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Abstract

The mucosa of the female reproductive tract plays a pivotal role in host defence. Pregnancy

must alter immunological mechanisms at this interface to protect the conceptus. We sought

to determine how estradiol (E2) alters the immune-responsiveness of cervical epithelial cells

to ligand stimulation of Toll-like receptor (TLR)-2 and -4. Human ectocervical epithelial cells

(HECECs) were cultured and co-incubated with two concentrations of E2 and peptidoglycan

(PGN) or lipopolysaccharide (LPS) over durations that ranged between 10 minutes and 18

hours. Cytometric Bead Array was performed to quantify eight cytokines in the supernatant

fluid. In response to PGN, HECECs co-incubated with E2 released lesser quantities of IL-1ß

and IFNγ, higher levels of RANTES, and variable levels of IL-6 and IL-8 than those not

exposed to E2. In contrast, HECECs co-incubated with LPS and E2 secreted increased levels

of IL-1ß, IL-6, IL-8, and IFNγ at 2 and 18 hours than HECECs not exposed to E2, and reduced

levels of RANTES at same study time-points. Estradiol alters the immune-responsiveness of

cultured HECECs to TLR2 and TLR4 ligands in a complex fashion that appears to vary with

bacterial ligand, TLR subtype, and duration of exposure. Our observations are consistent

with the functional complexity that this mucosal interface requires for its immunological roles.

1. Introduction

The epithelium of the female reproductive tract plays a pivotal role in host defence against

pathogens. It secrets specific mucosal proteins such as mucins and defensins [1,2], and recog-

nises pathogen-associated molecular patterns (PAMPs) on microbes [3,4] through pattern rec-

ognition receptors (PRR) of the Toll-like receptor (TLR) family amongst others [5,6]. The

epithelium also provides a mechanical barrier against microbes, and secretes cytokines and

antimicrobial peptides which coordinate the local innate and adaptive immune responses

[7,8]. There is emerging evidence that these innate immunological mechanisms are altered

during pregnancy in order to provide additional protection to the fetus and other products of

conception, by preventing the ascent of micro-organisms up the reproductive tract [9]. These
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changes may also modulate the inflammatory processes that trigger cervical remodelling (such

as cytokine-mediated synthesis of collagenases and elastases) and the uterine contractions

associated with the onset of labour [9,10].

TLRs can interact with endogenous molecules released from damaged tissues or dead cells.

These molecules are chronic inflammatory biomarkers or damage-associated molecular pat-

terns (DAMPs). They regulate many sterile inflammation processes and recognize and

respond to PAMPs [11,12]. DAMPs comprise High-mobility group box 1 (HMGB1), heat

shock proteins (HSPs), S100 proteins, and distorted matrix proteins and play some role in ini-

tiation and progress of preterm birth (PTB) [11].

Engagement of epithelial TLRs by specific ligands leads to increased expression of mediators

of inflammation, such as cytokines and chemokines, through the activation of transcriptional

factors of the nuclear factor (NF)-κB family [13,14]. Increased elaboration of pro-inflammatory

cytokines especially interleukin (IL)-1β, IL-6, IL-8 and TNF has been demonstrated [15]. There

is emerging evidence that changes in TLR-mediated signalling during pregnancy play key roles

in alterations in immune and inflammatory processes, and may be implicated in premature

birth [15,16]. For instance a variant in the human TLR4 gene has been shown to be associated

with an increased risk for premature birth and the secretion of pro-inflammatory cytokines [17]

especially interleukin (IL)-1β, IL-6, IL-8 and TNF [18]. The release of IL-6 and IL-8 due to LPS

exposure has also been shown to alter ectocervical epithelial barrier functions by increasing per-

meability [19,20].

We have recently observed that the expression of Toll-like receptors (TLR) -2 and -4 in

human cervical tissue is increased during pregnancy [21], also reported in several other tissues

during gestation [22]. However, the underlying mechanism and functional implications of

these observations remain unclear. Hormones have been reported to regulate the function of

several PRRs in some tissues [22,23]. We therefore hypothesised that estradiol (E2), an endoge-

nous gestational hormone, may alter cervical epithelial immune-responsiveness as part of the

required adaptation of reproductive tract tissue to pregnancy. In this study, we detail the

effects of E2 on the cytokine expression profiles (as a marker of epithelial immune responsive-

ness) of cultured human ectocervical epithelial cells coincubated with the ligands of TLR2

(peptidoglycan, PGN) and TLR4 (lipopolysaccharide, LPS).

