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Abstract: Multiporous carbons (MPCs) are prepared using ZnO as a hard template and biomass pyrol-
ysis oil as the carbon source. It is shown that the surface area, pore volume, and mesopore/micropore
ratio of the as-prepared MPCs can be easily controlled by adjusting the ZnO/oil ratio. Sulfur/MPC
(S/MPC) composite is prepared by blending sulfur powder with the as-prepared MPCs followed
by microwave heating at three different powers (100 W/200 W/300 W) for 60 s. The unique mi-
cro/mesostructure characteristics of the resulting porous carbons not only endow the S/MPC compos-
ite with sufficient available space for sulfur storage, but also provide favorable and efficient channels
for Li-ions/electrons transportation. When applied as the electrode material in a lithium-ion battery
(LIB), the S/MPC composite shows a reversible capacity (about 500 mAh g−1) and a high columbic
efficiency (>95%) after 70 cycles. Overall, the method proposed in this study provides a simple and
green approach for the rapid production of MPCs and S/MPC composite for high-performance LIBs.

Keywords: porous carbon; template; biomass pyrolysis oil; battery

1. Introduction

Lithium-ion batteries (LIBs) are regarded as an attractive power source for a wide
variety of applications nowadays, including energy storage systems and electric vehi-
cles [1–4]. However, despite extensive research, the energy density of LIBs is still limited
by the low capacity of current cathode materials. For example, LiCoO2, LiFePO4, and
LiNixCoyAlzO yield specific capacity ranges of just 150 to 250 mAh g−1 [5,6]. Sulfur has
many advantages as a potential cathode material, including a high theoretical specific
capacity of 1675 mAh g−1, natural abundance, low cost, and environmental friendli-
ness [7–9]. However, the low electrical conductivity of sulfur (~10−30 S cm−1), together
with the tendency of the polysulfides to dissolve into electrolytes and a significant
volume expansion effect during cycling, limits its practical application in rechargeable
LIB [9–11]. Ideally, the sulfur should be locked and bound in certain carbon structures
in order to prevent it from making direct contact with the electrolyte [12,13]. Under
such conditions, the redox reaction between the sulfur and Li ions occurs mostly in the
carbon skeleton, thereby improving the electron conductivity and enhancing the Li-ion
transfer. Accordingly, the literature contains many nanostructured materials consisting
of sulfur and various types of carbon for enhancing the cycling stability of sulfur-based
electrodes [13–15]. However, the preparation of sulfur/carbon (S/C) composite via
traditional thermal treatment routes is time consuming and expensive. Thus, more
efficient methods for the mass production of sulfur-based carbon composites for LIB
applications are urgently required.

Porous carbons are an attractive material for many applications, including electrode
for supercapacitor, adsorbent, and catalyst supporter [16–18]. Among the many porous
carbon materials available, multiporous carbons (MPCs) with three-dimensional meso-
porous/microporous structures have attracted particular attention due to their high specific
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surface area, good chemical inertness, high electrical conductivity, and tunable poros-
ity [19,20]. MPCs are used for many applications nowadays, including as catalyst supports,
and electrode materials for fuel cells, LIBs, and supercapacitors [21,22]. Porous carbons are
usually synthesized using siliceous templates. However, the synthesis process is expensive,
complicated, and time-consuming, and is thus impractical for large-scale production [23,24].
By contrast, non-siliceous templates, such as ZnO and CaCO3, are chemically inert and
more environmentally friendly [25,26]. Consequently, non-siliceous templates, which can
be removed using a suitable acid solution, are regarded as a more promising approach for
the synthesis of porous carbons.

