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The developmental profile of visual
cortex astrocytes

Airi Watanabe,1,2 Connie Guo,1,3 and Per Jesper Sjöström1,4,*

SUMMARY

We investigated how astrocytes in layer 5 mouse visual cortex mature over post-
natal days (P) 3–50. Across this age range, restingmembrane potential increased,
input resistance decreased, and membrane responses became more passive with
age. Two-photon (2p) and confocal imaging of dye-loaded cells revealed that gap-
junction coupling increased starting �P7. Morphological reconstructions re-
vealed increased branch density but shorter branches after P20, suggesting
that astrocyte branches may get pruned as tiling is established. Finally, we visu-
alized spontaneous Ca2+ transients with 2p microscopy and found that Ca2+

events decorrelated, became more frequent and briefer with age. As astrocytes
mature, spontaneous Ca2+ activity thus changes from relatively cell-wide, syn-
chronous waves to local transients. Several astrocyte properties were stably
mature from�P15, coincidingwith eye opening, althoughmorphology continued
to develop. Our findings provide a descriptive foundation of astrocyte matura-
tion, useful for the study of astrocytic impact on visual cortex critical period plas-
ticity.

INTRODUCTION

Historically, astrocytes have been chiefly considered as structural support cells in the central nervous sys-

tem. For example, they hold neuronal components together, maintain molecular homeostasis, and control

the blood–brain barrier.1 One reason that astrocytes were mainly thought of as passive players is that their

excitability is poor compared to neurons, e.g., astrocytes cannot propagate action potentials. However, in

the early 1990s, it was discovered that these glia cells do in fact exhibit active responses, although via Ca2+

signals.2,3 Soon after this discovery, it was established that following cytosolic Ca2+ elevation astrocytes

respond to neurotransmitters by releasing gliotransmitters.4,5 Moreover, stimulation of a single astrocyte

can trigger a wave of intracellular Ca2+ that propagates from astrocyte to neighboring astrocyte via gap

junctions — channels specialized for cell-to-cell communication.4,6

Astrocytes have since been implicated in several central nervous system functions, including synaptic plas-

ticity,7,8 regulation of neuronal excitability9 and memory formation.10,11 Importantly, a single mature astro-

cyte contacts over 100,000 synapses with each astrocyte occupying tiles, i.e., exclusive, non-overlapping

territories.12 Therefore, they are in strategic positions to modulate synapses within tiles. On the other

hand, gap junctions allow Ca2+ signals to propagate in the interconnected astrocyte syncytium network.

Gap-junction coupling thus expands the modulation range of astrocytes beyond the tile.13

Ca2+ signaling in astrocytes occurs either spontaneously or in response to neurotransmitter stimula-

tion.14,15 These Ca2+ signals — which are relevant for basal synaptic function16 — originate in microdo-

mains of astrocyte processes and propagate to other regions of the cell17,18 as well as to neighboring as-

trocytes.19 This astrocyte Ca2+ activity triggers the release of gliotransmitters, such as D-serine, ATP, and

glutamate.20 For example, astrocyte Ca2+ signaling actively participates in the induction of neocortical

spike-timing-dependent plasticity.21 A key remaining question, however, is how the morphological devel-

opment of astrocytes is coordinated with the maturation of intracellular Ca2+ signaling, which has implica-

tions for astrocytic control of neocortical plasticity.21

In mouse visual cortex, the critical period starts around P20 and ends around P35,22 although weaker and

qualitatively different plasticity persists beyond P35.23 Circuits refine rapidly as sensory input increases with

eye opening, typically around �P13.24 During this postnatal period, neuronal morphologies mature by
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adding branch complexity and synaptic spines,25 and some studies in other brain areas indicate that devel-

opment of astrocyte complexity mirrors this progression.26,27 However, visual cortex astrocytes develop-

ment has not been as well studied.

We therefore explored how electrophysiological and morphological properties of layer 5 (L5) visual cortex

astrocytes mature with age. We found that, over development, astrocytes elaborated denser arborizations,

spontaneous Ca2+ activity in individual astrocytes decorrelated, and Ca2+ events increased in frequency as

well as decreased in duration. Astrocyte morphology matured by becoming denser, more compact, and

more symmetric. Several astrocyte properties stabilized around P15, including gap-junction coupling,

morphology, membrane biophysics, and Ca2+ signaling.

RESULTS

Diverse astrocyte electrophysiology matured with age

To explore astrocyte electrophysiology within L5 visual cortex, we targeted astrocytes in P3 – P50 acute

mouse brain slices for whole-cell patching. We pre-incubated acute slices in 1 or 5 mM SR101 (see STAR

Methods), a fluorescent dye that is selectively taken up by astrocytes (Figure 1A).28,29 With 2p imaging
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Figure 1. Astrocytes were targeted using SR101

(A) Acute slices were obtained from C57BL/6 mice and subsequently incubated in a container of ACSF to recover at room

temperature for 1 h. Before patching, a slice was transferred to a 6-well plate or Petri dish filled with 1 or 5 mM SR101 for

5 min. A homemade mesh holder and bubbler allowed slices to sit on the mesh while the bubbler infused carbogen (not

depicted) into the SR101 solution to keep the slice oxygenated. The slice was then transferred to the bath chamber of an

electrophysiology rig for patching. After patching, the slice was either discarded or fixed in PFA for further analyses

(optional dashed arrow). Schematic created in BioRender is for illustration purposes and does not show exact equipment

used (see STAR Methods).

(B) Sample cortical stack of acute slice after pre-incubation in 1 mM SR101; Astrocytes in all cortical layers could be

visualized under 2p microscopy at 930 nm.