2. Materials and methods

2.1 Study design

The South Sheffield Research Ethics Committee (SSREC/03/105) granted approval for this

study. Written informed consent from participants was obtained prior to the collection of all

samples.

2.2 Subjects and tissue samples

Human ectocervical tissue was obtained from fresh hysterectomy specimens from 62 premen-

opausal patients (age range 29–50 years) undergoing their operations for benign dysfunctional

uterine bleeding. All subjects had had a negative urinary pregnancy test, a normal cervical

smear within the previous three years, negative swabs for genital infection, and were not taking

hormonal contraceptives at least six weeks before surgery.

2.3 Epithelial Growth Medium (EGM)

Minimum Essential Medium (MEM) D-Valine (C-75100, Promo Cell, UK), supplemented

with heat inactivated fetal bovine serum (FBS) (BioWhittaker, Lonza, Belgium Cat # DE14-
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820F), 0.2 mM L-glutamine, hydrocortisone (Sigma, UK Cat. # H4001) (5ml of stock solution

40 μg/ml), penicillin-streptomycin-Amphotericine B stock (Sigma, Cat # A5955), as described

previously by Kamine et. al. [24], was used for culturing primary HECECs. The most impor-

tant cells that can contaminate such epithelial explant cultures are fibroblasts [24–26]. Substi-

tution of D-valine for L-valine selectively inhibits proliferation of fibroblasts, which lack the

enzyme D-amino acid oxidase that converts the D-amino acid into its essential L-isoform

[24,27]. MEM L-Valine without Phenol Red (Gibco, Cat. No.; 51200) and Charcoal-filtered

FBS (South American origin, Cat. No. DE14-820E, Lonza) were substituted for MEM D-Valine

and FBS respectively three days prior to the co-incubation experiments while hydrocortisone

was omitted at this stage [28].

2.4 Establishment of the primary cell cultures

The tissues were collected by 8mm punch biopsies and were immediately placed in ice-cold

EGM and rinsed several times with 1x phosphate buffered saline (PBS) and EGM. The epithe-

lia were isolated carefully under the microscope, diced into 1–2 mm fragments and were then

subjected to enzymatic digestion using collagenase IV (1 U/ml) (Gibco, Cat. No; 17104–019)

in MEM for one hour at 37˚C on a rotating surface followed by 10 minutes incubation with 1x

trypsin (T3924, Sigma, UK) at 37˚C [24]. The digested tissue clumps were collected and trans-

ferred to six well plates (Greiner Bio-One Ltd, Stonehouse, UK) after deactivating the trypsin.

The tissue fragments were left to dry and adhere to the bottom of the wells for 10 minutes. The

explants were incubated in 2 ml of EGM and maintained in a humidified incubator with 5%

CO2 at 37˚C. The medium was changed every three days. When the outgrowths of cultured

HECECs reached 80% confluence (3–4 weeks), HECECs were employed for functional and

gene expression studies or passaged. Cell Dissociation Solution Non-enzymatic (CDSNE)

(Sigma UK, Cat. No. C5914) was used to remove the cultured cells from the culture plastic

wares.

2.5 Fibroblast cultures

Human Neonatal Foreskin Fibroblasts (HNFF) were cultured in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% (v/v) fetal calf serum (FCS) and 2 mM L-glutamine.

The HNFFs were kindly provided by Dr. B. Aflatoonian (Academic Unit of Reproduction and

Developmental Medicine, Jessop Wing, University of Sheffield). The HNFF cultures were

maintained in a humidified incubator with 5% CO2 at 37˚C and the medium was changed

every 2–3 days. The cultured HNFFs were used as positive control for CD90 staining.