Traditionally, porous carbons have always been prepared using resin as a carbon
source. However, while many different porous carbons have been successfully syn-
thesized in this way, they have a high cost and a low conductivity [27,28]. Biomass
pyrolysis oil is cheap and abundant and has a relatively high conductivity due to its rich
benzene rings [29]. Furthermore, the reduction of biomass pyrolysis oil to high-value
porous carbons is an environmentally-friendly process. As a result, biomass utilization
has emerged as an important carbon reduction technology in recent years. The CPC
Corporation in Taiwan, for example, has developed a proprietary biomass pyrolysis
technology with good stability for feedstock loads as high as 400 kg [30]. The present
study proposes a novel synthesis route for the production of MPCs using ZnO as a
hard template and biomass pyrolysis oil as the carbon source. Notably, the ZnO tem-
plates can be removed using a simple hydrochloric acid solution, thereby overcoming
the limitation of conventional silica templating approaches, wherein highly corrosive
hydrofluoric acid is required to remove the templates. It is shown that the mesoporous
surface area of the MPCs can be tuned within the range of approximately 1131 to
1678 m2 g−1 simply by increasing the ZnO/oil weight ratio from 2 to 5. Furthermore,
the MPCs have a high specific surface area of approximately 1280–1770 m2 g−1 without
the need for any additional activator agent (e.g., KOH). Carbon materials are, in general,
very good absorbents of microwaves [31]. The microwaves are transformed into heat
inside the carbon particles by dipole rotation, and heat the carbon directly [32,33]. Thus,
in the present study, the as-prepared MPCs are blended with sulfur powder, and the
mixture is then microwaved to produce S/MPC composite material. The synthesized
S/MPC composite is used as the electrode material in a LIB and is shown to have both a
large reversible capacity (about 500 mAh g−1) and a high columbic efficiency (>95%)
after 70 cycles.

2. Results and Discussion
2.1. Effect of ZnO/Oil Weight Ratio on Textile Properties of MPCs

The present group recently proposed a method for the solvent-free synthesis of MPCs
with tailored porosity using ZnO nanoparticles as a hard template and pitch as the carbon
source [34]. Herein, the pitch was replaced with biomass pyrolysis oil, and the effect of the
ZnO/oil ratio (z) on the textile properties of the resulting MPCs was examined. Figure 1A,B
present scanning electron microscopy (SEM) and transmission electron microscopy (TEM)
images of the MPCs produced using a ZnO/oil ratio of z = 3. The ZnO nanoparticles
used in the synthesis process had a spherical form with a size of approximately 20 nm (see
Figure S1). After removing the ZnO templates by HCl etching, the pore size of the porous
carbon was close to that of the original ZnO particles (see Figure 1A), which indicates that
the pores within the MPC were formed via the integral casting of the biomass pyrolysis oil
on the ZnO templates. The TEM image in Figure 1B confirms that the MPC has a highly
porous structure with thin and unbroken carbon walls.
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Figure 1. (A) Scanning electron microscopy (SEM) and (B) transmission electron microscopy (TEM) 
images of multiporous carbons (MPCs) with ZnO/oil ratio of z = 3. 
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simply by adjusting the ZnO/oil ratio, as shown in Figure 2A. The isotherm profiles shown 
in Figure 2B for the MPC with a ZnO/oil ratio of z = 3 exhibit well-defined capillary con-
densation steps, which are typical of a type IV isotherm. It is hence inferred that the MPC 
has a mesoporous structure with a pore size generally larger than 2.0 nm. This finding is 
confirmed by the pore size distribution curves in Figure 2C, which show that the MPCs 
consist mainly of large mesopores. 

 
Figure 2. (A) Surface area and carbon yield of MPCs with ZnO/oil ratio of z = 2 to 5, (B) nitrogen 
adsorption-desorption isotherms, and (C) pore size distribution curves for MPC with ZnO/oil ratio 
of z = 3. 

As shown in Table 1, the MPCs synthesized with ZnO/oil ratios of 2, 3, 4 and 5, re-
spectively, have BET specific surface areas of 1280, 1447, 1670 and 1770 m2g−1. Further-
more, the mesoporosity of the MPCs increases sharply from 1131 to 1678 m2 g−1 as the 
ZnO/oil ratio increases from 2 to 5. Interestingly, the results show that the MPCs have a 
high meso-porosity and specific surface area without the addition of any activating agent, 
such as KOH. It is speculated that this may result from the liquid nature of the biomass 
pyrolysis oil carbon source, which allows it to mix thoroughly with the ZnO templates 
and uniformly coat them, thereby resulting in a strong reaction effect under a carboniza-
tion temperature of 900 °C. The textural parameters of the resulted porous carbon pre-
pared at different weight ratios of ZnO to Oil are listed in Table 1. However, while an 
increasing ZnO/oil ratio is beneficial in increasing the specific surface area and mesopo-
rosity of the MPCs, it also results in a lower carbon yield (see right-hand column in Table 
1), and hence limits its application for downstream processing. Thus, in the sulfur loading 