(C) SR101-labelled astrocytes (red) were targeted and patched with pipette filled with Alexa Fluor 488 (80 mM, green). The

Alexa dye spread to neighboring astrocyte soma (yellow), presumably through gap junctions.
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at 820 nm, we were able to visualize astrocyte staining in all cortical layers (Figure 1B), which enabled us to

identify astrocytes for targeted patching (Figure 1C).

Astrocyte identity was confirmed by verifying that the cell had characteristic passive properties,30,31

including hyperpolarized resting membrane potential (Vm, �83 G 0.3 mV, n = 222 cells, N = 78 animals)

and low input resistance (Rinput, 28G 1.2 MU). However, we found that Rinput and Vm were variable, suggest-

ing heterogeneity among astrocytes (Figure 2A). Despite this heterogeneity, we could observe that astro-

cyte Vm increased with age, and that Rinput decreased (Figure 2A).

To further investigate the membrane properties of astrocytes over development, we applied voltage steps

from +60 mV to�160 mV to the patched cells (Figure 2B). We saw cells exhibiting heterogeneous membrane

conductance properties, with some displaying passive current readings in response to the voltage steps (Fig-

ure 2C, top), and others showing a time-dependent current, especially in the more depolarizing voltage steps

(Figure 2C, bottom). To see if the time-dependent component varied with age, we quantified this as the dif-

ference in conductance between the late and early stages of the voltage step (DConductance; see STAR

Methods) and compared this over development, which revealed that it decreased with age (Figure 2D).

Gap-junction formation might affect electrophysiological properties

We explored whether the changes observed in electrophysiological properties correlated with the develop-

ment of gap -junctions in astrocytes. It is well known that astrocytes couple with neighboring astrocytes

A

B

D

C

Figure 2. Membrane conductance properties were heterogeneous and matured with age

(A) Over development, resting Vm depolarized and Rinput decreased.

(B) To assess membrane biophysics, voltage steps of 20 mV decrements from +60 mV to �160 mV were applied to

patched astrocytes.

(C) Sample IV curves from two cells show different membrane conductance properties. Red arrowhead and round data

points indicate early current readings (10 ms after start of voltage step) and, blue arrowhead and square data points

indicate late current readings (10 ms before the end of voltage step).

(D) The late-early conductance difference (see STAR Methods) decreased as astrocytes matured (n = 39 cells, N = 17 animals).
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Figure 3. Astrocyte gap-junction coupling increased with age

(A) Sample 2p image shows Alexa 488 dye from patched astrocyte 1 spreading to example neighboring astrocytes 2 and 3

(dashed outlines) over time.

(B) The fluorescence intensity signal of three sample astrocytes (1, 2, 3) in panel A increased. Fluorescence time courses

and maxima were consistent with Cell 2 (purple) dye-filling directly from Cell 1 (blue), but Cell 3 (red) indirectly dye-filling

from a secondary astrocyte such as Cell 2. Dashed lines denote the xhalf half-max time points of sigmoidal fits (not shown).

(C) The 25% best cut (dashed line) of hierarchically clustered xhalf values independently suggested three fluorescence-

onset clusters, consistent with the patched cell (blue) first dye-filling secondary astrocytes (purple), and those indirectly

dye-filling tertiary cells (red) in a gap-junction-coupled astrocyte network.

(D) Consistent with progressive dye-filling of a gap-junction-coupled astrocyte network, the fluorescence half-max xhalf
(see B, C) correlated positively with distance from patched astrocyte. Secondary (purple) and tertiary astrocyte labels (red)

are based on clustering in C. Blue open circle is Cell 1 in A, purple open square is Cell 2, and red open triangle is Cell 3.

(E) Because gap junctions may restrict passage of relatively large Alexa488 dye molecules, we redid the experiments in

A-D by dialyzing patched cells (asterisks) with biocytin, which is permeable through all astrocytic connexin channels

(Stephan et al., 2021). After histochemistry and confocal imaging (see STAR Methods), neighboring stained cells were
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through connexin gap junctions.30,32 Therefore, we first patched individual astrocytes and dye-filled them

with Alexa Fluor 488 for 30min while taking time-lapse images every 2min to visualize dye spreading to neigh-

boring cells (Figure 3A and Video S1). The rate of dye filling in astrocytes was quantified by measuring fluo-

rescence intensity in a soma-centered ROI over time (Figure 3B). The fluorescence intensity curves were fitted

with sigmoids to obtain their xhalf values, i.e., the time at which cells were half filled. When these xhalf values

were independently clustered using a hierarchical agglomerative approach, two distinct groups emerged

(purple, red, Figure 3C). A positive correlation was also found between the xhalf time and the distance be-

tween the neighbor and patched astrocyte (Figure 3D). The two clustered groups likely correspond to primary

neighbors that are coupled directly to the patched astrocyte (Figures 3C and 3D, purple and square) and sec-

ondary neighbors that are coupled to primary neighbors (Figures 3C and 3D, red and triangle). Finally, the

xhalf for secondary astrocytes (19 G 0.4 min, n = 10) was larger than that of primary astrocytes (16 G

0.5 min, n = 7; p < 0.001). These data indicate that primary neighbors closer to the patched astrocyte get

dye-filled first, followed by secondary neighbors, on the timescale of minutes. Because Alexa 488 does not

readily pass through connexin-30-containing gap junctions,33 we opted to repeat the cell counts using bio-

cytin, which is small enough to permeate astrocytic connexin channels.33 After biocytin histochemistry (see

STAR Methods), we counted the number of dye-filled neighboring astrocytes (Figure 3E) and found that

this number increasedwith age (Figure 3F, greenmarkers). To verify that dye coupling relied on gap junctions,

we did a subset of experiments at P28 – P43 using carbenoxolone, a non-selective connexin and pannexin

hemichannel blocker34 (Figure 3F, gray markers). We found that carbenoxolone reduced the number of

coupled cells by approximately 40% (Figure 3F), consistent with reports that carbenoxolone do not

completely block gap junctions.35 We also found that gap-junction coupling correlated with a decrease in Rin-

put (Figure 3G). Taken together, our data suggested that over development, astrocytes formed more gap

junctions with their neighbors and/or that gap junctions became more permeable (Figure 3G).