2.6 Double immuno-fluorescence sequential staining

Primary and/or first passaged cultured HECECs on 8-well chamber slides (Falcon Fisher sci-

entific, 08-774-25) were fixed with acetone (-20˚C) for 10 min at room temperature and per-

meabilised by 0.1% (v/v) Triton X-100 in PBS for 10 min, followed by blocking with 3% (w/v)

bovine serum albumin (BSA) for 30 minutes twice at room temperature. Primary antibodies

against cytokeratin, phycoerythrin conjugated (CK PE) (ab52460, abcam, UK, Anti-pan CK 4,

5, 6, 8, 10, 13, 18) and CD90, FITC conjugated (CD90 FITC) (ab11155, abcam, UK) (specific

antigens for epithelial cells and fibroblasts, respectively) were incubated with the HECECs for

one hour each, at room temperature and the cells were counterstained with DAPI. Images

were taken with an automated inverted microscope Leica DMI 4000B, Leica DFC300FX cam-

era and pictures were analysed with Leica Microsystem LAS AF-AF6000 software.
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2.7 Functional studies

2.7.1 Hormonal preparation. 17-β-estradiol (E2) (E2758, Sigma) was dissolved in abso-

lute (100%) ethanol and MEM to the concentration of 20 μg/ml, as instructed by the manufac-

turer. Further dilutions were made in the MEM without Phenol Red to achieve the final

working concentrations of E2 of 0.1 and 10 nM.

2.7.2 TLR2 and TLR4 Agonists. The primary or first passaged cultured HECECs were

exposed to Peptidoglycan (PGN from S. aureus, 77140, Sigma Aldrich) (50μg/ml) [29] or Lipo-

polysaccharide (100ng/ml) (LPS from E. coli; L-2654-1MG) [30] while being simultaneously

treated with E2 at two different concentrations (0.1 and 10 nM) for 10 minutes, two hours and

18 hours. Three to four days prior to the stimulation with agonists of TLR2 and TLR4, the

media were substituted with phenol red-free MEM (51200, Gibco) supplemented with 10%

charcoal dextran-treated FBS, 0.2 mM L-glutamine and antibiotics (as mentioned in 2.3).

Hydrocortisone was not added in order to avoid its estrogenic effects [29,30]. MD-2, CD14

and LPS-binding protein (LBP) were added, as they are required for optimal cellular responses

to LPS [31]. These co-factors were provided with the necessary concentrations in the EGM for

the LPS stimulation experiments; Recombinant Human LBP (rhLBP; 870-LP-025 R&D sys-

tem) 1μg/ml [30], rhMD-2 (1787-MD R&D system) 2 ng/ml [32,33] and rhCD14 (383-CD,

R&D system) 0.07 μg/ml [30].

2.7.3 Evaluation of the expression of TLR2 and TLR4 by flow cytometry. Expression of

TLR2 and TLR4 in the cultured HECECs were evaluated by flow cytometry using Allophyco-

cyanin (APC) conjugated anti-human TLR2 (abcam, Cat. No. ab24996, IgG2a) and FITC

conjugated anti-human TLR4 Ab (abcam, Cat. No. ab45126, IgG2b). APC conjugated rat

IgG2a (eBioscience, Cat. No. 17-4724-41) and FITC conjugated rat IgG2b Isotype controls

(eBioscience, Cat. No. 11-4732-41) were supplied by eBioscience. Stain Buffer (FBS, BD Phar-

mingen Cat. No. 554656) was provided by BD Pharmingen. The HECECs were prepared

according to the suggested protocol from BD Pharmingen. Briefly, the cells were washed twice

in pre-warmed PBS without Ca2+ & Mg2+ (Sigma, Cat. No. D8537) then incubated with 5ml

pre-warmed CDSNE (C5914, Sigma, UK) for seven minutes at 37˚C. The cells were collected

in 15ml cone shaped tubes (Greiner centrifuge tubes T1818-500EA, Sigma) after detachment

and 7.5ml EGM was added to each tube to deactivate CDSNE. The mixture was split into two

tubes; one for gene expression study and the other for the TLRs study. The pellet was collected

using 500μl of ice-cold FBS and transferred to a flow cytometry tube (ELKay Autotubes, non-

sterile 1.1ml, 000-MICR-200) after centrifuging at 400 x g at 4˚C for 5 min. Single cell suspen-

sion was prepared and washed twice using ice cold FBS and spun at 400 x g for 5 min. The pel-

let was re-suspended in 50 μl FBS and the sample was stained with 5μl APC conjugated anti-

human TLR2 and 5 μl FITC conjugated anti-human TLR4 Ab. Equal volumes of APC conju-

gated rat IgG2a and FITC conjugated rat IgG2b Isotype controls were added to the corre-

sponding Isotype Control sample. The samples were incubated for 30 minutes on ice protected

from light. The cells were washed twice using 1 ml FBS to remove unbound antibodies. The

cell pellets were re-suspended in 500 μl FBS after spinning down at 400 x g for 5 min and the

samples were taken for cytometric evaluation within half an hour. Each set of experiments,

contained 5 to 7 samples, an isotype and an unstained control each time.