2 3 4 5
1200

1400

1600

1800

 Yield

Su
rf

ac
e 

ar
ea

 / 
m

2 g
-1

ZnO/oil ratio

0

5

10

15

20

25

30

35

 
Surface area

 

Yi
el

d 
/ %

（B）（A） （C）

0.0 0.2 0.4 0.6 0.8 1.0
0

300

600

900

1200

1500

1800

Vo
lu

m
e 

ad
so

rb
ed

(c
m

3 g-1
, S

TP
)

P/P0

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

Po
re

 V
ol

um
e 

/ c
m

3 g-1

Pore Diameter / nm

Figure 1. (A) Scanning electron microscopy (SEM) and (B) transmission electron microscopy (TEM)
images of multiporous carbons (MPCs) with ZnO/oil ratio of z = 3.

The textural properties of carbon materials have a critical effect on their perfor-
mance [35]. In the present study, the surface area and pore volume of the MPCs were
controlled simply by adjusting the ZnO/oil ratio, as shown in Figure 2A. The isotherm
profiles shown in Figure 2B for the MPC with a ZnO/oil ratio of z = 3 exhibit well-defined
capillary condensation steps, which are typical of a type IV isotherm. It is hence inferred
that the MPC has a mesoporous structure with a pore size generally larger than 2.0 nm.
This finding is confirmed by the pore size distribution curves in Figure 2C, which show
that the MPCs consist mainly of large mesopores.

Int. J. Mol. Sci. 2022, 22, x FOR PEER REVIEW 3 of 10 
 

 

 
Figure 1. (A) Scanning electron microscopy (SEM) and (B) transmission electron microscopy (TEM) 
images of multiporous carbons (MPCs) with ZnO/oil ratio of z = 3. 

The textural properties of carbon materials have a critical effect on their performance 
[35]. In the present study, the surface area and pore volume of the MPCs were controlled 
simply by adjusting the ZnO/oil ratio, as shown in Figure 2A. The isotherm profiles shown 
in Figure 2B for the MPC with a ZnO/oil ratio of z = 3 exhibit well-defined capillary con-
densation steps, which are typical of a type IV isotherm. It is hence inferred that the MPC 
has a mesoporous structure with a pore size generally larger than 2.0 nm. This finding is 
confirmed by the pore size distribution curves in Figure 2C, which show that the MPCs 
consist mainly of large mesopores. 

 
Figure 2. (A) Surface area and carbon yield of MPCs with ZnO/oil ratio of z = 2 to 5, (B) nitrogen 
adsorption-desorption isotherms, and (C) pore size distribution curves for MPC with ZnO/oil ratio 
of z = 3. 

As shown in Table 1, the MPCs synthesized with ZnO/oil ratios of 2, 3, 4 and 5, re-
spectively, have BET specific surface areas of 1280, 1447, 1670 and 1770 m2g−1. Further-
more, the mesoporosity of the MPCs increases sharply from 1131 to 1678 m2 g−1 as the 
ZnO/oil ratio increases from 2 to 5. Interestingly, the results show that the MPCs have a 
high meso-porosity and specific surface area without the addition of any activating agent, 
such as KOH. It is speculated that this may result from the liquid nature of the biomass 
pyrolysis oil carbon source, which allows it to mix thoroughly with the ZnO templates 
and uniformly coat them, thereby resulting in a strong reaction effect under a carboniza-
tion temperature of 900 °C. The textural parameters of the resulted porous carbon pre-
pared at different weight ratios of ZnO to Oil are listed in Table 1. However, while an 
increasing ZnO/oil ratio is beneficial in increasing the specific surface area and mesopo-
rosity of the MPCs, it also results in a lower carbon yield (see right-hand column in Table 
1), and hence limits its application for downstream processing. Thus, in the sulfur loading 

2 3 4 5
1200

1400

1600

1800

 Yield

Su
rf

ac
e 

ar
ea

 / 
m

2 g
-1

ZnO/oil ratio

0

5

10

15

20

25

30

35

 
Surface area

 

