman et al., 2003), strongly suggesting that once IPCs express Dlx family genes, their 

neuronal fate has been determined. It is also known that GSX2 and DLX2 repress OPC 

specification (Chapman et al., 2013, 2018; Petryniak et al., 2007). Therefore, the IPCs that 

expressed GSX2 and DLX2/1 were most likely OB-IPCs, even though some of them also 

expressed OLIG2. In contrast, those IPCs that expressed GSX2 and OLIG2/1, but not 

DLX2/1, were likely tri-IPCs, with the potential to give rise to either OB-INs or cortical glia 

or both. Indeed, among the eight Gsx2+ cells in the wt sample, four cells expressed Dlx2/1 
and Dcx (two of them also expressed OLIG2/1) and were OB-IPCs (Figure 5E). The other 

four Gsx2+ cells expressed Olig2/1, but not Dlx2/1, and were likely tri-IPCs (Figure 5E); 

they may have the potential to generate oligodendrocytes, astrocytes, and/or OB-INs (Figure 

1).

Trajectory analysis using Monocle 2 (Qiu et al., 2017a, 2017b) on all the cells in the wt or 

the Shh-IUE sample was unsuccessful, likely because too many clusters were included. 

Thus, we focused our analysis on the progenitor cells. Louvian analysis of all the progenitor 

cells in the ShhN-IUE sample revealed seven clusters (Figures 6A and 6 B). Based on gene 

expression patterns, we identified them as RGCs (Dbi+Aldoc+Slc1a3+Gli3+), OB-IPCs 

(Ascl1+Dlx1+Dlx2+Sp9+), neuroblasts for OB-INs (Dcx+Dlx5+Gad1+Sp8+), OPCs 

(Olig1+Pdgfra+Sox8+Sox10+), differentiating PyNs (PyNs) 

(Sox11+Neurod6+Pou3f1+Satb2+), and tri-IPCs (Hes6+Btg2+Gsx2+Olig2+) (Figures 6A–

6C). t-SNE visualization (Figures 6A and 6C) showed that cells of the OB-IN lineage and 

the oligodendrocyte lineage were clearly segregated, exhibiting distinct molecular 

signatures. Monocle analysis predicted a developmental trajectory and pseudo-time-line 

progression of the progenitor clusters in the ShhN-IUE sample (Figures 6D and 6E). The 

lineage progression was predicted to start from RGCs passing through tri-IPCs; after which, 

two distinct trajectories were identified that led to either OPCs or OB-IPCs (Figure 6E). The 

tri-IPC population was located between RGCs and the OPCs and OB-IPCs, suggesting that 

tri-IPCs were a transitional cell type that generated OPCs and OB-IPCs, consistent with the 

lineage-tracing results (Figures 1C–1G).

In Vivo Validation of Markers of Tri-IPCs and Their Lineage Progression in the Cortical SVZ

To further validate the molecular signatures of IPCs identified from the scRNA-seq analysis, 

we performed triple-immunostaining to examine expressions of GSX2, OLIG2, DLX2, SP9, 

and SP8 in the E17.0 WT and ShhN-IUE cortices. Few GSX2+ cells were observed in the 

WT cortex (Figure 7A). Compared with the GSX2+ cells, more OLIG2+ cells were observed 

(Figure 7A), with some of them derived from the LGE and MGE (Kessaris et al., 2006). 
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There were many DLX2+, SP9+, and SP8+ cells in the cortical SVZ; they were MGE- and/or 

CGE-derived cortical interneurons (Figures 7A and 7B) (Anderson et al., 1997; Liu et al., 

2019; Ma et al., 2012). Although very rare in the E17.0 wt cortex, GSX2+OLIG2+DLX2 tri-

IPCs (arrows in Figure 7A) and some GSX2+DLX2+ OB-IPCs (arrowheads in Figure 7A) 

were observed. In the E17.0 ShhN-IUE cortex, there were significant increases in the 

numbers of GSX2+, OLIG2+, DLX2+, SP9+, and SP8+ cells in the VZ and/or SVZ compared 

with WT mice (Figures 7B–7E). Consistent with the scRNA-seq results, significantly more 

GSX2+ DLX2+ OB-IPCs and GSX2+ OLIG2+ DLX2 tri-IPCs were present (Figure 7F). 

Very few IPCs expressed GSX2 alone (Figure 7F). Almost all GSX2+ cells segregated into 

either tri-IPCs or OB-IPCs, based on the expression of DLX2.

A careful examination of the ShhN-IUE cortices revealed that, based on the position of 

GSX2+ cells closer to the cortical VZ, GSX2 expression began before DLX2, and DLX2 

expression began before SP8/9 (Figure 7G), indicating a developmental progression along 

the OB-IN lineage: GSX2+ tri-IPCs generate DLX2+ OB-IPCs, which, in turn, generate 

SP9+ and SP8+ OB neuroblasts in the cortical SVZ. This observation supports our 

unsupervised trajectory analysis results (Figures 6D and 6E) and is consistent with the 

process of OB-IN development in the dorsal LGE (Guo et al., 2019).