2.8 Total RNA extraction and RT-PCR

Total RNA extraction was performed from cultured HECECs using TRI Reagent (T9424,

Sigma), based on the manufacturer’s instructions. Chloroform was substituted with 1-Bromo-

3-chloropropane (BCP) (B9673, Sigma) for RNA extraction to reduce the possibility of DNA

contamination [34]. The eluted RNA was treated with rDNase I (Ambion1 DNA-free™ DNase
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kit, AM1906) to remove the contaminating DNA. Quantification and quality controls of the

eluted RNA was carried out using the NanoDropTM 1000 Spectrophotometer (Thermo scien-

tific) and Agilent 2100 Bioanalyser (Agilent technologies, USA) respectively. 400 ng of the

eluted RNA from each sample was used for the first-strand cDNA synthesis using iScript

cDNA synthesis kit (170–8890, Bio-Rad), based on the manufacturer’s instructions. RT-PCR

was performed using the prepared cDNA; TLR2, TLR4, Estrogen Receptor α (ERα), ERβ,

membrane Progesterone Receptor α (mPRα), mPRβ, mPRγ and nuclear progesterone recep-

tors (nPRA & nPRB) forward and reverse primers (Table 1) and PCR Master mix, 2x (M750B,

Promega Madison, USA) as described before for TLRs [35], ERs [36] and PRs [37]. All the

experiments included a β-actin (positive control), a negative control with no cDNA and a No-

RT control in which reverse transcriptase enzyme (RT) was excluded at the stage of cDNA syn-

thesis. PCR products and the calibrator ladder (LowRanger DNA calibrator ladder, Cat. No.

11500, Norgen) were then resolved (10μl of each sample) through 1.2% agarose gels, and elec-

trophoresis was run with 1x TAE buffer (Tris-acetate and EDTA) at 45V for 2.5 hours. Agarose

gels were examined under a trans-illuminator and ethidium bromide (ETBr)/UV in a chemi-

HR16 (LFB) G:box syngene imaging system (Syngene, UK) and digital images were taken with

a GeneSnap 4.00.00 software (Synoptics Ltd).

2.9 Cytometric bead array

The Cytometric Bead Array technique was employed to measure eight cytokines [38] (IL-1β,

IL-6, IL-8, IL-10, IL-12p70, IFNγ, RANTES and TNF) in the collected supernatant at the study

time points of 10 minutes, 2hours and 18hours, to determine how E2 concentrations affected

the responses of the cultured HECECs to stimulation with TLR2 or TLR4 ligands. Each set of

experiments consisted of five samples and the baseline cytokine expression levels were deter-

mined from the supernatant fluid of HECECs stimulated with just the relevant TLR ligand.

Additionally, cytokine expression profiles of non-treated HECECs were used as control. Mas-

ter Buffer Kit (558264, The BD™ CBA Human Soluble Protein Flex Set System, BD Biosciences)

Table 1. Sequence of primers for TLR2, TLR4, ERα, ERβ, mPRα, mPRβ, mPRγ, nPRA&B and β-actin.