Astrocyte arbors became denser, more compact, and more symmetric with age

To explore astrocyte morphology development, we manually reconstructed astrocytes at different ages from

images obtained either with 2p or confocal imaging (Figure 4A). We categorized cells obtained from animals

into 4 age groups, those aged P1 – P10 (yellow), P11 – P20 (cyan), P21 – P30 (magenta), and P41 – P50 (green)

for further comparison. To look at the extent of branching in these four groups, we compared the convex hulls

whichmeasure themaximal reach of a cell’s processes. Surprisingly, althoughwe expected the convex hulls to

expand with age (i.e., that astrocytes became larger with age), they were mostly indistinguishable (Figure 4B).

However, when we looked at the branch density, we found that older astrocytes had more branches close to

the soma as seen from a more saturated density heatmap (Figure 4C). This finding was supported by soma-

centered Sholl analysis,36 which showed a higher number of branch crossings close to the soma in old astro-

cytes (Figure 4D; Spearman’s rho = 0.35 for Sholl plot peak versus age, p < 0.05). When we looked at the arbor

center, i.e., the center of the entire reconstruction, and measured its distance from the soma, we found that

astrocytes in the P1 – P10 and P11 – P20 groups had arbor centers further away from the soma compared to

those in P21 – P30 and P41 – P50, meaning they were more asymmetric when younger (Figure 4E). When Sholl

analysis for the four age groups were considered, we observed that overall, the averaged cumulative number

of crossings were greater in the older age groups (Figure 4F). However, >40 mm away from the soma, the

younger age groups extend more branches (Figure 4F, inset). Similarly, we found that the cumulative cross-

ings <40 mm away from the soma showed a positive correlation with age (Figure 4G), whereas those >40 mm

away correlated negatively (Figure 4G, inset). Taken together, these findings indicate that with age, astrocyte

arbors become denser, more compact, and more symmetric.

Astrocyte Ca2+ activity decorrelated with age

Astrocytes display spontaneous Ca2+ activity in their processes.37,38 We investigated if this Ca2+ activity

changed with age. We targeted SR101-stained astrocytes P7 – P50 for patching and dialyzed them with

Figure 3. Continued

counted (examples indicated by arrows). With this approach, sample P4 astrocytes did not dye-couple as much as

sample P27 astrocytes did.

(F) The biocytin approach indicated that gap-junction coupling increased over development (green symbols, n = 28

patched cells, N = 12 animals) and then apparently plateaued > P20. Square indicates P4 sample cell and triangle

indicates P27 sample cell depicted in (E). After carbenoxolone treatment, fewer cells were labeled for ages > P20 (gray

diamonds, not included in sigmoid fit, n = 10 patched cells, N = 4 animals, p < 0.01, Wilcoxon-Mann-Whitney), suggesting

that developmental gap junction formation caused the increase in dye coupling with age.

(G) Rinput decreased with the number of coupled cells, consistent with gap junctions making astrocytes electrically leakier.
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Figure 4. Maturing astrocyte arbors became denser, more compact, and more symmetric

(A) Sample astrocyte reconstructions illustrate how branching became denser, more compact, and more symmetric with

age. The convex hull (dotted lines) indicates the maximal reach of branches.

(B) Convex hulls, overlaid and centered on soma, suggested that with age, arbors becamemore symmetric as well as more

compact.

(C) Radially symmetric branch density heat maps (see STARMethods) suggested increased process branching close to the

soma in old astrocytes. However, the farthest-reaching process seemed closer with age (dotted line). To enable

comparison across age groups, heatmaps share scale, with map max intensity indicated by arrowhead above color scale.

(D) In agreement with increased branching close to soma over age, Sholl analysis (Sholl, 1953) showed higher peak

averages (horizontal dashed lines) whereas 5%-of-peak-average radii (vertical dotted lines) seemed smaller. Colored

lines: Sholl plots of individual astrocyte arbors; black lines: age-group averages.

(E) Distance from soma to arbor density center — a measure of arbor asymmetry — indicated that astrocyte arbors

became more symmetric with development (ANOVA p < 0.05). Boxplots indicate medians and quartiles, with whiskers

denoting extremes.

(F) Cumulative ensemble Sholl plots across age groups indicated overall more branching in older astrocytes, although

>40 mm from the soma, young astrocytes branched more (inset).

(G) In agreement with arborizations enriching close to the soma, cumulative crossings within a 40 mm radius correlated

positively with age (Spearman’s rho), plateauing after �P20. Smoothed 5-day running average (dashed red line)

suggested distal branch growth at �P5 followed by distal branch pruning, hence a negative correlation for >P5 ages for

distal branches >40 mm (Spearman’s rho).
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the Ca2+-sensitive dye Fluo-5F (200 mM). We acquired 150-second-long videos of a single focal plane and

selected ROIs to analyze fluorescent activity (Figure 5A). To assess the similarity in Ca2+ activity between

different ROIs, we calculated the Z-scored Pearson’s r pairwise across all ROIs in each recorded astrocyte.