DISCUSSION

In this study, we show that the genetic program Gsx1/2–Dlx1/2–Sp8/9–Tshz1–Prokr2 is 

activated in the cortical SVZ at the end of cortical neurogenesis, and we uncover an extrinsic 

signaling pathway that regulates the lineage switch of cortical NSCs to generate OB-INs. 

Using loss-of-function and gain-of-function analyses, we show that activation of the SHH 

pathway is both necessary and sufficient for OB-IN generation in the cortical VZ/SVZ 

through reducing GLI3R. Blocking SHH signaling by deleting Smo leads to reduced 

production of OB-IN lineage, whereas ectopic activation of the SHH pathway by over-

expressing ShhN or expressing the SmoM2 allele leads to an early and over-production of 

OB-INs and cortical oligodendrocytes. Furthermore, lineage-tracing and scRNA-seq 

analysis reveal that GSX2+ cells derived from the cortical NSCs are tri-IPCs at the 

population level; they produce not only interneurons in the OB but also oligodendrocytes 

and astrocytes in the cortex. These findings reveal the mechanism by which RGC switch 

their lineage from production of cortical excitatory neurons to the generation of cortical 

oligodendrocytes, astrocytes, and inhibitory OB-INs.

Cortical NSCs, PyN-IPCs, Tri-IPCs, OPCs, OB-IPCs, Glia-IPCs, and Their Lineage 
Progression

Generating the diverse neuronal and glial cell types in the mammalian brain is a complex 

and highly regulated process. Shortly after neural tube closure, NSCs are spatially patterned 

into discrete progenitor domains. The spatially patterned NSCs undergo sequential 

neurogenesis and gliogenesis to generate the diverse neuronal and glial cell types (Kriegstein 

and Alvarez-Buylla, 2009; Kwan et al., 2012). NSCs change their lineage and generate 

different types of neurons and glial cells based on the developmental stages. In the cerebral 

cortex, early multipotent cortical RGCs first generate deep-layer PyNs, followed by upper-
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layer PyNs. At the end of cortical neurogenesis around E16.5, RGCs switch lineages and 

produce cortical oligodendrocytes, astrocytes, and OB-INs (Fuentealba et al., 2015; 

Kriegstein and Alvarez-Buylla, 2009).

Although some PyNs are directly derived from RGCs and some RGCs can directly 

transform into astrocytes, it is worth noting that most neurons, oligodendrocytes, and 

astrocytes are not the direct progeny of NSCs but, instead, originate from IPCs (Kriegstein 

and Alvarez-Buylla, 2009). During the period of cortical neurogenesis around E11.5–E16.5, 

RGCs undergo asymmetric cell division to self-renew and to produce EOMES+ PyN-IPCs 

(Englund et al., 2005; Noctor et al., 2004), which exclusively generate PyNs (Lv et al., 2019; 

Mihalas et al., 2016; Vasistha et al., 2015). During late embryonic and postnatal stages in the 

mouse cortex, NSC lineage progression becomes complicated, and several distinct IPC 

populations emerge and coexist in the mouse cortex. OPCs are committed to the 

oligodendrocyte lineage, whereas OB-IPCs are committed to the OB-IN lineage. Astrocyte-

IPCs still remain to be identified. Although in vitro studies have shown the existence of bi-

potent glia-IPCs (O-2A cells) that give rise to both oligodendrocytes and astrocytes (Raff et 

al., 1983), this has not been confirmed in vivo during development.

In the present study, we used intersectional lineage tracing and scRNA-seq analysis to 

provide evidence for the existence of GSX2+ tri-IPCs and glia-IPCs in the cortex at the 

population level during development. These tri-IPCs give rise to OB-IPCs, which generate 

interneurons that migrate into OB through the rostral migratory stream. In addition, they 

produce a subset of glia-IPCs, which, in turn, generate OPCs and astrocytes in the cortex 

(Figures 6D and 6E). We emphasize that it remains to be determined whether single GSX2+ 

cells proliferate and differentiate into more than one cell type or whether the GSX2+ cells 

represent a heterogenous population consisting of uni-potential and/or bi-potent neuronal 

and glial IPCs. Thus, careful analyses of complete lineages of cortical RGCs and IPCs that 

include their OB-IN progenies need to be performed.

SHH Signaling Promotes the Generation of OB-INs and Cortical Oligodendrocytes by 
Reducing Gli3R

SHH activity shows a ventral-high and dorsal-low gradient in the VZ of developing 

forebrain because of the high expression of SHH from ventral cells and the high expression 

of GLI3R in the dorsal progenitors (Hébert and Fishell, 2008; Sousa and Fishell, 2010). 

Regulated SHH signaling and GLI activities are essential for the initial dorsal-ventral 

patterning of the forebrain and the development of cortical interneurons from the ventral 

forebrain. Ventral forebrain structures are missing in the Shh−/− mice (Ohkubo et al., 2002). 

