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B cell receptors (BCRs) and T cell receptors (TCRs) make up an essential network of defense molecules
that, collectively, can distinguish self from non-self and facilitate destruction of antigen-bearing cells
such as pathogens or tumors. The analysis of BCR and TCR repertoires plays an important role in both
basic immunology as well as in biotechnology. Because the repertoires are highly diverse, specialized
software methods are needed to extract meaningful information from BCR and TCR sequence data.
Here, we review recent developments in bioinformatics tools for analysis of BCR and TCR repertoires,
with an emphasis on those that incorporate structural features. After describing the recent sequencing
technologies for immune receptor repertoires, we survey structural modeling methods for BCR and
TCRs, along with methods for clustering such models. We review downstream analyses, including BCR
and TCR epitope prediction, antibody-antigen docking and TCR-peptide-MHC Modeling. We also briefly
discuss molecular dynamics in this context.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

B cell receptors (BCRs) and T cell receptors (TCRs) are key mole-
cules in adaptive immune response that provide protection to per-
turbations, both from the outside (e.g. pathogens) and from within
(e.g. mutated or misfolded proteins). Together, BCRs and TCRs con-
stitute a unique class of proteins whose coding sequences are
arranged combinatorically in a cell-autonomous manner known
as V(D)J recombination. In V(D)J recombination within a given cell,
variable (V), diversity (D), and joining (J) segments are selected
randomly from among many variants, and joined to make the V
(variable) region of a full-length receptor. In addition to V(D)J
recombination, BCRs can also undergo subsequent somatic hyper-
mutation (SHM) and clonal selection upon antigen encounter, col-
lectively referred to as ‘‘affinity maturation”. On a cell population
level, these processes create a functionally diverse and dynamic
set (repertoire) of B and T cells. The number of possible different
BCR or TCR sequence combinations is extremely high, with theo-
retical estimates in the 1012–1018 range [1]. However, the observed
populations of receptor sequences in a given individual follow a
power law, where most sequences appear only at very low fre-
quency and a minority of sequences appear at higher frequencies
(see for example [2] for a recent discussion).

For both BCRs and TCRs, V regions consist of two polypeptide
chains, referred to as ‘‘light” (BCRs) or ‘‘alpha” (TCRs) and ‘‘heavy”
(BCRs) or ‘‘beta” (TCRs). TCRs are composed of a single pair of alpha
and beta chains while BCRs contain two pairs of light and heavy
chains [1]. For simplicity, in this review, we focus on a single pair
of (light-heavy or alpha–beta) chains.

Both BCRs and TCRs belong to the immunoglobulin-like fold in
which the canonical antigen binding site is composed of three
loops called ‘‘complementarity-determining regions” (CDRs), in
each receptor chain. The V(D)J recombination junction, in which
random nucleotides may be inserted during the recombination, is
located in the third CDR (CDR3). As a result, CDR3 is the most
diverse among the three CDRs [1]. Much effort has been spent on
CDR3 modeling, in particular for soluble BCRs (antibodies).

BCRs interact directly with antigens, and we refer to interface
residues as ‘‘paratope” on the BCR side and ‘‘epitope” on the anti-
gen side (Fig. 1A). TCRs, on the other hand, interact with antigen-
derived peptide fragments, which are presented by major histo-
compatibility complex (MHC) proteins (Fig. 1B). Here, generally
Fig. 1. Paratope and epitope in BCRs and TCRs. A, A crystal structure of SARS-CoV S protei
2DD8); heavy and light chains are colored (magenta and yellow, respectively). Epitope res
B, TCR-peptide-MHC complex for a viral peptide TAX and class I HLA A-0201 (PDB iden
shown as green spheres, while paratope residues are shown as sticks. (For interpretatio
version of this article.)
‘‘epitope” refers to the antigen-derived peptide and not the MHC
contacting residues.

Each human carries up to six class I MHC molecules and up to
eight class II molecules. There are thousands of MHC variants (alle-
les) in the human population, which can differ in their peptide
specificity [1]. Peptide-MHC binding affinity shapes the TCR reper-
toire, and the particular set of MHC alleles carried by an individual
become a source of TCR repertoire diversity, affecting the suscepti-
bility to particular diseases (reviewed in [3]). Since BCR maturation
requires a co-stimulation from activated helper T cells [4], the BCR
and TCR repertoires are not completely independent.

Both BCR and TCR sequences can be captured by current
sequencing technologies. Moreover, molecule and cell barcoding
technologies are an area of intense research and development.
Emerging sequencing and barcoding methods are thus expected
to revolutionize our understanding of immune repertoires. As just
one example, the number of paired (alpha–beta) TCR sequences for
which the peptide-MHC is known has grown by two orders of mag-
nitude in the last two years [5], indicating a need for computa-
tional tools that can keep pace with this growth.