This way, we obtained a Ca2+ activity correlation matrix for each astrocyte (Figure 5B). This heatmap was

averaged to produce a mean Z-score for each astrocyte, which represents how correlated the Ca2+ activity

was in that cell. By plotting astrocyte mean Z-score of Pearson’s r versus age (Figure 5C), we found that Ca2+

activity decorrelated with age. In addition, we also detected and quantified the frequency and duration of

individual Ca2+ transients and found that spontaneous Ca2+ signals became more frequent as well as

shorter in duration with age (Figure 5C).

One concern with manual ROI selection is the potential for user bias. To explore this possibility, we first

asked if the area of manually selected ROIs varied systematically with age, but it did not (Pearson’s

r = 0.22, p = 0.20, data not shown). Next, to circumvent manual ROI selection, we used the automated

B

C

A

Figure 5. Ca2+ events became decorrelated, briefer, and more frequent with age

(A) Fluo-5F Ca2+ signals (green) were recorded as a 150-second-long movie (see Videos S1 and S2) of these two sample P8

(triangle) and P22 astrocytes (square). During offline analysis, ROIs (left, red) were manually selected, and fluorescence

was quantified as dG/R sweeps (right).

(B) Sample ROI cross-correlation matrices for the astrocytes in A. For each matrix, a single mean Z-score Pearson’s r was

calculated, which was 2.3785 and 0.30477 for the P8 and P22 samples, respectively. Mean Z-score served as a metric for

how correlated the activity of a cell was.

(C) With age, astrocyte Ca2+ events became decorrelated, briefer, and more frequent (n = 36 cells, N = 15 animals),

stabilizing approximately beyond P15. Triangle indicates sample P8 cell and square indicates sample P22 cell depicted in

(A). See also Figure S1.
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Ca2+event detection software AQuA.39 We found that the spatial density metric of AQuA decreased with

age (Figure S1), which means that, as astrocytes matured, events did not co-occur as frequently.

Taken together, these results indicate that early activity was dominated by single, large events that encom-

passed most or all branches in individual astrocytes (Video S2), whereas in more mature astrocytes, Ca2+

transients were more localized, relatively independent of each other, and comparatively brief (Video S3).

However, this does not imply that small, localized events never happened in young animals, because early

activity was relatively heterogeneous.

Astrocyte density in L5 cortex remains constant while cortical thickness increases

We next measured L5 cortical thickness and found that it rapidly increased around P10, stabilizing at

�250 mm thickness by �P15 (Figure S2A). Because our morphological reconstructions indicated that astro-

cytes did not grow larger with development (Figure 4), we wondered if astrocytes increased in numbers to

ensure even tiling of the growing cortex. We therefore counted the astrocytes in L5 and saw that their den-

sity remained relatively unchanged over age (Figure S2B). Together with our morphological reconstruc-

tions (Figure 4), these findings demonstrate that L5 astrocytes grow in number rather than size. In summary,

we found that L5 visual cortex astrocytes start off with few, probably partially overlapping branches, little

gap-junction coupling, and correlated Ca2+ signaling, which mature by growing in numbers as L5 expands,

by growing denser branches as tiling is established, by adding functional gap junctions, and by decorrelat-

ing Ca2+ signals into relatively brief localized events (Figure 6).

DISCUSSION

Here, we studied the development of astrocytes in L5 of visual cortex across the ages P3 – P50. We found

that astrocyte electrophysiological properties, although quite heterogeneous, mature by a depolarization

of Vm and a reduction of Rinput. We also found that astrocyte morphology became denser and gap-junction

coupling increased with development, and that spontaneous astrocyte Ca2+ activity decorrelated (Fig-

ure 6). In addition, these Ca2+ transients increased in frequency and decreased in duration over the ages

studied.

Astrocytes depolarize and become leaky as they mature

Astrocyte biophysics was heterogeneous across cells, with for example Rinput spanning an order of magni-

tude, and with some but not all astrocytes carrying a slowly adapting conductance. Despite this variability,

Figure 6. As astrocytes mature, branching, overall numbers, and Ca2+ signal compartmentalization increase

Proposed model illustrating key aspects of how young L5 V1 astrocytes — which are asymmetric, relatively far-reaching,

and poorly branched (left) —mature by forming denser, more compact, andmore symmetric arbors, as well as by growing

more plentiful (right) to tile the growing neocortex. Ca2+ signals (green) also decorrelated and compartmentalized over

development. Most properties stabilized by P15, right around eye opening, although arbors continued to refine by

growing denser. See also Figure S2.
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we found developmental changes: With age, astrocytes depolarized and became leakier, whereas the

slowly adapting current gradually decreased (Figure 2). At �P15, membrane properties seemed to stabi-

lize. Overall, our results are consistent with previous findings in L2/3 of the visual cortex.40

The heterogeneous electrophysiology we report has previously been found in astrocytes of the striatum,

hippocampus, and neocortex.30,41 It has been argued that such heterogeneity reflects differences in

gap-junction coupling41 or astrocyte types.30 Anders et al.42 showed that in the hippocampus gap-junction

coupling relates to astrocyte location relative to the pyramidal cell layer, suggesting the existence of layer-

dependent astrocyte properties. We, however, only studied astrocytes in L5 of visual cortex, suggesting

that the heterogeneity we found is not because of layer location, but more likely gap-junction coupling.41

Astrocyte gap-junction coupling first develops in rat visual cortex at P132 and then gradually increases.33 In

mouse thalamus, Griemsmann et al.43 found that astrocyte coupling did not increase after the first two

postnatal weeks. In agreement, we found that dye-coupling was stabilized from �P20 and onwards (Fig-

ure 3). This may suggest that developmental gap-junction coupling is linked to the maturation of mem-

brane properties because of a correlation of these properties (Figure 3G), which is also supported by prior

experiments done in the striatum.30

Astrocyte arbors mature by growing denser and more compact

As expected, astrocytes developed denser arbors as they matured. In alignment with the findings of Bush-

ong et al.26, our morphometry analysis revealed longer branches in the young compared to the old age

group. Young arborizations were also more asymmetric. This suggests that astrocytes first grow long but

weakly branched arbors that are subsequently pruned whereas arborizations grow dense close to the

soma. In this view, astrocyte branches may dynamically develop by growth and retraction, perhaps to

establish even tiling by sampling different territories.