Loss of Gli3 function in extra-toes mice (Gli3 mutants) resulted in ventralization of the 

cerebral cortex: genes normally expressed in the cerebral cortex were lost; instead, genes 

associated with ventral and GABAergic neuronal identities were expressed in the dorsal 

telencephalon (Rallu et al., 2002; Theil et al., 1999; Tole et al., 2000).

Here, we show that the lineage progression of cortical RGCs at late gestational stages is 

regulated by SHH signaling. During early cortical neurogenesis, RGCs with high GLI3R 

activity generate EOMES+ PyN-IPCs. Interneurons tangentially migrating from the MGE 

and CGE, start to arrive the cortex around E13.5, and their numbers continue to increase 
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(Lim et al., 2018). As cortical neurogenesis proceeds, SHH secreted from migrating cortical 

interneurons and cells in the choroid plexus (Winkler et al., 2018) promotes the lineage 

switch of cortical RGCs to generate OB-INs and oligodendrocytes. Indeed, increased 

numbers of OB-IN and oligodendrocyte lineage cells were observed in the cortical VZ/SVZ 

of the ShhN-IUE and the hGFAP-Cre; SmoM2 mice (Figures 3 and S5). In contrast, 

generation of both OB-IN and oligodendrocyte lineage cells from the cortical NSCs was 

reduced in the hGFAP-Cre; Smo cko mice (Figure 2) (Winkler and Franco, 2019; Winkler et 

al., 2018). Long-term blocking of SHH signaling also resulted in a severe loss of NSCs and 

migrating neuroblasts in the adult SVZ (Figure S4D) and RMS (Balordi and Fishell, 2007). 

Significantly, removing Gli3 in hGFAP-Cre; Smo cko mice largely rescued OB-IN genesis 

and OLIG2+ cell production in the cortex (Figure 4). Hence, SHH promotes the lineage 

switch of cortical RGCs to generate OB-INs and cortical oligodendrocytes by reducing 

GLI3R, rather than by directly promoting the GLI activator function, similar to their 

functions in neurogenesis in the postnatal SVZ and OB (Figure S4D) (Petrova et al., 2013; 

Wang et al., 2014).

Upon increased SHH signaling, GLI3R protein levels in some cortical RGCs decrease, 

allowing those RGCs to generate GSX2+ and OLIG2+ IPCs. How does GLI3R repress Gsx2 
expression in the cortical VZ/SVZ? Previous studies have shown that expression of Dmrta2 
(Dmrt5), Dmrt3, Emx1, and Emx2 in the cortical VZ was severely downregulated in Gli3 
mutant mice (Hasenpusch-Theil et al., 2012; Hasenpusch-Theil et al., 2018; Theil et al., 

1999). A recent study demonstrated that transcription factors DMRTA2, DMRT3, and 

EMX2 cooperatively repress Gsx2 expression to maintain cortical identity of the RGCs 

(Desmaris et al., 2018). Furthermore, DMRTA2, DMRT3, and EMX2 have been shown to 

bind to a ventral telencephalon-specific enhancer in the Gsx2 locus (Desmaris et al., 2018). 

Thus, GLI3R could be key to maintaining the expression of Dmrta2, Dmart3, and Emx2 in 

the cortical VZ during early neurogenesis and to preventing expression of Gsx2.

A Core Gene Regulatory Network Governing a Common Developmental Trajectory for 
Forebrain NSCs to Generate OB-Ins

The OB is the most anterior structure of the forebrain. Studies of neurogenesis in the OB 

have focused on the generation of the OB-INs, in particular, the postnatal and adult 

neurogenesis occurring in the mouse SVZ of the lateral walls of the lateral ventricle 

(Obernier and Alvarez-Buylla, 2019). Although NSCs in different domains along the lateral 

ventricle generate distinct types of neurons and glial cells during embryonic stages, a 

common trajectory of forebrain NSCs is to switch lineages to generate OB-INs at late 

embryonic and early postnatal stages (Kriegstein and Alvarez-Buylla, 2009; Obernier and 

Alvarez-Buylla, 2019).

We recently identified a gene regulatory network Gsx1/2–Dlx1/2–Sp8/Sp9–Tshz1–Prokr2 
that governs OB-IN development; mutations in Gsx2/1, Dlx1/2, Sp8/Sp9, or Prokr2 genes 

result in an almost complete loss of mature OB-INs (Guo et al., 2019; Long et al., 2007; 

Wen et al., 2019). Furthermore, a recent study demonstrated that DLX1 and DLX2 can 

directly bind to the enhancers and promotors of Sp8 and Sp9 (Lindtner et al., 2019). 

Consistent with the essential regulatory function by this genetic pathway in OB-IN 
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development, in the present study, we found that this genetic program is activated in cortical 

progenitors and their progenies when OB-INs are generated. Thus, in addition to functioning 

in the dorsal LGE during development, this core genetic program regulates the generation of 

OB-INs from all postnatal NSCs in the ventricular wall of the lateral ventricle.