Gene primers 5´- 3´ Annealing Temp Product size

TLR2 Forward TCGGAGTTCTCCCAGTTCTCT 59.8˚C 175

Reverse TCCAGTGCTTCAACCCACAA 57.3˚C

TLR4 Forward CAACAAAGGTGGGAATGCTT 55.3˚C 317

Reverse TGCCATTGAAAGCAACTCTG

ER α Forward GAATCTGCCAAGGAGACTCG 59.4˚C 288

Reverse ATCTCTCTGGCGCTTGTGTT 57.3˚C

ER β Forward CCAGCAATGTCACTAACTTGGA 58.4˚C 217

Reverse TTCCCACTAACCTTCCTTTTCA 56.5˚C

mPRα Forward CCTGCTGTGTGATCTTAG 53.7˚C 288

Reverse CGGAAATAGAAGCGCCA 56.0˚C

mPRβ Forward CACGAAGGACCCACAAAACT 57.3˚C 232

Reverse CAATCCCAAGCACCACCTAT

mPRγ Forward AGCCCCTGGACGCTTTGA 58.2˚C 276

Reverse GGTCTGAGTCATGTTTCT 51.4˚C

nPR A&B Forward GCTACGAAGTCAAACCCAGT 57.3˚C 274

Reverse CACCATCCCTGCCAATATC 56.7˚C

β-Actin Forward AGCATTGCTTTCGTGTAAATTATGT 56.4˚C 207

Reverse TGGTCTCAAGTCAGTGTACAGGTAA 61.3˚C

https://doi.org/10.1371/journal.pone.0173646.t001
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was used for these assays and the samples were run on the BD FACS Array flow cytometry

machine, using FACP Array software.

2.10 Statistics

Data were collected and analysed using GraphPad Prism Version 6.0f. Brown Forsythe and

Bartlett’s analyses were first used to test for normality of the data. ANOVA model and Tukey’s

multiple comparison tests were used for the statistics. Differences were considered statistically

significant at p-value less than 0.05.

3. Results

Cultures of HECECs were successfully established for all the samples (S1 Fig). The epithelial

phenotype of the cultured cells was confirmed by double immunofluorescence sequential

staining to detect cytokeratin (CK). The exclusion of fibroblasts from the cultures was con-

firmed by the absence of staining to CD90 (Fig 1A).

The gene expression of TLR2, TLR4, ERα, ERβ, mPRα, mPRβ, mPRγ, nPRA and nPRB

were demonstrated by RT-PCR. All the amplified products were at the predicted size for the

relevant genes. No signals were detected for negative control samples, indicative of absence of

DNA contamination (Fig 2). The expression of ER and PR have been confirmed in previous

reports [39,40].

The expression of TLR2 and TLR4 was successfully and consistently demonstrated in the

cultured HECECs using flow cytometry (Fig 3).

3.1 Presence of E2 is associated with changes in the expression of

cytokines when TLR2 and TLR4 signalling pathways are activated in

cultured HECECs

3.1.1 HECECs stimulated with PGN in the presence of E2 (Fig 4). Estradiol did not have

a consistent effect on basal release of most cytokines studied: compared to control, expression

Fig 1. Cultured HECECs and validating their epithelial nature. (A & B) Double Immuno-Fluorescence sequential staining for HECECs and

HNFF; In “A and B” both antibodies (CK and CD90) and DAPI were used. The detected red signal from the HECECs (A) demonstrates that just the

Cytokeratine Ab (PE) was picked up. In “B” detected green signal represents specific Fibroblasts’ antigens identification. The nuclei have been

stained with DAPI, validating the cells were alive before fixation. No green signal was detected from the cytoplasm of the culture HECECs (A);

indicative of the absence of fibroblasts. HNFF; Human Neonatal Foreskin Fibroblast.

https://doi.org/10.1371/journal.pone.0173646.g001
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Fig 2. RT-PCR using RNA extracted from Cultured HECECs to investigate TLR2, TLR4, ERs and PRs gene expression. A:

Detection of the signals produced by RT-PCR products for β-Actin, TLR2 and TLR4. B: Depicts detection of ERα. C: Depicts detection

of ERβ. D: Signals were detected for mPRα, mPRβ, mPRγ and nPR A&B which represent the gene expression of these five receptors

while the detected signals for PRγ are much weaker than the others. No signal was detected in the negative controls, representing the

accuracy of the results. Presence of a faint band could be expected in the No-RT controls and it does not interfere with the accuracy of

the results.

https://doi.org/10.1371/journal.pone.0173646.g002

Fig 3. Flow cytometry results for the study of TLR2 and TLR4 expression in HECECs. A; TLR2

expression level in HECECs was revealed by detection of fluorochrome signals in histograms; Overlay

histograms of isotype control (Red) and an unknown sample (Blue) stained with APC conjugated human TLR2