In this review, after briefly reviewing recent technologies for
repertoire sequencing, we explore tools for interpreting BCR and
TCR sequences in terms of their structures and targeted antigens.
In this context, we cover structural modeling, epitope prediction,
molecular docking, and molecular dynamics. Integration of such
tools, along with growth in sequence and associated experimental
data, will allow us to more fully describe the immune status of an
individual in health and disease.
2. Repertoire sequence analysis

Very early approaches to characterize immune repertoires were
limited to estimating the length of the CDR3 loops [6]. Current
methods, relying on high-throughput sequencing (HTS) technol-
ogy, can be used for comprehensive quantification of full-length
TCR and BCR V region sequences [7,8]. Though a comprehensive
review on the existing technologies for repertoire sequencing anal-
ysis is beyond the scope of this review, HTS is the main source of
data for subsequent structural analysis. Therefore, we briefly
describe the basic information contained in bulk and single-cell
RNA-based repertoire sequencing (Fig. 2).
n receptor binding domain (green) bound by a neutralizing antibody (PDB identifier:
idues are shown as dark green spheres. TCR contacting residues are shown as sticks.
tifier 1BD2). The epitope is shown as red spheres and contacting MHC residues are
n of the references to colour in this figure legend, the reader is referred to the web



Fig. 2. Conceptual difference of bulk and single cell repertoire sequencing. In bulk sequencing, the information of receptor pairs will be lost while higher coverage tends to be
achieved. In single cell sequencing, the pairing information is preserved while currently sample preparation and sequencing costs tend to be higher than in bulk sequencing.
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2.1. Bulk sequencing

Early development of HTS repertoire analysis was based on bulk
sequencing (i.e. sequencing many cells without preserving their
identities). In this approach, the information of light/heavy or
alpha/beta pairs is lost. Thus, bulk sequence analysis tends to focus
on a single (typically the heavy/beta) chain.

Repertoire sequencing typically uses TCR/BCR enrichment fol-
lowed by PCR amplification to increase sensitivity and reduce
sequencing cost. Since a 100 bp fragment is enough to resolve
the CDR3 fragment, short read sequencing is often used. The choice
of sequencing technology can have an important impact on quality,
since the types and rates of errors can be different. Among pre-
ferred platforms are Illumina MiSeq (long reads) and HiSeq (short
reads targeting CDR3).

One of the sources of low-quality repertoire data is a biproduct
of PCR amplification. Without other information, we cannot distin-
guish between true nucleotide sequence differences and PCR
errors. As a result, PCR errors cause the appearance of spurious
sequences, in particular from dominant, highly abundant
sequences/clonotypes. Use of Unique Molecular Identifier (UMI)
sequences enables correction of PCR amplification biases and
quantification of the number of receptors expressed. Thus, the
use of technologies with UMI have a distinct advantage.

To date, several pipelines can be used to extract repertoire
information from bulk HTS data. These tools generally map
sequencing reads to TCR/BCR reference sequences. Then, contigs,
the continuous sequences assembled from the mapped reads, can
subsequently be annotated by V(D)J gene usage and CDR (1,2,)3
amino acid sequences [9,10]. IMGT/HighV-QUEST (International
Immunogenetics Information System V-Query and Standardiza-
tion) [11,12] uses pairwise alignment and sequence comparison
to experimental data to align sequencing reads. IgBLAST [13] uti-
lizes the BLAST algorithm [14] for its search engine. MiXCR [15]
is an efficient pipeline equipped with a fast aligner. It can be used
for reconstructing TCR/BCR sequences from generic RNA-seq data
without PCR amplification of TCRs/BCRs [16]. A detailed assess-
ment on those three tools can be found in [17]. The Immcantation
framework [18,19] and TRUST (TCR repertoire utilities for solid tis-
sue) [20] can be also used for the same purpose among many other
available tools not covered here
Though single chain information alone is usually not enough to
explain the binding of the receptor to the target epitope, there are
several methods applicable to bulk sequencing data. For example,
diversity analysis of the repertoire sequences can be used for esti-
mating the clonal diversity of an immune repertoire of each indi-
vidual, as well as repertoire overlap among repertoires of several
individuals. This can currently be performed using conventional
ecology measures [21–23], or repertoire-designed estimators
[24–26]. Also, by analyzing repertoire data from many individuals
with additional information like Human Leukocyte Antigen (HLA)
allele profiles or disease status, one can associate each TCR with
particular labels with the help of statistical hypothesis testing
[27,28]. Repertoire information also carries the information of
underlying V(D)J recombination. Thus, from repertoire sequences,
generative models of V(D)J recombination were developed; and,
in turn, these models were used to analyze repertoire sequence
data [29–34]. We have collected some of (but not all of) tools used
for those sequence analysis as in Table 1.

2.2. Single cell sequencing

The most important limitation of bulk sequencing approaches is
the loss of pairing between receptor chains. This limitation is
addressed by single cell repertoire profiling methods. These meth-
ods use a number of cell barcoding strategies to add a unique bar-
code to each cDNA in a given cell. New approaches are dramatically
improving the ability to measure full length paired receptors at the
single-cell level. For example, RAGE-seq (Repertoire and Gene
Expression by Sequencing) combines long reads from Oxford
Nanopore sequencing with short reads from Illumina sequencers
[35]. When combined with droplet based single cell RNA-seq
approaches, we can characterize the full-length paired repertoires
of thousands of single cells. In addition, off-the-shelf single cell
repertoire sequencing platforms are currently available from vari-
ous companies including 10x Genomics and Takara Bio.

In the case of single-cell gene expression data, TRAPeS (TCR
Reconstruction Algorithm for Paired-End Single Cell) [36], TraCeR
(Reconstruction of T cell receptor sequences from single cell
RNA-seq data) [37] and VDJPuzzle [38] are often used for analysis
of TCRs. Meanwhile, BASIC (BCR assembly from single cells) [39],
BraCeR (B-cell-receptor reconstruction and clonality inference



Table 1
Repertoire sequence analysis tools.