STAR⋆METHODS

LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Dr. Bin Chen (bchen@ucsc.edu). The Gsx2-Flpo mouse line 

will be deposited to the Jackson Laboratory. All unique/stable reagents generated in this 

study are available by contacting the Lead Contact, but we may require a payment and/or a 

completed Materials Transfer Agreement if there is potential for commercial application.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were performed according to protocols approved by the Institutional Animal 

Care and Use Committee at University of California at Santa Cruz, and were performed in 

accordance with institutional and federal guidelines. Experiments performed at Fudan 

University were in accordance with institutional guideline.

We generated Gsx2Flpo allele by inserting a P2A-Flpo-T2A-Flpo DNA cassette between the 

protein coding sequences of exon 2 and 3′UTR of the Gsx2 gene (Figure S2A), using a 

CRISPR/Cas9 based strategy. The sgRNA, the targeting vector and Cas9 were injected into 

C57BL/6 zygotes to generate founder mice. Founders were screened by PCR to detect 

integration of the targeting vector. Genomic DNA from mice with positive integration was 

used to amplify the integration junction for confirmation by sequencing the PCR products. 

Finally, southern hybridizations using both a Flpo probe and a 3′-probe were performed to 

confirm the correct targeting.

The generation and genotyping of the Rosa26-tdTomato-FRT (He et al., 2016), IS reporter 

(JAX no. 028582), Emx1Cre/+ (JAX no. 005628), SmoFlF (JAX no. 004526), Rosa26SmoM2/+ 

(JAX no. 005130), Gli2F/F (JAX no. 007926), Gli3F/F (JAX no. 008873), and hGFAP-Cre 
(JAX no. 004600) mice were described previously. The Gli2F/F and Gli3F/F mice were 

generously provided by Dr. Alexandra Joyner at the Sloan Kettering Institute.

The day of the vaginal plug detection was designated as E0.5. The day of birth was 

designated as P0. The genders of the embryonic and early postnatal mice were not 

determined. Both male and female P21 Gsx2Flpo/+; IS mice and adult Smofl/fl, Smo cko, 

Gli3 cko, Smo Gli3 dcko mice (P90) were used.

METHOD DETAILS

Immunohistochemistry—Immunohistochemistry was performed using standard 

protocols. Brains were cryosectioned into thickness of 10 mm, 12 mm, 20 mm or 30 mm. 

Sections were first permeabilized with 0.05% Triton X-100 for 30 min, followed by an 

incubation in blocking buffer (5% donkey serum and 0.05% Triton X-100 in TBS) for 2 h. 

The blocking buffer was removed, and the sections were incubated with primary antibodies 
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(diluted in the blocking buffer) overnight at 4° C. The following primary antibodies were 

used in this study: GFP (Chicken, Aves Labs GFP-1020), tdTomato (Goat, SICGEN 

Ab8181), GSX2 (Rabbit, Millipore ABN162), ASCL1 (Rabbit, Cosmo Bio SKT01–003), 

SP8 (Goat, Santa Cruz Biotechnology Sc-104661), SP9 (Zhang et al., 2016), DLX2 (Guo et 

al., 2019; Kuwajima et al., 2006), MKI67 (Mouse, BD Pharmingen 556003), OLIG2 

(Rabbit, Millipore AB9610; Mouse, Millipore MABN50) and EOMES (Rat, Thermo Fisher 

12-4875-82). The sections were washed in TBS, and incubated with secondary antibodies 

conjugated to Alexa Fluor488, Cy2, Cy3 or Cy5 for 1.5 h at room temperature. Secondary 

antibodies were from Jackson ImmunoResearch and Invitrogen. Finally, the sections were 

counter-stained with DAPI for 3 mins before being mounted in the fluorescence mounting 

medium (DAKO S3023).

In Situ RNA Hybridization—All in situ RNA hybridization assays were performed using 

digoxigenin riboprobes on 20 mm cryostat sections as previously described (Guo et al., 

2019; Zhang et al., 2016).

Digoxigenin-labeled riboprobes used in this study were made from cDNAs amplified by 

PCR using primers listed in the table.

Probe Primer Fwd Rev

Smo ACATGCCCAAGTGTGAGAATGACC GCTCTTGATGGAGAACAGAGTCAT

Ptch1 AAGCCCATCGACATTAGTCAGT ATAAGAGGACAGGCAGCAGAAC

Gli1 TGGAGAACCTTAGGCTGGATCAGC GGATCAGGATAGGAGACCTGCTGG

Gad1 ATGGCATCTTCCACTCCTTCG TTACAGATCCTGACCCAACCTCTC

Sp9 ACCTGAATCGTGATTCCCAGCAG TGCTATGGCTTTTGCAACCCAC

Tshz1 GAGAAGGTCACGGGCAAGGTCAGC GAGGCGAGGACACAGCATCTGCCA

Prokr2 ATGGGACCCCAGAACAGA ATGGGACCCCAGAACAGA

EdU labeling—P0 or P3 pups were injected with EdU (50 ug/kg body weight) two h 

before brain collection. EdU was detected using the Click-iT EdU Cell Proliferation Kit for 

Imaging (Thermofisher, USA), following the manufacturer’s instruction.