Astrocyte arbors may thus develop like neuronal axons and dendrites do, by initial exuberance followed by

subsequent pruning.44 As tiling boundaries form, the territory covered fills in with additional branches as

the astrocyte matures. However, more detailed study is required to verify this growth-and-retraction

idea, e.g., by in vivo time lapse imaging. Nevertheless, our findings are consistent with e.g., the report

of Bushong et al.26 who found heterogeneous astrocyte morphologies in rat hippocampus before P14.

They also found that astrocytes extended long processes and that astrocyte tiling was not consistently

seen until P14.26

An alternative interpretation is that the astrocyte pruning is only apparent, and that over development, in-

dividual astrocyte somata instead migrate toward the center of their arborizations. Because our Sholl anal-

ysis was soma-centered (Figures 4D, 4F, and4G), such a soma migration would give rise to an artificial

appearance of arbor pruning. Our analysis of asymmetry supports this notion (Figure 4E). However, we

were unable to find literature to support this possibility, so it may seem less likely.

With SR101 staining, we showed that L5 astrocyte density remains relatively stable between P3 – P50, which

means astrocyte spacing is constant. Therefore, the longer branching of P3 – P10 astrocytes suggests that

they might extend into the domains of their neighbors. During maturation, branches may therefore retract

to enable the eventual astrocyte tiling in the mature brain. Astrocyte processes retraction is already known

to occur, for example, in the supraoptic nucleus during suckling.45 However, using a different marker, it has

been reported that astrocyte density peaks at eye opening and subsequently decays and stabilizes.40 Addi-

tional work is thus required to put this idea to the test.

Astrocytes Ca2+ events mature by decorrelating and shortening

Astrocyte Ca2+ activity can occur independently of neuronal activity14,38,46 as well as in response to

neuronal activity.46 Although neuronal activity blockade does not abolish spontaneous Ca2+ activity in as-

trocytes, neuronal activity may regulate astrocyte Ca2+ event synchrony, which may affect developmental

circuit plasticity.14,19,37 We showed how spontaneous Ca2+ events developed alongside astrocyte electro-

physiology and morphology. After�P15, these Ca2+ transients are relatively short, decorrelated, and com-

partmentalized. Because event correlation and duration cannot become negative, and similarly event fre-

quency cannot increase forever, we argue that these parameters eventually stabilize. A previous theoretical

study suggested that morphological profile determines frequency of spontaneous astrocyte Ca2+ signals,47

ll
OPEN ACCESS

iScience 26, 106828, June 16, 2023 9

iScience
Article



specifically that spontaneous Ca2+ events start in thin astrocytic processes because of their high surface

area-to-volume ratio, which promotes Ca2+-induced Ca2+ release. In agreement, computational modeling

has reproduced spontaneous Ca2+ signals by Ca2+-induced Ca2+ release in fine astrocyte processes.48

These lend support to what we extrapolate from our findings: that increasing complexity from morpholog-

ical development is associated with the increase in spontaneous Ca2+ signals observed over development.

Astrocyte modifications and neuronal plasticity: A two-way street

Over recent years, several studies have revealed examples of astrocyte modulation of neuronal plas-

ticity.7,8,21,49 For instance, the excitability of medium spiny neurons in the striatum is decreased by reduced

astrocyte Ca2+ signaling, leading to increased self-grooming behaviors in mice.50

Of interest, neurons also modify astrocytes, highlighting a two-way communication. For instance, synaptic

plasticity can remodel astrocyte processes.51 In development, astrocytes can also be modified by molec-

ular cues from neurons, such as neuron-derived sonic hedgehog.52 In disease models too reorganization

of astrocyte processes and loss of astrocyte domains has been observed, e.g., in epilepsy.53

Astrocyte maturation is tightly linked to critical period plasticity in the cortex.7,54 For example, in the mouse

visual cortex, an increase in astrocyte connexin 30 has been associated with the closure of the critical

period, by inducing the maturation of inhibitory circuits.7 Our findings add to our understanding of astro-

cyte changes in morphology and spontaneous Ca2+ activity during this critical period.

Conclusions and future directions

Our present work provides a descriptive foundation of astrocyte maturation in developing mouse visual

cortex. Because astrocyte Ca2+ signaling is key to neocortical plasticity,21 our findings outline a framework

for the study of astrocyte-mediated control of visual cortex critical period plasticity, e.g., by showing that

biophysics and Ca2+ signaling of visual cortex astrocytes were relatively mature by �P15, close to eye

opening.

As astrocyte branching grew denser, Ca2+ signals decorrelated. This was not surprising, because finer

arborization should naturally dissociate Ca2+ events as branches compartmentalize. Astrocyte

morphology, however, continued to mature after P15 when biophysics and dye-coupling were relatively

stabilized. Whether maturation of morphology determines developmental decorrelation of astrocyte

Ca2+ activity thus remains unclear in our hands. Another consideration would be whether these changes

in astrocytes are associated with changes in cortical neuronal development around eye opening.25

Our study suggests that — like axonal and dendritic arbors44 — astrocyte branches may initially extend too

far and later be pruned, thereby establishing tiling (Figure 6). In the mammalian central nervous system, it is

known that astrocytes and microglia participate in axon pruning.44 If astrocytes themselves are indeed

pruned, this raises the intriguing question: who prunes the pruners?