Tools Purpose URL References

IgBLAST Bulk Sequence reconstruction https://www.ncbi.nlm.nih.gov/igblast/ [13]
IMGT/HighV-QUEST http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.php [11,12]
MiXCR https://mixcr.readthedocs.io/en/master/index.html [15]
TRUST https://bitbucket.org/liulab/trust/src/master/ [20]

TRAPeS Single cell Sequence reconstruction https://github.com/YosefLab/TRAPeS [36]
TraCeR https://github.com/teichlab/tracer [37]
VDJPuzzle https://github.com/simone-rizzetto/VDJPuzzle [38]
BASIC http://ttic.uchicago.edu/~aakhan/BASIC/ [39]
BraCeR https://github.com/teichlab/bracer/ [40]

VDJtools General repertoire analysis https://github.com/mikessh/vdjtools [21]
Immcantation https://immcantation.readthedocs.io/en/stable [19]
Vidjil http://www.vidjil.org

http://bioinfo.lille.inria.fr/vidjil
[22]

ASAP https://asap.tau.ac.il [119]
ARGalaxy https://bioinf-galaxian.erasmusmc.nl/argalaxy/ [120]
bcRep https://cran.r-project.org/web/packages/bcRep/vignettes/vignette.html [121]
Immunarch https://immunarch.com [23]
Sumrep https://github.com/matsengrp/sumrep [122]

DiVE Specialized in diversity analysis http://cran.r-project.org/web/packages/DivE/index.html [24]
RDI https://rdi.readthedocs.io/en/1.0.0/ [25]
RECOLD https://github.com/Q-bio-at-IIS/RECOLD/tree/master/codes [26]

OLGA Generative model of VDJ recombination https://github.com/statbiophys/OLGA [29]
IgoR https://github.com/qmarcou/IGoR [34]
SONIA https://github.com/statbiophys/SONIA [30]
vampire https://github.com/matsengrp/vampire/ [26]
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from single-cell RNA-seq) [40] and an extension of VDJPuzzle [41]
are often used for BCR analysis. These tools mainly differ on the
way they assemble the missing information after mapping to refer-
ence sequences, and the final results are generally consistent. Since
structural modeling has yet to be effectively used for predicting
chain pairing, single cell sequencing technologies are critical for
TCR or BCR structural modeling. Moreover, expression of TCRs or
BCRs requires such pairing and so single cell sequencing is impor-
tant for most downstream analyses of T or B cells and their cognate
antigens.
2.3. Extensions of repertoire sequencing

There have also been exciting developments in the application
of HTS technology for experimental discovery of epitopes. In
Libra-seq (Linking B cell receptor to antigen specificity through
sequencing) [42], the 10x Genomics platform was used to barcode
not only BCR sequences but also antigen proteins. By sorting the
antigen-bound B cells and then performing single cell sequencing,
antigen specific BCRs can be identified from the antigen barcodes.
Similarly, by using barcoded peptide-MHC complexes, HTS allow
us to generate a large reference dataset of TCR-epitope pairs [43].
Kula et al. [44] developed T-Scan, a high-throughput method that
identifies functional antigen targets of CD8 T cells. They started
from bulk memory T cells and made antigen libraries such that tar-
get cells could present the antigens on MHC molecules. Recogni-
tion of target cells by T cells and subsequent next-generation
sequencing enabled T-scan to discover CMV antigens as well as
the targets of self-reactive TCRs. Gee MH et al. [45] used yeast-
display libraries of pMHCs and screened for antigens of orphan T
cell receptors on tumor-infiltrating lymphocytes. Kobayashi et al.
[46] have developed a cloning and expression system called
hTEC10 (human TCR efficient cloning system within 10 days) that
can be used to rapidly determine the antigen specificity of TCRs.
They applied their system successfully to peptide specificity and
cytotoxic activity of TCRs from EBV infection and cancer.
3. TCR and BCR 3D structural modeling

In spite of advances in experiential determination of receptor-
antigen interactions, most high-throughput experiments lack
residue-level resolution. X-ray crystallography and single-particle
electron microscopy (cryo-EM), on the other hand, provide such
high-resolution information, but are not suitable for high-
throughput analysis. Computational modeling of TCRs and BCRs
is now routine and can be performed in a high-throughput manner.
Building 3D models of receptors is also the first step in structure-
based analysis of receptor antigen interactions. For 3D structural
modeling, TCR or BCR V regions are generally divided into ‘‘frame-
works” and the three CDRs (Fig. 3). Each framework is a double
layer of beta sheets that contain the beginning and ending of each
CDR loop. There are other loops in V regions, but the CDRs are
important because of their high sequence diversity and because
they form a continuous surface that constitutes the main antigen
binding interface. Of the CDRs, CDR3 is the most diverse in terms
of both sequence and structure. CDR3 modeling has been tackled
by a wide range of approaches [47]. Software for CDR3 modeling
(Table 2) spans the range from simple sequence alignment meth-
ods [48], to fragment assembly [49], molecular dynamics (MD)
[50] and robotics-based loop closure algorithms [51]. In the most
recent antibody modeling assessment (AMA-II) [52], the lowest
heavy-chain CDR3 (CDRH3) errors were obtained by our own
group using a combination of MD, fragment assembly and manual
selection [53]. Based on an internal assessment of our AMA-II
results, we developed a purely fragment assembly-based tool,
Kotai Antibody Builder [54]. We more recently introduced Reper-
toire Builder, which exceeded Kotai Antibody Builder in terms of
accuracy, with a factor of 100 improvement in speed [55]. In the
same time frame, several new tools, including ABodyBuilder [56],
TCRModel [57], and PigsPro (Prediction of immunoglobulin struc-
ture v2) [58] have been introduced, which show advancement over
previously published methods. Because of its high accuracy and
ability to scale with the number of input sequences, we will briefly
outline the Repertoire Builder approach.