Image acquisition and analysis—Images for quantitative analyses were acquired with a 

Zeiss 880 confocal microscope. Cell counting was performed on single z-slices. Bright field 

images were acquired with an Olympus BX51 microscope with Q-imaging Ratiga camera. 

The unpaired t test was used to determine statistical significance.

Analyses were done using GraphPad Prism 5.0, Microsoft Excel and R language. The 

numbers of GFP+ or/and tdT+ cells in the OB, and GFP+ oligodendrocytes and astrocytes in 

the cortex (0.40 mm2 area for the OB and 1.10 mm2 area for the cortex) were quantified in 

3–4 randomly chosen 30 mm sections for P21 Gsx2Flpo/+; IS; pCAG-Cre IUE@E14.5 mice. 

The numbers of S100b+, GFP+ S100b+, OLIG2+ and GFP+ OLIG2+ cells in the cortex 

(0.67mm2 area) were quantified in 4 randomly chosen 30 mm sections for P21 Emx1-Cre; 
Gsx2Flpo/+; IS mice. The numbers of GFP+ oligodendrocytes and astrocytes in the cortex 
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(1.78 mm2 area) were quantified in 4 randomly chosen 30 mm sections for P21 Emx1-Cre; 
Gsx2Flpo/+; IS mice, and the percentages of the oligodendrocytes and astrocytes among all 

GFP+ cells in the cortex were calculated.

GSX2+ and EOMES+ cells in the entire cortex were quantified in 2 randomly chosen 10 mm 

sections at rostral, intermediate, and caudal telencephalic levels, respectively, from wild-type 

mice. The numbers of GSX2+ cells and SP8+ cells in the P2 cortices were counted in 3 

randomly chosen 12 mm sections for each group of mice. Two or three brains for each 

genotype at each stage were used.

For Figures 4 and S4, confocal images were used for quantifying the numbers of GSX2+, 

SP8+, EOMES+, OLIG2+, EdU+, and EOMES+EdU+ cells in the cortical VZ/SVZ in the P0 

and P3 brains. The numbers of cells in a 300 mm width were counted. Three sections from 

each brain, and three brains for each genotype at each stage were used.

Cloning of the pCAG-ShhN-ires-GFP expression plasmid—The ShhN cDNA was 

cloned from pcDNA3.1-ShhN plasmid (Addgene # 37680) and inserted into pCAGGS-ires-
EGFP vector, using NotI and XhoI restriction sites. DNA-sequencing was performed to 

make sure no mutation was generated during the cloning.

In utero electroporation—In utero electroporation (IUE) of wild-type or Gsx2Flpo; IS 
embryos was performed at E13.5 or E14.5. Plasmids pCAG-Cre (Addgene #13775), pCAG-
GFP (Addgene #11150), pCAG-ShhN-Ires-GFP, or pCAG-GFP (final concentration of 1–2 

mg/ml, 0.5ml each embryo) were mixed with 0.05% Fast Green (Sigma), and injected into 

the lateral ventricle of embryos using a beveled pulled glass micropipette. Five electrical 

pulses (duration: 50 ms) were applied at 31V for E13.5 embryos and 35V for E14.5 embryos 

across the uterine wall with a 950 ms interval between pulses. Electroporation was 

performed using a pair of 7 mm platinum electrodes (BTX, Tweezertrode 45–0488, Harvard 

Apparatus) connected to an electroporator (BTX, ECM830). Embryos were analyzed at 

different time points.

RNA-Seq—The P0 cortices from Rosa26SmoM2/+ (control) brains, hGFAP-Cre; 
Rosa26SmoM2/+ and ShhN-IUE (pCAG-ShhN-Ires-GFP were electroporated into the wild-

type cortex at E13.5) (n = 3 each group) were dissected, and total RNA was isolated with the 

Direct-zol RNA Miniprep kit (Zymo, catalog #R2050) following the manufacturer’s 

instructions. The gene expression level was reported with fragments per kilobase of exon 

model per million mapped reads (FPKM) (Trapnell et al., 2012). Genes with a p value <0.05 

would be called as differentially expressed.

scRNA-Seq library preparation—pCAG-ShhN-Ires-GFP plasmids were electroporated 

into the cortical VZ of wild-type mice at E13.5. Three days after ShhN-IUE (E16.5), 

embryos were quickly taken, and the brains were immediately removed and submerged in 

fresh ice-cold HBSS (GIBCO 14175–095). E16.5 wild type and ShhN-IUE cortices were 

carefully dissected under a fluorescent stereoscope, and incubated in 4 ml of papain solution 

(final con. 12 U/mL, diluted in DMEM/F-12, Gibco 11330032) for 20 min at 37 C, The 
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cortical tissues were gently triturated, filtered through a 40 um cell strainer, and washed with 

HBSS to obtain the single cell suspension.