Yi
el

d 
/ %

（B）（A） （C）

0.0 0.2 0.4 0.6 0.8 1.0
0

300

600

900

1200

1500

1800

Vo
lu

m
e 

ad
so

rb
ed

(c
m

3 g-1
, S

TP
)

P/P0

0 10 20 30 40 50
0.00

0.05

0.10

0.15

0.20

Po
re

 V
ol

um
e 

/ c
m

3 g-1

Pore Diameter / nm

Figure 2. (A) Surface area and carbon yield of MPCs with ZnO/oil ratio of z = 2 to 5, (B) nitrogen
adsorption-desorption isotherms, and (C) pore size distribution curves for MPC with ZnO/oil ratio
of z = 3.

As shown in Table 1, the MPCs synthesized with ZnO/oil ratios of 2, 3, 4 and
5, respectively, have BET specific surface areas of 1280, 1447, 1670 and 1770 m2g−1.
Furthermore, the mesoporosity of the MPCs increases sharply from 1131 to 1678 m2

g−1 as the ZnO/oil ratio increases from 2 to 5. Interestingly, the results show that the
MPCs have a high meso-porosity and specific surface area without the addition of any
activating agent, such as KOH. It is speculated that this may result from the liquid
nature of the biomass pyrolysis oil carbon source, which allows it to mix thoroughly
with the ZnO templates and uniformly coat them, thereby resulting in a strong reaction
effect under a carbonization temperature of 900 ◦C. The textural parameters of the
resulted porous carbon prepared at different weight ratios of ZnO to Oil are listed in
Table 1. However, while an increasing ZnO/oil ratio is beneficial in increasing the
specific surface area and mesoporosity of the MPCs, it also results in a lower carbon
yield (see right-hand column in Table 1), and hence limits its application for downstream
processing. Thus, in the sulfur loading and LIB trials conducted in the remainder of this
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study, the MPC ZnO/oil ratio was maintained at a constant z = 3, corresponding to a
BET surface area of 1447 m2g−1 and a carbon yield of 24%.

Table 1. Effect of ZnO/bio-pyrolysis oil ratio on textural properties of MPC samples.

ZnO/Oil
Ratio

BET Surface
Area/m2g−1

Micropore Surface
Area/m2g−1

Mesopore Surface
Area/m2g−1

Carbon
Yield/%

2 1280 149 1131 29
3 1447 191 1256 24
4 1670 238 1432 18
5 1770 91 1678 13

One of the key advantages of the MPC synthesis route proposed in this study is
the easy removal of the ZnO templates using hydrochloric acid. As shown in Figure 3A,
the residual ZnO following HCl etching was just ~2%. Moreover, the MPC material
shows a high thermal stability at decomposition temperatures greater than 600 ◦C. In
general, the results confirm the feasibility for synthesizing porous carbons using ZnO as
the hard template rather than the more traditional SiO2 templates. The carbon graphitic
structure and crystallinity of the MPCs with a ZnO/oil ratio of z = 3 were further inves-
tigated using Raman spectroscopy, as shown in Figure 3B. Carbon materials exhibit two
main characteristic absorption bands, namely a G-band (~1580 cm−1) corresponding to
the in-plane displacement of the carbon atoms in the hexagonal sheets, and the D-band
(~1350 cm−1) associated with the disordering of the structure [36]. In general, the extent
of the defects in carbon materials can be quantified by the intensity ratio of the D to G
bands (i.e., ID/IG) [37]. For the present MPC material, the ID/IG ratio is equal to just 0.91.
This low value indicates that the structural damage of the carbon layers is caused by an
increased porosity of the carbon. It is noted that this assertion is consistent with the TEM
results shown in Figure 1B.
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Figure 3. (A) Thermogravimetric analysis (TGA) curve and (B) Raman spectra of MPCs with ZnO/oil
ratio of z = 3.