https://www.ncbi.nlm.nih.gov/igblast/
http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.php
https://mixcr.readthedocs.io/en/master/index.html
https://bitbucket.org/liulab/trust/src/master/
https://github.com/YosefLab/TRAPeS
https://github.com/teichlab/tracer
https://github.com/simone-rizzetto/VDJPuzzle
http://ttic.uchicago.edu/%7eaakhan/BASIC/
https://github.com/teichlab/bracer/
https://github.com/mikessh/vdjtools
https://immcantation.readthedocs.io/en/stable
http://www.vidjil.org
http://bioinfo.lille.inria.fr/vidjil
https://asap.tau.ac.il
https://bioinf-galaxian.erasmusmc.nl/argalaxy/
https://cran.r-project.org/web/packages/bcRep/vignettes/vignette.html
https://immunarch.com
https://github.com/matsengrp/sumrep
http://cran.r-project.org/web/packages/DivE/index.html
https://rdi.readthedocs.io/en/1.0.0/
https://github.com/Q-bio-at-IIS/RECOLD/tree/master/codes
https://github.com/statbiophys/OLGA
https://github.com/qmarcou/IGoR
https://github.com/statbiophys/SONIA
https://github.com/matsengrp/vampire/


Fig. 3. BCR and TCR structure. Representative BCR and TCR structures. The location in structure and sequence of the three CDRs are shown for a representative BCR (A) and
TCR (B) using the same PDB entries as in Fig. 1.

Table 2
BCR or TCR 3D modeling tools.

Tools BCR TCR URL References

Repertoire Builder Yes Yes https://sysimm.org/rep_builder/ [55]
PigsPro Yes No http://biocomputing.it/pigspro [58]
Rosetta Antibody Yes No https://rosie.graylab.jhu.edu/snug_dock [123]
ABodyBuilder Yes No http://frodock.chaconlab.org/ [56]
LYRA Yes Yes http://www.cbs.dtu.dk/services/LYRA/ [82]
TCRpMHCmodels No Yes http://www.cbs.dtu.dk/services/TCRpMHCmodels/ [83]
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In order to improve speed and reduce noise, one aim of Reper-
toire Builder was to remove 3D structure from the key decision-
making steps: sampling and scoring. Working in three dimensions
is computationally expensive and also messy, as protein structure
files can contain a plethora of sources of noise. As an alternative,
we derived feature vectors from pairwise query-template align-
ments and trained a machine learning model to recognize the good
alignments. Feature vectors currently consist of BLOSUM62 matrix
elements or gaps for each aligned residue pair and cover the entire
V region. The inclusion of residues outside of the CDR region was
intended to take the environment of the CDR into account in the
choice of template. We note that scoring at the alignment level is
not unique to Repertoire Builder; all of the methods do this. What
is novel here is the alignment-derived feature vectors. Another
trick used by Repertoire Builder was to store templates in the form
of structure-aware multiple sequence alignments (MSAs), which
can be readily computed using our MAFFT-DASH (Multiple Align-
ment using Fast Fourier Transform-Database of Aligned Structural
Homologs) pipeline and which have been shown to be significantly
more accurate than sequence-based MSAs [59]. The query
sequence can be added to a stored template MSA efficiently using
MAFFT’s fragment-adding option, which preserves the relation-
ships between the templates in the stored MSAs [60]. Templates
in MSAs are grouped by their CDR lengths. Thus, there is a different
template MSA stored for each CDR-length combination. The advan-
tage of using MAFFT-DASH in this manner is primarily a combina-
tion of speed andMSA accuracy. We have not assessed whether use
of alternative alignment strategies results in a degradation of
model quality. The current Repertoire Builder can model 104 paired
or unpaired sequences in approximately 30 min, which makes it
practically useful for high-throughput sequencing discussed above.
To our knowledge, Repertoire Builder is the only server that allows
multiple BCR or TCR sequences to be input at one time.
4. TCR and BCR clustering

As genomic data continues to grow, methods for clustering
nucleotide or amino acid sequences will play major role in
sequence and structural analysis. Since generic sequence clustering
methods (e.g. [61,62]) are beyond the scope of this review, here we
focus on methods specific to immune receptors. A common goal
when studying immune repertoires is to understand common fea-
tures of receptors that are shared by a group of donors of interest
(Fig. 4). The implication here is that receptors target the same anti-
gen and epitope will be more common in the donors of interest
than in a control group. This is a very general notion that can be
applied to either BCRs or TCRs and approached in a variety of ways.
Given the broad diversity of immune repertoires, their uneven
population distributions, and the relatively low overlap of exact
matching sequences among subjects, this task is a significant chal-
lenge. To address these issues, several clustering strategies have
been developed recently. Below, we review some representative
examples, including our own efforts.

https://sysimm.org/rep_builder/
http://biocomputing.it/pigspro
https://rosie.graylab.jhu.edu/snug_dock
http://frodock.chaconlab.org/
http://www.cbs.dtu.dk/services/LYRA/
http://www.cbs.dtu.dk/services/TCRpMHCmodels/