Ab. The fluorochrome-stained HECECs for TLR2 were highlighted within the interval gate. These defined

gates were used to acquire the corresponding statistics. B; TLR4 expression level in the HECECs was

revealed by detection of fluorochrome signals in histograms; Overlay histograms of isotype control (Red),

unstained HECECs and an unknown sample (Brown) stained with FITC conjugated human TLR4 Ab. The

fluorochrome-stained HECECs for TLR4 were highlighted within the interval gate.

https://doi.org/10.1371/journal.pone.0173646.g003
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Fig 4. Detected cytokine secretion profiles when the cultured HECECs were stimulated with TLR2

agonist. Demonstrates significant changes in five out of eight studied cytokines when the HECECs were
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levels of IL-1ß, IL-6, IL-10, IFNγ and RANTES were largely unchanged but the basal expres-

sion levels of IL-8 were suppressed. PGN stimulated the secretion of IL-1ß, IL-6, IL-8, IFNγ,

and RANTES, mostly after 18h of co-incubation. However, PGN did not appear to stimulate

IL-10 secretion by HECECS. With PGN stimulation the HECECs exposed to E2 released sig-

nificantly less IL-1β, IL-6 (18h) and IFNγ, and significantly more IL-8 (10min and 2h), IL-6

(10min and 2h) and RANTES (10min, 2h and 18h), than non-E2 treated controls.

3.1.2 HECECs stimulated with LPS in the presence of E2 (Fig 5). During these experi-

ments estradiol did not have a consistent effect on basal release of most cytokines studied:

compared to control, expression levels of all cytokines by untreated HECECs varied markedly

at all time points studied, with RANTES being consistently suppressed or unchanged. LPS

stimulated the sustained secretion of IL-6, IL-8, and RANTES by untreated HECECS and had

minimal or no effects on the expression levels of the other cytokines studied. Compared to

non-E2 treated controls, LPS stimulation of HECECs treated with E2 induced increased

amounts of IL-1β after 18h. Decreased secretion of RANTES was observed with E2 treatment

after 10 min, 2 and 18h. Conversely, IFNγ was decreased after 10min followed by enhanced

expression levels at 18h.

4. Discussion

We have demonstrated that E2 alters the cytokine responses of cultured HECECs when TLR2

and TLR4 signalling pathways are activated. However, the nature of the altered response varies

by cytokine and the duration of coincubation of HECECs with E2 and TLRs ligand. Whilst E2

appears to reduce the release of three of the eight cytokines measured (IL-1β, IL-6, IFNγ)

when TLR2 is stimulated by PGN, it enhances the release of the same cytokines as well as IL-8

when the TLR4 receptor is activated by LPS. Whilst the TLR2 ligand, PGN induces enhanced

expression levels of RANTES in the presence of E2, LPS suppresses RANTES from E2-exposed

HECECs. Our observations suggest that E2 modulates the immune responsiveness of cultured

primary HECECs exposed to exogenous ligands of TLR2 and TLR4 in a complex and varied

fashion.

In order to assess the immune-responsiveness of HECECs, we have studied their cytokine

expression response to ligand stimulation of the TLR2 and TLR4 pattern recognition recep-

tors, which respond to gram-positive and gram-negative bacteria, respectively. Some of these

pathogens cause sepsis of the female reproductive tract [41]. Inflammatory responses may be

promoted by stimulation of either endogenous or exogenous ligands of TLR2 and or TLR4.

We aimed to determine whether E2, a hormone that crucially drives the changes in the female

reproductive tract during the menstrual cycle as well as during pregnancy, alters the immune-

responsiveness of cervical epithelium. It has been observed that E2 can attenuate inflammation

at different physiological or supra-physiological levels, appearing to generally promote pro-

inflammatory pathways at lower physiologic levels [42]. Having established that PGN and LPS

increased expression levels of different cytokines by HECECs, we demonstrated that these

responses were significantly altered by co-incubation of HECECs with E2. The observed effects

varied with the duration of cell exposure to E2, suggesting that the effects observed after 10

min of E2 exposure could have a different underlying signalling mechanism to those observed

after 2 or 18h.