The Chromium droplet-based sequencing platform (10X Genomics) was used to generate 

scRNA-Seq libraries, following the manufacturer’s instructions (manual document part 

number: CG00052 Rev C). The cDNA libraries were purified, quantified using Agilent 2100 

Bioanalyzer, and sequenced on the Illumina Hiseq4000.

scRNA-Seq analysis—High quality sequences (Clean reads) were obtained by removing 

low quality sequences and joints. Clean reads were then processed with Cell Ranger 

software to obtain quantitative information of gene expression and cell population 

classification. The cell statistical results are shown in the following table.

Group ShhN-IUE Wild-type

Estimated Number of Cells 8538 7834

Mean Reads Per Cell 50946 55069

Total Genes Detected 18151 18001

Median Genes Per Cell 2422 2368

Fraction Reads in Cells 90.90% 84.80%

Median UMI Counts Per Cell 6726 6230

Clustering was performed as previously described (Nowakowski et al., 2017). Normalized 

counts matrices were log2 transformed, and variable genes were calculated using default 

Seurat parameters. Data were scaled in the space of these variable, and batch was regressed 

out. Principal component analysis was performed using FastPCA, and significant PCs were 

identified using the formula outlined in Shekhar et al. (2016). In the space of these 

significant PCs, the k=10 nearest neighbors were identified as per the RANN R package. 

The distances between these neighbors were weighted by their Jaccard distance, and louvain 

clustering was performed using the igraph R package. If any clusters contained only 1 cell, 

the process was repeated with k=11 and up until no clusters contained only 1 cell. Cluster 

markers and tSNE (t-Distributed Stochastic Neighbor Embedding) plots were generated with 

Seurat package default parameters. Differentially expressed genes for each cluster were 

shown in Figures S6 and S7.

Cell lineages trajectory was analyzed using Monocle 2, a computational method based on a 

machine learning technique called reversed graph embedding to construct the single-cell 

trajectories (Trapnell et al., 2014). Monocle uses the algorithm to extract the sequence of 

gene expression changes each cell must go through in biological processes, therefore, to 

predict lineage trajectories and bifurcations by ordering the pseudo-timeline. The pseudo-

timeline is a developmental tree, that a cell at the beginning of the biological process starts at 

the root and progresses along the trunk and choose different path to finally arrive the leaf. A 

cell’s pseudotime value is the distance that it would have to travel to get back to the root. 

The lineage trajectory reconstructed by monocle is referred to as predicted developmental 

trajectory. The cluster of RGC serves as the root point.
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To analyze the events of lineage switch for cortical progenitors, we extracted the progenitor 

cells (including clusters of RGC, OB-IPC, OPC, and tri-IPC) from the Shh-IUE sample. We 

pooled all the subpopulations for the following analysis. We first imported the Seurat object 

containing cleaned, standardized, and clustered dataset to the monocle 2. Then, the most 

dispersed genes to use for pseudo-time ordering were calculated using the ‘estimate 

dispersions’ function. R package DDRTree was used to reduce dimensions with selected 

dispersed genes. In the meantime, the effects of numbers of UMI, donor, and library 

preparation batch were corrected. Finally, visualization function ‘plot_cell_trajectory’ was 

used to plot the minimum spanning tree on cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-Seq data, scRNA-seq data and analysis are provided in the above methods sections. 

Statistical tests were performed using GraphPad Prism software, Microsoft Excel and R 

language. No statistical methods were used to estimate sample size. Number of cells are 

shown as mean ± SEM and statistical significance was determined using two-tailed 

Student’s t tests. Significance was set as * for p < 0.05, ** for p < 0.01, and *** p < 0.001.

DATA AND CODE AVAILABILITY

Bulk RNA-seq data and scRNA-Seq data have been deposited at the National Center for 

Biotechnology Information BioProjects Gene Expression Omnibus and are accessible 

through GEO: GSE140817.
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Highlights

• Cortical NSC-derived GSX2+ IPC population has tri-potential

• SHH signaling is crucial for cortical NSCs to generate OB interneurons

• SHH regulates OB interneuron and cortical glia production by reducing 

GLI3R

• scRNA-seq analysis identifies molecular signatures of GSX2+ IPCs in the 

cortex
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Figure 1. Cortical NSCs Generate GSX2+ Tri-IPCs That Give Rise Not Only to OB Interneurons 
but Also to Cortical Oligodendrocytes and Astrocytes
(A) GSX2+ IPCs in the mouse cortical SVZ at E16.5, E18.5, and P5. Ctx, cortex; LV, lateral 

ventricle.

(B) The strategy of the intersectional lineage analysis.

(C) Plasmids pCAG-Cre were electroporated to the cortical VZ of Gsx2Flpo/+; IS mice at 

E14.5. GFP+ cells were observed in the SVZ and cortical plate at E18.5. CP, cortical plate; 

IZ, intermediate zone; MZ, marginal zone.

(D) GFP+ and/or tdT+ interneurons in the OB at P21.

(E) Quantification of the percentages of GFP+ and tdT+ cells among all the lineage-traced 

cells in the OB.