Fig. 4. Receptor clustering. B or T cells of interest are acquired from donors of interest, receptors are sequences and clustered based on sequence features, structure features,
or both. Clusters that are enriched in receptors from donors of interest are identified.
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4.1. TCR clustering

Based on the observation that there are specific positions in TCR
CDR3 regions that contact antigen peptides and that the presence
of particular sequence motifs can define TCR clusters, Glanville
et al., developed the GLIPH (grouping of lymphocyte interactions
by paratope hotspots) algorithm [63,64]. This algorithm clusters
TCRs based on local sequence motifs, as well as on other parame-
ters such as global CDR3 similarity, V gene usage, CDR3 length,
MHC profile of donor(s) and clone size. GLIPH identifies motifs that
are enriched in a given dataset relative to a control group, with the
goal of producing groups of TCRs targeting the same peptide-MHC
(pMHC). By using this approach, the authors were able to design
synthetic antigen-specific TCRs to groups, and confirm their speci-
ficity experimentally.

In a similar study, Dash et al. [65] developed TCRdist; a tool that
estimates the similarity of two TCR sequences by computing a
weighted Hamming distance among the concatenated amino acid
sequences of the CDR loops of each TCR. TCRdist assumes a higher
weight (3x) for the CDR3 regions. Clusters of highly similar
antigen-specific TCRs can be built, and new TCRs of unknown
specificity can be assigned to an antigen-specific cluster based on
similarity, allowing for the prediction of antigen specificity. Addi-
tionally, a diversity score (TCRdiv) that robustly calculates the
diversity of epitope-specific repertoires by considering both TCR
similarity and exact identity in a generalized Simpson’s diversity
index, was developed. TCRdist has recently been used to identify
clonal expansion of M. tuberculosis specific TCRs in a South African
cohort where it was able to accurately classify active tuberculosis
patients [66].

Though they share the same goal, the focus of those two tools
are slightly different. The GLIPH algorithm assumes that the input
data is enriched in TCRs targeting a restricted set of epitopes, and
tries to cluster these enriched TCRs using common motifs in the
dataset. With this approach, they are also able to avoid direct com-
parison of all pairs of sequences, which is computationally expen-
sive. Thus, GLIPH is suitable for large repertoire analyses of
particular disease cohorts. On the other hand, TCRdist is based on
direct comparison of each TCRs using a ‘‘universal” measure of
TCR similarity, and it is thus currently difficult to apply the method
to datasets greater than approximately 104. However, an advan-
tage of TCRdist is that the calculated distance between a pair of
TCRs are always the same, regardless of other factors. Such ‘‘uni-
versal” definition of TCR similarity/difference is of use when
assumptions about shared antigen/epitope cannot be made.

4.2. BCR clustering

Structural studies of antibodies targeting antigens specific to
HIV [67], influenza [68] and more recently SARS-CoV-2 [69] have
demonstrated that antibodies produced in unrelated donors tar-
geting common antigens and epitopes can share sequence and
structural features. We note here that, since B cells can undergo
affinity-driven maturation, such receptors need not derive from a
similar common clone. Recently, the SAAB + tool was developed
to characterize structural properties of CDRs from differentiated
B cells [70]. It is likely that more tools trained to identify ‘‘conver-
gence” of functionally related antibodies will appear in the future
as more sequence data from donors with shared BCR epitopes
become available.

To this end, we recently developed InterClone, a method to clus-
ter BCR sequences which are likely to share epitopes [71]. Inter-
Clone is based on a comparison of sequence and structural
features of pairs of BCRs using a machine learning-based classifier
that was trained on known antigen-BCR structures. Like TCRdist,
InterClone assigns a ‘‘universal” similarity score to each BCR pair.
Hierarchical clustering is then used to group sequences of high
similarity. As such, InterClone can be used without requiring
sequences to be enriched in a particular BCR motif. A sensitivity
of 61.9% and specificity of 99.7% were obtained when InterClone
was applied to an independent set of anti-HIV antibody sequences
[71]. A more robust and computationally efficient version of Inter-
Clone that works for both BCRs and TCRs and can perform high-
throughput analysis of up to 105 sequences is currently being
developed.

In addition to the above clustering methods, networks that
describe antibody repertoire architecture can be used to compare
repertoires. Miho and colleagues [72] developed a platform that
builds similarity networks of hundreds of thousands of antibody
sequences from both humans and mice. Using this approach, the
authors detected global patterns in antibody repertoire architec-
tures that were highly reproducible in different subjects, and
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tended to converge despite independent VDJ recombination. Fur-
thermore, these repertoire architectures were robust to clonal
deletion of private clones.
5. Epitope specificity

5.1. Predicting TCR epitopes

TCRs recognize short peptides presented on class I or II MHC
complexes. The ability to predict epitope(s) from TCR sequence
and MHC allele would be highly valuable in elucidating disease eti-
ology, monitoring the immune system, developing diagnostic
assays and designing vaccines. Traditionally, identifying epitopes
is carried out experimentally [73], and is both costly and time-
consuming. There is necessarily great interest in methods that
can accelerate this process computationally.