It has been recognised that there are multifaceted mechanisms involved with estrogen

receptor (ER) biological signalling [43]. More than four ER pathways have been described.

stimulated with PGN in the presence of two different concentrations of E2 compared to non-E2-treated. *p

value <0.05, **p value<0.005, ***p value<0.0005, ****p value<0.0001.

https://doi.org/10.1371/journal.pone.0173646.g004
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These include: a) the classical ligand-dependent pathway that involves E2-ER complexes bind-

ing to estrogen response elements (ERE) in target promoters leading to an up- or down-regu-

lation of gene transcription and subsequent tissue responses; b) the ligand-independent

pathways through which growth factors (GF) or cyclic AMP activate intracellular kinase path-

ways, leading to phosphorylation and activation of ER in a ligand-independent manner; and c)

the ERE-independent signalling that involves E2-ER complexes altering transcription of genes

through association with other DNA-bound transcription factors that tether the activated ER

to DNA, resulting in an up-regulation of gene expression. Finally, it has long been recognised

that cell-surface (non-genomic) E2 signalling occurs by the activation of a putative membrane-

associated binding site, possibly a form of ER linked to intracellular signal transduction path-

ways that generate rapid tissue responses. It is unclear which of these pathways is involved in

our observations, but it is highly likely that the effects of E2 on TLR2- and TLR4-mediated

ligand activity in HECECs noted after 10 min are membrane-associated non-genomic effects

[44,45], whilst other nuclear genomic pathways are likely to mediate the sustained cytokine

responses noted after 2 to 18 h. Interestingly, the effects of E2 on LPS-induced cytokine expres-

sion profiles by HECECs are remarkably similar at 2 and 18 h but often dissimilar or opposite

to observations after 10 min during the same experiments.

The binding of E2 to the ER initiates the relevant ligand-dependent E2 signalling. The subse-

quent cell-specific transcriptional response to E2 is determined by multiple factors; the compo-

sition of co-regulatory proteins in a given cell and the characteristics of the promoters of

estrogen responsive genes are the most important factors. Since hormones are modulators of

transcription, the pattern of modulated genes also depends on what other signalling pathways

are active in the cell at the time of hormone exposure [46,47]. This may explain how E2 can dif-

ferentially modify immune responses of HECECs when either TLR2 or TLR4 downstream sig-

nalling pathways is activated.

Substantial signalling complexity, consistent with our observations, is suggested by reports

that individual cytokine responses to ligand-mediated immune cell activation can vary greatly

with tissue and duration of stimulation [48]. Such complexity has led to the investigation of

cytokine profiles in various disease and physiological states in an attempt to define cytokine

“signatures” that facilitate disease diagnosis, assessment of associated morbidity, and for moni-

toring therapy. Distinctive disease-specific cytokine profiles have been identified in inflamma-

tory bowel disease and have been demonstrated to show significant correlations to disease

activity and duration [49]. Whether the changes in cytokine expression that we have described

reflect consistent E2-induced gestational changes required to combat infection and modulate

inflammation remains to be investigated. It is plausible that PAMPs, DAMPs and gestational

hormones may drive the changes in cytokine expression profiles by cervical epithelial cells

required to combat sepsis or influence cervical remodelling preparatory to birth [11]. These in

vivo gestational changes in immune-responsiveness of cervical epithelial cells are likely to be

more complex than we have observed in our experiments because several other hormones

(such as progesterone) and tissue factors are likely to play significant roles.

Our observations suggest that cytokine expression profiles are likely to be altered during

human pregnancy under hormonal influence, compared to the nonpregnant state. However,

the nature of such change and its physiological relevance remains to be determined. Studies

have highlighted the potential pathogenic role for these changes in the aetiology of preterm

Fig 5. Detected cytokine secretion profiles when the cultured HECECs were stimulated with TLR4

agonist. Depicts significant alteration in five out of eight studied cytokine levels when the HECECs were

stimulated with LPS in the presence of two different E2 concentrations compared to non-E2-treated HECECs.