(F–H) Cortical GFP+ oligodendrocytes (OLIG2+, arrows in G) and astrocytes (S100b+, 

arrows in H) with higher magnification images at P21. Note tdT+ PyNs located in cortical 

layers II–V (F).

(I) Percentages of oligodendrocytes and astrocytes among all GFP+ cells in the cortex.

Data in (E) and (I) were from three mice each. Scale bars, 50 mm in (A), (C), (D), and (F)–

(H).
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Figure 2. Cells of the OB Interneuron Lineage Are Not Generated in the Cortical SVZ of Smo 
cko Mice at P2
(A) In situ RNA hybridization showing expressions of Gli1, Gad1, Sp9, Tshz1, and Prokr2 
in the caudal cortical SVZ (arrows) in the control and hGFAP-Cre; SmoF/F (Smo cko) mice.

(B and C) GSX2 and SP8 (arrows) immunostainings of the rostral (B) and caudal (C) 

cortical sections from control and Smo cko mice at P2. Ctx, cortex; Str, striatum.

(D) Numbers of GSX2+ and SP8+ cells in the cortical SVZ per section.

Data are presented as means ± SEM; n = 3. ***p < 0.001, **p < 0.01; Student’s t test. Scale 

bars, 200 mm in (B) and (D).
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Figure 3. Overexpression of ShhN in the Cortex by IUE Induces OB Interneuron and 
Oligodendrocyte Lineages in the Cortical SVZ
(A) Control pCAG-GFP plasmids (control-IUE) or pCAG-ShhN-ires-GFP plasmids (ShhN-

IUE) were electroporated into the cortical VZ on E13.5. The E18.5 brains were analyzed. 

The distribution patterns of electroporated cells (GFP+) in the cortex are shown. Note that 

the mRNA levels of Gli1, Ptch1, Gad1, Tshz1, and Prokr2 were dramatically increased in 

the ShhN-IUE cortex.

(B) The expressions of GSX2, ASCL1, DLX2, SP8, SP9, and OLIG2 were greatly increased 

in the ShhN-IUE cortex.

(C) RNA-seq analysis revealed increased expression levels for SHH pathway target genes, 

OB interneuron lineage and oligodendrocyte lineage genes in the ShhN-IUE cortices at P0.

Data are presented as means ± SEM; n = 3. ***p < 0.001, *p < 0.05; n.s., non-significant; 

Student’s t test in (C). Scale bars, 200 mm in (A) and (B).
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Figure 4. SHH Regulates the Production of OB Interneurons and Oligodendrocytes in the 
Cortical SVZ Predominately by Reducing GLI3
(A–D) Immunostainings for GSX2, SP8, EOMES, and OLIG2 in wild-type (control) (A), 

Smo cko (B), Gli3 cko (C), and Smo Gli3 dcko (D) mice at P0.

(E) Quantification for the numbers of GSX2+, SP8+, EOMES+, and OLIG2+ cells per 300 

mm width in the cortical VZ-SVZ of control and mutant mice at P0. Data are presented as 

means ± SEM; n = 3 mice per genotype. *p < 0.05; unpaired Student’s t test in (E). Scale 

bars, 200 mm in (D).
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Figure 5. scRNA-Seq Analysis of Cells in the E16.5 Wild-Type Cortices and in the ShhN-IUE 
Cortices
(A and B) Scatterplot of cells after principal-component analysis and t-SNE visualization, 

colored according to Seurat clustering and annotated by major cell types for all the cells in 

the wild-type sample (A) and the ShhN-IUE sample (B).

(C and D) t-SNE of cells colored by mean expression of Gsx2 and Olig2 in wild-type (C) 

and ShhN-IUE (D) samples.

(E) The eight Gsx2+ cells in the E16.5 wild-type sample consisted of four tri-IPCs and four 

OB-IPCs, based on the expressions of specific genes.
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Figure 6. scRNA-Seq Analysis of the Progenitor Cells in the ShhN-IUE Sample
(A) Seurat clustering was performed on all the progenitor cells in the ShhN-IUE sample. 

Seven clusters were identified and annotated to six cell types based on gene expression 

features.

(B) Heatmap showing marker gene expressions in the seven cell clusters. Each column 

represents expressions in one cell, and each row represents expressions of one gene.

(C) The t-SNE plots of cells colored by mean expression of specific marker genes.

(D) Monocle analysis of all the progenitors in the ShhN-IUE samples revealed 

differentiation trajectories and pseudo-timelines along the cell differentiation axis. Each 

point represents a cell, colored by cluster identity (top) or pseudo-timeline (bottom).

(E) Seurat clusters shown along the predicted pseudo-timeline differentiation trajectory.
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Figure 7. In Vivo Validation of Markers of Tri-IPCs and OB-IPCs
(A and B) The expression of GSX2, OLIG2, and DLX2 in the cortical VZ/SVZ of wild-type 

(A) and ShhN-IUE (B) mice at E17. Note that very few GSX2+ cells (green) were present in 

the cortical SVZ. Arrows indicate GSX2+OLIG2+DLX2 tri-IPCs, and arrowheads indicate 

GSX2+DLX2+ OB-IPCs.