To this end, Fischer et al. [74] developed a deep learning
approach on TCR CDR3 regions to predict the antigen-specificity
of single T cells. Jokinen et al., [75] developed TCRGP to predict
whether TCRs recognize certain epitopes using a novel Gaussian
process (GP). Their method uses CDR sequences from TCR alpha
and beta and learns which CDR recognizes different epitopes. The
tool was applied to identify T cells specific to HBV. NetTCR by Jurtz
VI et al. [43] utilized convolutional networks for sequence-based
prediction of TCR-pMHC specificity. NetTCR uses the recent explo-
sion of next-generation sequencing data to train a sequence based-
predictor. Ogishi et al. [76] computationally defined immunogenic-
ity scores through sequence-level simulation of interaction
between pMHC complexes and public TCR repertoires. Though
their focus is more on immunogenicity of peptides presented to
MHC molecules, they also observed correlation between individual
TCR-pMHC affinities and the features important for immunogenic-
ity score. Gielis et al. [77] applied random forest-based classifiers
for epitope specific TCRs to repertoire level analysis. Their models
A

B

Fig. 5. Restricted docking of TCR-peptide-MHC complexes. A representative set of MH
conserved residue positions in the MHC. TCR alpha (yellow) and beta (magenta) chains a
references to colour in this figure legend, the reader is referred to the web version of th
successfully detected the increase of epitope specific TCRs upon
vaccination in two Yellow Fever vaccination studies. The works
by Chain and co-workers [78,79] also addressed related questions.
In [78], the authors have constructed a classifier to distinguish the
TCR beta sequences in expanded repertoires of ovalbumin-
stimulated mice from control. Their classifier was based on the fre-
quencies of amino acid triplets in CDR3 and their choice of
machine learning algorithm called LPBoost (linear programming
boosting) allowed them to identify the responsible motifs in CDR3.
5.2. TCR-pMHC 3D modeling

Unlike BCRs, which can be expressed as soluble antibodies, TCRs
remain attached to the cell surface. This, along with their weaker
binding affinities to pMHC complexes, has made experimental
structural analysis more difficult than for BCRs. Nevertheless, from
the known crystal structures of TCR-pMHC complexes, we can see
that the range of docking modes is highly restricted, as expected by
the similarity of MHCs within a given class (Fig. 5). As a result of
this restriction, we and others [80] have approached the problem
using structural templates for TCR-pMHC docking.

There are currently few methods for modeling TCR-pMHC com-
plexes. To our knowledge, there are two public servers for this pur-
pose: our own ImmuneScape [81] and the Lymphocyte Receptor
Automated Modeling or LYRA-based [82] TCRpMHCmodels [83].
Both of these approaches are ‘‘template-based” in the sense that
existing structures instead of stochastic conformational sampling
are used as templates for each of the key modeling steps: TCR,
pMHC and TCR-pMHC orientation. They are also both ‘‘bottom-
up” in the sense that models for TCR and pMHC are built and then
combined to form the TCR-pMHC complex. One possible concep-
tual difference is that, in ImmuneScape, CDRs are modeled after
the TCR and pMHC templates are combined in order to take the
pMHC into account. It will be interesting to compare the two
C class I (A) and class-II (B) complexes from the PDB were superimposed using
re contained within a narrow ensemble of binding modes. (For interpretation of the
is article.)
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approaches in more detail. TCRpMHCmodels compared favorably
to an earlier rigid docking-based approach, TCRFlexDock, which
suggests that care must be taken in sampling TCR-pMHC orienta-
tions beyond that which is observed in typical crystal structures.
5.3. Predicting BCR epitopes

Several computational methods are available to predict BCR
epitopes and paratopes. Of the two problems, paratope prediction
is much easier, as paratopes tend to correspond to CDR residues,
while epitopes can be anywhere on an antigen. This is illustrated
in the case of anti-influenza hemagglutinin (HA) antibodies
(Fig. 6); a superimposition of all known anti-HA antibodies leaves
very little un-targeted surface area.

Paratope prediction methods include the Paratome algorithm
[84], which is based on structural consensus between BCRs and
uses features from sequence or structure; Prediction of Antibody
Contacts or ProABC [85], which applies a random forest learning
technique and is based on sequence; Parapred [86], which uses a
deep learning architecture to extract patterns from variable
regions in sequence; AntibodyInterfacePrediction [87], which uses
a support vector machine method (SVM) to classify antibody sur-
face patches based on 3D Zernike descriptors; ProABC-2 [131],
which is an upgrade of the original algorithm [85] with convolu-
tional neural networks, and improves performance over existing
methods. Additionally, paratope predictors have evolved to be
specific to cognate antigen. The antibody i-Patch [89] algorithm
introduces a likelihood score for residue contact as a constraint
on local docking to generate predicted paratope residues, and thus
requires the structure of the antigen-antibody complex. AG-Fast-
Parapred [88], which is based on deep neural networks, utilizes
antigen sequence information to predict paratope.

With regard to epitope prediction there are many tools avail-
able. Previously, methods were built to predict linear epitopes that
are contiguous polypeptide chains, an example of which is LBtope
(Linear B-Cell epitope prediction server) [90], which discriminated
experimentally verified B-cell epitopes from background using
SVM. However, the majority of epitopes are non-continuous sur-
face residues characterized by structure as well as sequence. Sev-
eral methods are available to treat such conformational epitopes.
SEPIa [91] uses a combination of two classifiers (naive Bayesian
Fig. 6. BCR epitopes on influenza hemagglutinin. A representative set of anti-HA antibod
HA is a symmetric trimer and antibodies are only shown bound to the chain facing tow
and random forest) from antigen sequence. BepiPred-2.0 [92] uses
random forest algorithms to predict epitopes from primary
sequence only. Glep [93], is a recent method based on subgraph
clustering for the prediction of separated and overlapping epitopes.