2.2. Structural Characterization of S/MPC and Application to Li-S Batteries

MPCs enhance the electronic conductivity and wettability of the interface between
the electrolyte and the electrode, and therefore represent an ideal electrode material
for LIBs [22]. In the present study, S/MPCs were synthesized by blending the MPCs
prepared above (with a ZnO/oil ratio of z = 3) with sulfur powder and then performing
microwave treatment for 60 s. Figure 4 shows the N2 adsorption-desorption isotherms
of the S/MPC materials obtained using microwave powers of 100 W, 200 W and 300 W,
respectively. Unlike the raw MPC (see Figure 2B), the isotherms of the S/MPC materi-
als do not exhibit well-defined capillary condensation steps (i.e., type IV isotherms),
indicating that the pores are filled with sulfur. Moreover, the specific surface areas
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of the samples processed using powers of 100 W, 200 W and 300 W are just 32.5, 41.9
and 42.7 m2g−1, respectively, while the corresponding pore volumes are 0.13, 0.26 and
0.39 cm3 g−1 (see Table 2). The results presented in Table 2 show that the higher surface
area and pore volume of the S/MPCs processed at higher powers result in a lower sulfur
content. The SEM images presented in Figure 5 confirm that the S/MPC prepared with
a power of 100 W has a non-porous surface, and is hence very different from that of
the raw MPC sample shown in Figure 1A. Figure 6 shows the X-ray diffraction (XRD)
patterns of the S/MPC mixture before and after microwave treatment with a power of
100 W. Note that the theoretical sulfur load is 80 wt.% in both cases. The original S/MPC
product has an amorphous phase with a broad peak at around 24◦ corresponding to
the (002) diffraction peak of carbon. In addition, the peak intensity of Sulfur in S/MPC
sample is lower than that in the blended sample, which indicates that it has lower
crystallinity. Overall, the results show that the microwave treatment process provides a
simple yet effective means of filling the sulfur into the pores of the MPC material. The
unique micro/mesostructure characteristics of the resulting porous carbons not only
endow the S/MPC composite with sufficient available space for sulfur storage, but also
provide favorable and efficient channels for Li-ions/electrons transportation.
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Figure 4. Nitrogen adsorption-desorption isotherms of the MPCs prepared with different mi-
crowave powers.

Table 2. Effect of microwave power on textural properties of S/MPC samples.

Condition Surface Area/m2g−1 Pore Volume/cm3g−1 Sulfur Contain/% *

Raw MPC 1447 1.86 -
100 W * 60 s 32.5 0.13 80%
200 W * 60 s 41.9 0.26 73%
300 W * 60 s 42.7 0.39 70%

* The sulfur contain was calculated by weight change before and after microwave treatment as show in Table S1.

Figure 7A shows the first charge–discharge curves of the S/MPC composite material
when assembled as the electrode material in a LIB. The charge and discharge capacities at
200 mA g−1 are seen to be ~1600 and ~1400 mAh g−1, respectively, corresponding to a high
irreversibly capacity of 20%. Moreover, as shown in Figure 7B, the S/MPC material has a
high cycle stability with a capacity retention after 70 cycles as high as 90% of 20th cycles, and
a columbic efficiency of up to 95% after the 5th cycle. By comparison, a pure S electrode has
a short life time of less than 10 cycles, as shown in Figure S2 in the Supplementary Materials
due to the dissolution of the polysulfide in the electrolyte during the charge/discharge
procedure. Furthermore, the electrochemical impedance spectra (Figure S3) shows that the
S/MPC electrode exhibited a lower charge-transfer resistances than sulfur electrode. In
other words, the results confirm the effectiveness of the MPC network in preventing the
dissolution of the polysulfide.
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Figure 7. (A) First charge–discharge curve and (B) capacity and coulombic efficiency vs. cycle plot of
S/MPC electrode.
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3. Experimental Section
3.1. Synthesis of MPCs

The MPCs were prepared using biomass pyrolysis oil (CPC Company, Taiwan) and
ZnO (20-nm particles, Demonchem, Nantou, Taiwan) as the carbon source and hard
template/activating agent, respectively. In a typical synthesis process, biomass pyrolysis
oil and ZnO were ground into a homogeneous mixture with a mechanical blender without
solvent. MPCs were prepared with four different ZnO/oil weight ratios, i.e., z = 2, 3, 4 and
5 (z = x/y, where x is the weight of ZnO and y is the weight of biomass pyrolysis oil). In
each case, the powder was sealed in a stainless-steel vessel and heated at a rate of 8 ◦C
min−1 to the desired carbonization temperature of 900 ◦C. The powder was maintained
at this temperature for 2 h and was then allowed to cool naturally in the furnace to room
temperature. The sample was washed with water and soaked in an appropriate amount of
3.0 M HCl aqueous solution to reach pH < 1.0) under stirring for 2 h to remove the alkaline
oxide and ZnO template. Finally, the sample was filtered, washed with water and dried at
100 ◦C to obtain the desired MPC.