Limitations of the study

A potential caveat is that we measured astrocyte asymmetry in 2D. A 3D analysis might provide more

context to the positioning of astrocytes relative to other local structures. For example, Refaeli et al.55

showed that astrocytes display orientation preference in hippocampus relative to the CA1 pyramidal

area. However, a more refined 3D analysis should not alter our overall finding that arborizations mature

by growing denser, more compact, and more symmetric.

Another potential caveat is that we pooled morphological data obtained with 2p microscopy of cells dye-

loaded during patch-clamp recording with data obtained by confocal imaging after biocytin histology.

However, we previously found these methods offered indistinguishable morphological cell classification

performance,56 which justified pooling these types of data. In agreement, each dataset alone offered

similar outcome (not shown).

The finest astrocyte compartments cannot be resolved with confocal or 2p microscopy, but require super-

resolution or electron microscopy.57,58 Confocal and 2p imaging may thus underestimate branch numbers

and Ca2+ signals. However, we had no problems detecting changes in morphology and Ca2+ signals across

P3 – P50, suggesting a sufficiently detailed resolution for our purposes.

ll
OPEN ACCESS

10 iScience 26, 106828, June 16, 2023

iScience
Article



SR101 labels only a subset of astrocytes, although the developmental profile of SR101-positive cells is com-

parable to that of other astrocytes.59 In addition, SR101 has limited specificity and may also label oligoden-

drocytes, although that requires longer incubation time than we used here.60 Oligodendrocyte

morphology is furthermore quite distinct from that of astrocytes.

Some chemical Ca2+ indicators suppress Na+ and K+-dependent adenosine triphosphatase activity, which

may impair cell health.61 However, when using Fluo-5F, we monitored astrocyte Vm and observed no

adverse effects. Furthermore, we only briefly exposed astrocytes to Fluo-5F, typically <30 min.

Finally, in several cases, causation remains to be established. For example, the relationship between gap-

junction coupling and Rinput was correlational, not causal.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Jesper Sjöström (jesper.sjostrom@mcgill.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d All original code has been deposited on Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The animal study was reviewed and approved by the Montreal General Hospital Facility Animal Care Com-

mittee (The MGH FACC) and adhered to the guidelines of the Canadian Council on Animal Care (CCAC).

Female and male C57BL/6J mice (000664; The Jackson Laboratory) aged P3 - P50 were subjected to a 12h

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Streptavidin, Alexa Fluor� 647 Conjugate Thermo Fisher Scientific S32357

Alexa Fluor� 594 hydrazide Life Technologies A10438

Alexa Fluor� 488 hydrazide Life Technologies A10436

Carbenoxolone disodium salt Sigma-Aldrich C4790

Fluo-5F, pentapotassium salt Fisher Scientific F14221

Normal Donkey Serum Jackson ImmunoResearch 017-000-121

Sulforhodamine 101 Millipore Sigma S7635

Experimental models: Organisms/strains

C57BL/6J The Jackson Laboratory Strain #000664; RRID:IMSR_JAX:000664

Software and algorithms

Neuromantic https://www.reading.ac.uk/

neuromantic/body_index.php

V1.7.5; Myatt, et al., 201262

Igor Pro WaveMetrics Igor Pro 8 and 9

MultiPatch https://github.com/pj-sjostrom/MultiPatch.git https://doi.org/10.5281/zenodo.7854025

qMorph https://github.com/pj-sjostrom/qMorph Zhou et al., 202163;

https://doi.org/10.5281/zenodo.7853963

Linescan analysis https://github.com/pj-sjostrom/LineScanAnalysis This paper; https://doi.org/

10.5281/zenodo.7853953

FIJI https://imagej.net/software/fiji/ Schindelin at al, 201264

AQuA https://github.com/yu-lab-vt/AQuA Wang, et al. 201939

ScanImage https://www.mbfbioscience.com/

products/scanimage

2019 - 2022
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light and 12h dark cycle with food and water provided ad libitum. Mice were anesthetized using isoflurane

and sacrificed by decapitation after the loss of the hind-limb withdrawal reflex was confirmed.

METHOD DETAILS

Acute slice electrophysiology

After decapitation, the brain was removed and placed in ice-cold (�4�C) artificial cerebrospinal fluid
(ACSF), containing in mM: 125 NaCl, 2.5 KCl, 1 MgCl2, 1.25 NaH2PO4, 2 CaCl2, 26 NaHCO3 and 25 glucose,

bubbled with 95% O2/5% CO2 (carbogen). Osmolality of the ACSF was adjusted to �338 G 3 mOsm with

glucose. Oblique coronal 300-mm-thick acute brain slices were prepared using a Campden Instruments

5000 mz-2 vibratome (Lafayette Instrument, Lafayette, IN, USA). Brain slices were kept at�33�C in oxygen-

ated ACSF for �30 min and then allowed to cool at room temperature for at least one hour after slicing

before patching. For mice�P25 and older, we used 2mMMgCl2 and 1mMCaCl2 in the ACSF during slicing

and recovery, and standard ACSF as described above for patching.

Glass pipettes (3 – 7 MU) were used for whole-cell recordings and were filled with internal solution (in mM:

KCl, 5; K-Gluconate, 115; HEPES, 10; Mg-ATP, 4; Na-GTP, 0.3; Na-Phosphocreatine, 10; Biocytin, 0.1% w/v;

adjusted with KOH to pH 7.2 and with sucrose to�310G 3 mOsm, and supplemented with Alexa Fluor 594

or 488, 20 - 80 mM). We carried out electrophysiology experiments with ACSF heated to 32-34�C with a

resistive inline heater (Scientifica Ltd, UK), with temperature continuously recorded and verified offline.