(C and D) The expression of SP9 and SP8 in the cortical VZ/SVZ of wild-type (C) and 

ShhN-IUE (D) mice at E17.

(E and F) More OB interneuron lineage cells (E) and more tri-IPCs and OB-IPCs (F) were 

observed in the ShhN-IUE cortices than in the controls.

(G) The sequential expression of GSX2/DLX2/SP9/SP8 is linked to lineage differentiation 

from tri-IPCs/OB-IPCs/OB neuroblasts, indicating the core transcriptional network for OB 

interneuron generation.

Data are presented as means ± SEM; n = 3 mice for each condition. ***p < 0.001, **p < 

0.01, *p < 0.05; Student’s t test in (E) and (F). Scale bars, 50 mm in (A)–(D) and (G).
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Primary Antibodies

Rabbit anti-GSX2 Millipore Cat# ABN162; RRID: AB_11203296

Chicken anti-GFP Aves Labs Cat# GFP-1020; RRID: AB_2307313

Goat anti-tdTomato SICGEN Cat# AB8181; RRID: AB_2722750

Rabbit anti-OLIG2 Millipore Cat# AB9610; RRID: AB_570666

Mouse anti-OLIG2 Millipore Cat# MABN50; RRID: AB_10807410

Goat anti-SP8 Santa Cruz Biotechnology Cat# sc-104661; RRID: AB_2194626

Rabbit anti-GFAP Dako Cat# Z0334; RRID: AB_10013382

Rabbit anti-S100 Dako Cat# Z0311; RRID: AB_10013383

Rabbit anti-ASCL1 Cosmo Bio Cat# SK-T01-003; RRID: AB_10709354

Guinea pig anti-DLX2 Guo et al., 2019; Kuwajima et al., 2006

Mouse anti-MKI67 BD Pharmingen Cat# 556003; RRID: AB_396287

Rabbit anti-SP9 (Zhang et al., 2016) Available from 
authors

Rat anti-EOMES Thermo Fisher Cat# 12-4875-82; RRID: AB_1603275

Secondary antibodies

Alexa Fluor®488 Donkey anti-Rabbit Jackson ImmunoResearch Cat# 711-546-152; RRID: AB_2340619

Cyanine Cy3 Donkey anti-Rabbit Jackson ImmunoResearch Cat# 711-166-152; RRID: AB_2313568

Alexa Fluor®488 Donkey anti-Goat Jackson ImmunoResearch Cat# 705-546-147; RRID: AB_2340430

Cyanine Cy3 Donkey anti-Goat Jackson ImmunoResearch Cat# 705-166-147; RRID: AB_2340413

Alexa Fluor®488 Donkey anti-Chicken Jackson ImmunoResearch Cat# 703-546-155; RRID: AB_2340376

Cyanine Cy3 Donkey anti-Guinea pig Jackson ImmunoResearch Cat# 706-166-148; RRID: AB_2340461

Alexa Fluor®488 Donkey anti-Rat Jackson ImmunoResearch Cat# 712-546-153; RRID: AB_2340686

Alexa Fluor®647 Donkey anti-Mouse Jackson ImmunoResearch Cat# 715-606-151; RRID: AB_2340866

Biological Samples

Mouse cortex This study N/A

Deposited Data

Raw and processed data This study GEO: GSE140817

Experimental Models: Strains/Organisms

Gsx2Flpo This Study N/A

Rosa26-tdTomato-FRT He et al., 2016 N/A

IS reporter The Jackson Laboratory Stock No. 028582

Emx1Cre/+ The Jackson Laboratory Stock No. 005628

SmoFlF The Jackson Laboratory Stock No. 004526

Rosa26SmoM2/+ The Jackson Laboratory Stock No. 005130

Gli2FlF The Jackson Laboratory Stock No. 007926

Gli3F/F The Jackson Laboratory Stock No. 008873

hGFAP-Cre The Jackson Laboratory Stock No. 004600

Recombinant DNA

pCAG-Cre Addgene #13775
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REAGENT or RESOURCE SOURCE IDENTIFIER

pCAG-GFP Addgene #11150

pCAG-ShhN-Ires-GFP This Study N/A

pCAG-ShhN This Study N/A

EdU Life Technologies E1087

Click-iT EdU Cell Proliferation Kit for 
Imaging

Invitrogen C10337

Software and Algorithms

Cell Ranger 10X Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/overview/welcome

MACS Xiaole Shirley Liu’s Lab https://github.com/taoliu/MACS

R The R Project for Statistical Computing https://www.r-project.org/

Seurat Macosko et al., 2015 https://satijalab.org/seurat/

Monocle2 Qiu et al., 2017a, 2017b https://cole-trapnell-lab.github.io/monocle-release/

GraphPad Prism 5.0 GraphPad https://www.graphpad.com
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