3.2. Preparation of S/MPC Composites

0.10 g MPC and 0.40 g sulfur powder (99%, Merck, Taipei, Taiwan) were ground into
a homogeneous mixture with a mechanical blender without solvent. The mixture was
transferred to a one end closed quartz tube and placed at the center of a microwave furnace
(CYF-1kW, CHIN YING FA Mechanical Ind. Co., Ltd., Tainan, Taiwan). The samples were
subjected to microwave heating at three different powers (100 W/200 W/300 W) for 60 s.
All of the synthesis experiments were performed in a N2 atmosphere with a constant N2
flow rate of 100 cc min−1.

3.3. Characterization

The morphologies of the MPCs and S/MPCs were examined using a JEOL JEM6700
field emission scanning electron microscope operating at 10 kV. TEM observations were
additionally performed using a Hitachi H-7500 microscope operating at 120 kV. The specific
surface areas of the porous carbons were determined through the Brunauer–Emmett–Teller
(BET) method on a Micromeritics Tristars 3020 instrument. In addition, the pore size
distributions were analyzed by the BJH (Barrett-Joyner-Halenda) method with the Halsey
equation for multilayer thickness. The carbon to inorganic template ratio of the particles
was characterized in air using a TGA system (TA Instruments Q50, New Castle, DE, USA)
with a ramp rate of 20 ◦C min−1 and a heating range of 100 to 800 ◦C. The structures of the
various carbon samples were determined using a micro Raman spectrometer (Renishaw)
fitted with a He-Ne laser source with a wavelength of 633 nm. Finally, XRD experiments
were conducted with a scanning range of 2θ = 10–60◦ on a Philips X-pert diffractometer
with CuKα radiation with a wavelength of λ = 1.540 Å.

3.4. Electrochemical Measurement

LIB cathode electrodes were prepared by mixing S/MPCs (using S/MPC-100 W * 60 s
sample, 70 wt.%) with super P (15 wt.%) and polyvinylidene fluoride (15 wt.%). N-methyl-
pyrrolidone was added as a binder solvent, and the mixture was stirred magnetically for
10 h. The resulting slurry was coated onto aluminum current collectors and dried at 100 ◦C
under vacuum conditions for 12 h, with a capacity density of approximately 3~4 mAh cm−2.
Coin cells were then assembled in a dry and inert glove box using the prepared cathodes, Li
metal anodes, and Celgard 2400 polypropylene separators. The assembled cells were cycled
at different charge/discharge rates over the potential range of 1.3–3.0 V on a BAT-750B
cell test instrument (AcuTech Systems Co., Ltd., Taipei, Taiwan). For each test, the specific
capacity was calculated on the basis of the amount of sulfur/carbon present. All of the
electrochemical tests were performed using 1.0 M LiPF6 1,3-dioxolane/dimethoxyethane
(DOL/DML 1:1 by volume) as the electrolyte.
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4. Conclusions

This study has demonstrated the feasibility for utilizing a simple physical blending
technique to transfer bio-pyrolysis oil to value-added MPCs using ZnO as a hard template.
Notably, the ZnO template can be easily removed from the synthesized product using
hydrochloric acid, and therefore avoids the need for the highly corrosive hydrofluoric acid
used in traditional MPC synthesis routes. The characterization results have shown that
hierarchical porous carbons with a high specific surface area and an optimum microp-
ore/mesopore ratio can be successfully obtained through carbonization at 900 ◦C without
the need for an additional activation agent. It has further been shown that the pore volume
of the MPCs can be easily tuned by adjusting the ZnO/oil ratio. Finally, S/MPC composites
have been prepared via a simple microwave sintering process. The coin cell test results
have shown that the S/MPC composite material provides a suitable candidate for the
cathode electrode in Li-S batteries, with a large reversible capacity about 500 mAh g−1 after
70 cycles and a columbic efficiency more than 95%.
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