Recently, there has been a realization that epitope prediction
without reference to a particular antibody is an ill-formed prob-
lem, and methods for ‘‘antibody-specific epitope prediction” have
been introduced [94]. There are currently few options for
antibody-specific epitope prediction. The PEASE (Predicting Epi-
topes using Antibody Sequence) [95] method applies machine
learning to predict true contacts of antibody-antigen residue pairs,
providing candidates epitope patches. EpiPred [96] identifies the
epitope region by rescoring antibody-antigen global docking based
on geometric matching of antigen–antibody interfaces and asym-
metric potentials. MAbTope [97] predicts epitope residues based
on consensus epitopes shared by top-ranked poses; the success
of this approach depends on the quality of the docking. PECAN
[132] predicts binding interfaces on both antibodies and antigens
by learning context-aware structural representations; it applies a
unified deep learning framework that consists of a combination
of graph convolutional networks, attention and transfer learning.
Although there is a clear awareness of the importance of antibody
information in epitope prediction, the traditional antigen-centric
methods cannot easily be extended to include such information.
This is partially because of the increase in the number of degrees
of freedom when antibody-antigen interactions are considered.
5.4. BCR-antigen docking

The most direct means of tackling antibody-antigen interac-
tions is through protein docking, a technique that requires struc-
ture information of antibody and antigen. This introduces 6
additional degrees of freedom for rigid docking and a host of other
issues due to the complexity and inherent uncertainty of protein
structural information. Nevertheless, protein docking is a mature
field and steady progress has been made in this area. Generally
speaking, docking methods can be classified into four categories:
Fast Fourier transform (FFT) correlation; Monte-Carlo (MC) simu-
lated annealing; Geometric hashing; and flexible docking [98]. In
Table 3, we give a representative list of molecular docking tools
or web servers that can be applied to antibody-antigen docking.
ies bound to HA from the PDB were superimposed using conserved residues in HA.
ard the back for simplicity.



Table 3
Antibody docking methods.

Tools Docking mode URL Algorithm References

ClusPro Have Ab specific
mode

https://cluspro.bu.edu/login.php FFT based [99]

SnugDock/
Rosseta

Have Ab specific
mode

https://rosie.graylab.jhu.edu/snug_dock Semi flexible docking with energy
minimization

[49,102,123]

FRODOCK2.0 Have Ab specific
mode

http://frodock.chaconlab.org/ FFT based [101]

PatchDock/
FireDock

Have Ab specific
mode

https://bioinfo3d.cs.tau.ac.il/PatchDock/, http://bioinfo3d.
cs.tau.ac.il/FireDock/

Geometric hashing based [100,124]

HADDOCK2.2 Not Ab specific
mode

https://haddock.science.uu.nl/services/HADDOCK2.2/ MC simulated annealing based [103]

ZDOCK Not Ab specific
mode

http://zdock.umassmed.edu/ FFT based [105]

SwarmDock Not Ab specific
mode

https://bmm.crick.ac.uk/~svc-bmm-swarmdock/ Flexible docking with Particle Swarm
Optimization (PSO)

[125]

LightDock Not Ab specific
mode

https://lightdock.org/ Flexible docking with Glowworm Swarm
Optimization (GSO)

[104]

pyDockWeb/
pyDock

Not Ab specific
mode

https://life.bsc.es/pid/pydockweb FFT based [126]

HDOCK Not Ab specific
mode

http://hdock.phys.hust.edu.cn/ FFT based [127]

HexServer Not Ab specific
mode

http://hexserver.loria.fr/ FFT based [128]

ATTRACT Not Ab specific
mode

http://www.attract.ph.tum.de/services/ATTRACT/ Energy minimization [129]

GRAMM-X Not Ab specific
mode

http://vakser.compbio.ku.edu/resources/gramm/grammx/ FFT based [130]
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Of these, Cluspro [99], PatchDock [100], FRODOCK [101] and Snug-
Dock [102] provide Antibody-Antigen specific modes and are cap-
able of automatically masking non-CDR regions. Among the four,
ClusPro, FRODOCK and PatchDock implement rigid-body or soft
docking which do not consider the large conformational changes
in the Antibody or Antigen. Although we are not aware of a flexible
docking methodology tailored for antibody-antigen interactions
[102], SnugDock takes molecular flexibility into account by opti-
mizing the antibody-antigen rigid-body positions, orientation of
the H/L chains and conformations of the six CDR loops.

Recently, Vreven et al. used a well-established flexible docking
program, HADDOCK [103] and another three representative tools
(ClusPro, LightDock [104] and ZDOCK [105]) to systematically ana-
lyze 16 antibody-antigen complexes from the well-studied ZDOCK
protein–protein interaction benchmark (version 5.0) [106]. The
results were evaluated using criteria established by the Critical
Assessment of PRedicted Interactions (CAPRI) community where
models are classified into the four categories: Incorrect, Accept-
able, Medium, or High quality [107]. It was demonstrated that
information-driven docking, even using noisy predictions of epi-
tope and paratope, could significantly improve performance over
all four algorithms [108]. Notably, HADDOCK was capable of pro-
viding high quality models for all 16 entries based on CAPRI criteria
in this test. However, this study did not evaluate the tolerance of
the docking methods to typical BCR modeling errors.