BVC-700A (Dagan Corporation, Minneapolis, MN) and Model 2400 (A-M Systems, Carlsborg, WA) ampli-

fiers were used to obtain whole-cell recordings. Amplified signals were filtered at 5 kHz and sampled at

40 kHz using PCI-6229 boards (NI, Austin, TX, USA) with MultiPatch custom software (https://doi.org/10.

5281/zenodo.7854025) running in Igor Pro 8 or 9 (WaveMetrics Inc., Lake Oswego, OR, USA).

Astrocytes were selectively stained by incubating slices in 1 or 5 mM sulforhodamine 101 (SR101) solu-

tion28,29 made up in standard ACSF for 5 minutes at room temperature while bubbling with carbogen.

SR101-positive astrocytes were then visualized with two-photon (2p) microscopy at 820 nm or 930 nm

and targeted for whole-cell patching. After patching in current clamp, cell identity was confirmed by check-

ing for a low resting Vm (�-70 mV), low Rinput (<100 MU), and by injecting currents from -0.3 to 0.7 nA at

0.2 nA increments to verify that they did not exhibit action potentials. Resting Vm and Rinput of each cell

were measured from a 10-ms-long window and a 250-ms-long 25-pA hyperpolarizing test pulse, respec-

tively, at the beginning of each current step and taken as an average from six waves. Bushy morphology

was confirmed post-hoc with 2p imaging. Recordings were not corrected for liquid junction potential

(�10 mV) or for series resistance. Throughout this study, recordings were discarded or truncated if Vm

changed by >20 mV or if Rinput changed by >40 MU.

To generate IV curves, astrocytes were voltage clamped at -80 mV and voltage steps from +60 mV to -160

mV at 20 mV decrements were applied for 500 ms. To quantify the passivity of the astrocyte, current read-

ings were taken at 10 ms after the beginning of the voltage step (‘‘Early’’) and 10 ms before the end of the

voltage step (‘‘Late’’) and the difference between the slope of the last 5 Late and last 5 Early readings were

taken as the change in conductance (DConductance) across the voltage step over age.

Biocytin staining and confocal imaging

Astrocytes were recorded in whole-cell configuration for at least 15 minutes to allow for biocytin diffusion.

To ensure re-sealing of cell membrane during pipette removal, cells were held at a depolarizing potential

(-40 to -30mV) while the pipette was slowly removed along the diagonal axis. The acute slice was fixed in 4%

paraformaldehyde (PFA) overnight at 4�C and then transferred to 0.1 M phosphate buffered saline (PBS) for

up to one week before staining.

Acute slices were washed four times in 10 mM Tris-buffered saline (TBS) solution with 0.3% Triton-X for

10 minutes each. Slices were blocked with 10 mM TBS with 0.3% Triton-X and 10% normal donkey serum

(NDS; 017-000-121 Jackson ImmunoResearch, West Grove, PA, USA) for 1 hour. Alexa Fluor

647-conjugated streptavidin (S32357 ThermoFisher Scientific, Waltham, MA, USA) at 1:200 dilution in

0.01 M TBS with 0.3% Triton-X and 1% Normal Donkey Serum was used to bind to biocytin overnight at

4�C. Slices were then washed four times in 10 mM TBS solution for 10 minutes each. The slices were
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mounted on glass slides with ProLong Gold Antifade Mountant (ThermoFisher Scientific, Waltham, MA,

USA) and clear nail polish was applied around the coverslip perimeter.

Image stacks were acquired with 633 nm laser-line excitation using a Zeiss LSM 780 confocal microscope, at

203 or 403 magnification and 102431024-pixel resolution centered around the patched soma, controlled

by the ZEN2010 software (ZEISS International, Jena, Germany).

Two-photon microscopy

2p laser-scanning microscopy was performed with a custom-built imaging workstation, as previously

described.65 2p excitation was achieved using a titanium-sapphire laser tuned to 820 nm for Alexa-594,

and 930 nm for Alexa-488. Laser power output was monitored using a power meter and was controlled

by adjusting a half-lambda plate passing the laser beam to a polarizing beam-splitting cube (Thorlabs

GL10-B and AHWP05M-980). Laser gating was achieved with a mechanical shutter (Thorlabs SH05/SC10)

triggered by software and scanning was achieved with 6215H 3-mm galvanometric mirrors (Cambridge

Technology, Bedford, MA). Bialkali photomultipliers (Scientifica 2PIMS-2000-20-20) detected fluorescence

via an Olympus LUMPlanFL N 403/0.80 objective. Fluorescence was separated with Semrock FF665 and

laser light blocked with Semrock FF01-680. Red and green fluorescence were separated with Chroma

t565lxpr combined with Chroma ET630/75M and Chroma ET525/50M. Laser-scanning Dodt contrast was

achieved with custom optics, by collecting laser light that passed through the acute slice with a spatial filter

and a diffuser placed in a 13 telescope with an amplified diode (Thorlabs PDA100A-EC). Signals from pho-

tomultipliers and diode were acquired with a PCI-6110 digitization board (NI, Austin, TX, USA) using

ScanImage 2019-2022 running in MATLAB (The MathWorks, Natick, MA, USA). Ca2+ imaging data was

analyzed with the custom script LineScanAnalysis (https://doi.org/10.5281/zenodo.7853953) running in

Igor Pro 9.