*p value <0.05, **p value<0.005, ***p value<0.0005, ****p value<0.0001.

https://doi.org/10.1371/journal.pone.0173646.g005
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birth. One study noted that a higher proportion of women with low levels of IL-1α (below 25th

percentile) delivered preterm compared to women with higher IL-1α levels, suggesting that

the rate of preterm delivery increased when IL-1α levels decreased [50]. Another study also

demonstrated that women in the lowest quartile of cervical concentrations of IL-1β and IL-8

early in pregnancy were significantly more likely to subsequently experience chorioamnionitis

than women in higher quartiles. We observed sustained increased expression of IL-1ß, IL-8

and IFNγ by HECECs stimulated with LPS in the presence of E2: this could represent an

immunoprotective effect conferred on these cells by E2, thus providing protection of the con-

ceptus against ascending infection and perhaps preventing inflammation-induced preterm

birth. In contrast, we observed that E2 appears to predominantly reduce pro-inflammatory

cytokine expression of HECECs to PGN, TLR2 ligand. The reason for this observation is

unclear. It may reflect an anti-inflammatory response of HECECs to those bacterial ligands

that would otherwise induce inappropriate inflammation in the lower reproductive tract.

Whether this process may be accentuated during pregnancy to confer additional protection

against infection to the conceptus remains to be determined. Estradiol also appears to suppress

the release of RANTES, a chemotactic cytokine, by HECECs exposed to LPS whilst increasing

RANTES release by HECECs exposed to PGN, suggesting a ligand-specific modulatory effect

of estradiol on HECECs.

There is a paucity of studies investigating commensal-host immunologic interactions in the

female reproductive tracts. However insight into TLR-commensal interactions is gleaned from

studies of the gut where it has been demonstrated that the microbial ligands recognized by

TLRs are not unique to pathogens, being also produced by commensal microorganisms [51].

These studies have demonstrated several mechanisms by which intestinal epithelial immuno-

logical homeostasis is maintained despite exposure to commensals and pathogens. Firstly,

surface epithelium may sequester bacteria on contact thereby avoiding mounting an inflam-

matory response. Secondly, commensal microflora may activate TLRs in a way that prevents

tissue injury and associated mortality [51]. One such mechanism could be the paradoxic

reduction in cytokine production by epithelial cells when exposed to PAMPs from commen-

sals rather than pathogens. This may explain our observations in regard to PGN. Overall, the

varied cytokine responses of E2-treated cervical epithelial tissue to TLR2 and TLR4 ligands,

suggest complex host-microbial interactions required by tissues that are exposed to both com-

mensal and pathogenic florae.

In addition to their role in host defence against infections, these cytokines may also modu-

late cervical remodelling of sub-epithelial cervical matrix during pregnancy, perhaps by in-

ducing chemokines and local tissue infiltration by white cells. They may also cause vascular

changes that induce matrix breakdown and alter tissue hydration [11]. The pattern of cytokine

expression under the influence of E2, may change the polarisation of the immune responses

from a Th2 to a Th1 type. Activation of Th1-type immune responses can initiate the final

rapid stage of softening of the uterine cervix by inducing neutrophil infiltration and increasing

the activity of proteases such as collagenase and elastase, and prostaglandins [11]

Our in vitro studies of E2 on isolated cervical epithelial cells have several limitations. Whilst

it enables characterisation of the modulatory role of E2 on the immune-responsiveness of these

cells, it does not take into account the associated, rather more complex, influence of other ges-

tational hormones such as progesterone on the immune-responsiveness of this reproductive

tract epithelium [52,53]. Furthermore the precise role of endogenous ligands of TLRs and

DAMPs, believed to play key role(s) in receptor activation and the pathogenesis of preterm

birth [11,12] require further studies. It is likely that E2 and the innate immune system maintain

an active interaction during normal pregnancy even without exogenous PAMPs. Understand-

ing the mediators of such interaction would shed further light on the observed difference
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between the effects of TLR2 and TLR4 ligands on cytokines in the presence of E2, as well as the

mechanisms of cervical tissue remodeling associated with premature birth.

In conclusion, HECECs cultured in the presence of E2 demonstrate altered cytokine expres-

sion profiles in response to TLR2 and TLR4 ligands. The varied nature and time course of

these changes suggest a complex immune-modulatory role for E2 at this epithelial surface.

Such a role would enable the mucosa of the lower reproductive tract discriminate between

commensals and pathogens, and mount appropriate host defence against ascending infection

in the pregnant and non-pregnant state. The signalling mechanisms for these observations

remain to be elucidated.
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