Morphological reconstruction and analysis

After each whole-cell recording, cell morphologies were acquired with the 403 objective as stacks of 5123

512-pixel slices with 1 mmbetween each slice. Each slice is an average of 2 – 3 frames. These 3D stacks were

Z-projected by maximum intensity, pseudo-colored, and assembled using Fiji.64

Prior to reconstruction, brightness and contrast were adjusted in Fiji to ensure that branches in 3D stacks

were optimally visible. Cells were then reconstructed by manual tracing using Neuromantic.62 Recon-

structed morphologies were analyzed with the qMorph in-house software63 (https://doi.org/10.5281/

zenodo.7853963), running in Igor Pro 9.

Gap-junction coupling quantification

To quantify gap-junction coupling in astrocytes, individual cells were patched and filled with biocytin for

15 minutes. For a subset of experiments, carbenoxolone was either added to the internal solution

(20 mM) or washed in (50 mM) 10 minutes prior to patching.34 Biocytin-filled cells were fixed in PFA and

stained, as described above. Z-stack images were acquired 25 mm above and 25 mm below the center of

the patched cell soma with confocal imaging at 203 magnification as described above. Using the Cell

Counter Plugin in Fiji, the number of fluorescent neighboring astrocyte soma was counted as a measure

of amount of coupling.

Imaging and analysis of spontaneous Ca2+ activity

Astrocytes were patched with glass pipettes loaded with Fluo-5F (200 mM) for 15 - 20 minutes. Using 2p

excitation at 930 nm, the cell was imaged at a single focal plane for 180 s, using 2563256 or 5123512-pixel

frames acquired at 2.1 – 4.2 Hz frame rate. Ca2+ signals were measured as dG/R, i.e., a change in green

Fluo-5F fluorescence normalized to SR101 fluorescence acquired in the red channel.

At least 10 regions of interest (ROIs) of similar size were manually selected. We avoided automated ROI

selection methods39,66,67 because we were concerned that ROI selection methods that rely on signal evo-

lution might affect Ca2+ signal decorrelation measurements, since automated ROI selection relies on the

time evolution of pixel signal correlations. Baseline was set at the 10 – 40 frames with the weakest Ca2+

signal. To eliminate high-frequency noise, signal was low-pass filtered at 0.2 Hz. Mean Z-scores of Pearson’s

r for the correlation of all ROIs were used to measure correlation of astrocyte Ca2+ activity.

ll
OPEN ACCESS

iScience 26, 106828, June 16, 2023 17

iScience
Article

https://doi.org/10.5281/zenodo.7853953
https://doi.org/10.5281/zenodo.7853963
https://doi.org/10.5281/zenodo.7853963


Ca2+ events were detected by and counted with a simple thresholding algorithm, with the threshold detec-

tion level set at 1 – 1.5 sigma above background noise. Ca2+ event duration was similarly defined by the

time during which the signal crossed this threshold. Frequency of Ca2+ activity was calculated by taking

the total number of events detected divided by the total number ROIs selected for the cell and obtaining

the number of events per ROI for each cell.

Automated event detection was carried out with AQuA39 implemented in MATLAB (The MathWorks, Na-

tick, MA, USA). We restricted the detection area to the region of the single astrocyte. Noise standard de-

viation (sigma) was estimated by AQuA. The intensity threshold scaling factor (thrARScl) for pixel activity

detection was set to 8 times sigma. Spatial gaussian filtering (smoXY) was set to 0.5 sigma, and theminimum

pixel size (minSize) for detection was set between 7 and 22 pixels, depending on the resolution of themovie.

Temporal cut threshold (thrTWScl), which distinguishes separate events in the same space was set to 8 times

sigma. Z-score threshold (zThr) was set to 5 to conservatively distinguish actual events from noise. Events

lower than 40% of peak DF (minShow1 = 0.4) and <0.2 s duration (seedRemoveNeib = 2) were discarded.

Quantifying L5 cortical thickness

The thickness of cortical L5 was measured from confocal and 2p images using the brightfield and Dodt

contrast channels, respectively. The upper and lower L5 boundaries were determined by visual inspection,

with L5 pyramidal cells identified by their large soma and prominent apical dendrites. For each brain slice,

the L5 thickness was measured in either Fiji or Affinity Designer (Serif, Nottingham, UK). Using Igor Pro 9, a

sigmoid was numerically fitted to data.

SR101 cell counts

Stacks of 2563256 or 5123512-pixel images were obtained with ScanImage at 23 zoom from acute slices

that were incubated in 1 mM SR101 for 5 minutes. Brightness and contrast were automatically set in Fiji, us-

ing histogram normalization. Cells were counted in one acute slice every�3 - 10 mm in each stack. Dim cells

or cells with incomplete soma were not counted. Cell counts for each stack were done at 3 different starting

points and the average was taken to obtain cell density.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise noted, results are reported as the meanG standard error of the mean (SEM). Significance

levels are denoted using asterisks (*p < 0.05, **p < 0.01, ***p < 0.001) and can be found in the figures. Sam-

ple sizes can be found in the figure legends. Statistical tests were performed in Igor Pro 9. Pairwise com-

parisons were carried out using the two-tailed Student’s t-test for equal means. If the equality of variances

F-test gave p < 0.05, we employed the unequal variances t-test. In Figures 1A and 1B, cells with either

outlying Vm or outlying Rinput as identified using Tukey’s fences were excluded from the analysis (34 cells

excluded out of 256). The Wilcoxon-Mann-Whitney rank test was used to test carbenoxolone cell counts

in Figure 3F. In Figure 4E, we applied the Welch ANOVA. A t-test on Pearson’s r or the Wilcoxon-Mann-

Whitney test on Spearman’s rho was used to determine significance of correlations. Sigmoids of the

form base+ max
1+eðxhalf �xÞ=rate were numerically fitted in Igor Pro.
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