As with all protein docking from homology models, the success
of docking antibody models depends heavily on the quality of the
starting structures [109]. Structural uncertainties in the binding
regions can occur either from flexibility or modeling errors. More-
over, the regions of greatest uncertainty tend to be the CDRs (espe-
cially CDRH3), which is highly likely to form part of the paratope
[110]. These issues can be addressed to some extent by use of epi-
tope and paratope predictions. However, few antibody docking
methods have been rigorously tested using a large benchmark of
realistic models. The bottom line is that structure-based prediction
of antibody-antigen interactions from sequence involves a number
of interrelated tasks: receptor and antigen model building, initial
epitope and paratope prediction, docking, scoring and refinement.
The combination of so many critical steps results in complexity,
both in terms of software integration and in parameter optimiza-
tion. Fortunately, the emergence of larger and better BCR sequence
datasets will be a motivation to develop well-integrated structure
prediction pipelines.
6. Molecular dynamics

In this review, we have focused primarily on high-throughput
structure-based methods that can be applied to BCR or TCR reper-
toires. As is clear from the previous section, combining software
methods that work well in isolation introduces complexity. Such
complexity arises from conceptual considerations (e.g. parameter
optimization) and technical issues (code interoperability). In this
regard, MD is conceptually simple: it applies Newtonianmechanics
to molecular systems. The force fields describing the interatomic
interactions can be taken as given and generally do not have to
be optimized. Therefore, even though MD is not a high-
throughput method, it can be used to independently confirm
BCR- or TCR specific calculations.

As with all proteins, the dynamics of BCRs and TCRs is inti-
mately tied to their functions. Protein dynamics are governed by
interactions at the level of individual atoms. The time and length
scales involved are, however, difficult to observe experimentally.
Molecular dynamics offers the possibility to observe the behavior
of proteins and lipids at atomistic resolution, and can therefore
contribute to a better understanding of the immune system. The
challenges facing such studies are illustrated by recent work by
the Deane group, who used a large number of molecular dynamics
studies to investigate the influence of point mutations on the
structure and dynamics of an epitope derived from the Epstein Barr
virus [111]. In their simulations they did not observe a strong rela-
tion between the structural and dynamical features of the epitope
and its immunogenicity. It is not clear if this is due to limitations in
their modelling, or due to the complexity of the immune system.
Reboul et al. investigated the immunogenicity of a specific epitope
when presented by two structurally highly similar MHC com-
plexes, HLA-B*3508 and HLA-B*3501. Only when the epitope is
bound to HLA-B*3508 is a strong interaction with the T cell recep-

https://cluspro.bu.edu/login.php
https://rosie.graylab.jhu.edu/snug_dock
http://frodock.chaconlab.org/
https://bioinfo3d.cs.tau.ac.il/PatchDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
http://bioinfo3d.cs.tau.ac.il/FireDock/
https://haddock.science.uu.nl/services/HADDOCK2.2/
http://zdock.umassmed.edu/
https://bmm.crick.ac.uk/%7esvc-bmm-swarmdock/
https://lightdock.org/
https://life.bsc.es/pid/pydockweb
http://hdock.phys.hust.edu.cn/
http://hexserver.loria.fr/
http://www.attract.ph.tum.de/services/ATTRACT/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
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tor formed. Simulations showed that the epitope exhibits a much
higher flexibility in HLA-B*3501, thereby apparently hindering
the formation of a strong interaction by the T cell receptor [112].

Most studies focusing on the T cell receptor only study the
dynamics of T cell receptors when bound to a pMHC. In contrast,
Dominguez and Knapp compared the dynamics of T cell receptors
bound to pMHC and free T cell receptors. In their study they found,
apart from expected results as an increased flexibility and
increased solvent accessible surface of the CDRs in the free T cell
receptor, also differences in the hydrogen bond network of the
CDR3a chain in the free TCR versus the pMHC bound TCR [113].
A study combining steered molecular dynamics and single-
molecule biophysical experiments [114] studied the formation of
catch bonds between the pMHC and the TCR. Catch bonds are a
special type of bond in which the lifetime increases when more
force is applied. This study suggests that catch bond formation is
influenced by conformational changes in the pMHC. A downside
of molecular dynamics simulations are the high computational
requirements. Fodor et al. were able to distill conformational data
from pMHC class I x-ray structures using ensemble refinement,
which is a refinement technique to obtain dynamic data without
the need of more computationally intensive molecular dynamics
simulations [115]. Another way to reduce the computational
requirements is by using coarse grained simulations, in which
atoms are grouped together into beads. Coarse graining allows
for the study of much larger systems on longer time scales. Friess
et al. modeled the transmembrane domains of the immunoglobu-
lin M (IgM) B cell receptor, which have been unresolved so far,
and subsequently used coarse grained simulations to study their
aggregation behavior and association with lipid rafts [116].
7. Conclusions

Recent advances in sequencing technology enable the study of
immune responses in unprecedented breadth and depth. As dis-
cussed above, the emerging data has spawned the development
of a wide range of modeling methods that are applicable to B cells,
T cells or both. Current challenges include the integration of data
and methodologies. For example, sequence and structural informa-
tion can, in principle, be combined to yield more accurate descrip-
tions of receptors sharing antigen and epitope specificity.
Structural modeling is still not in the mainstream of repertoire
analysis; nevertheless, 3D modeling methods present a straightfor-
ward direction to encompass ‘‘shared features” of functionally
related receptors in different donors.

In the context of repertoire analysis, we are often interested in
the target antigens and epitopes; however, the scale of publicly
available data on targeted antigens and epitopes is currently smal-
ler than that of BCR/TCR sequences, and vastly smaller the actual
BCR-antigen or TCR-peptide-MHC interactome. As barcoding
methods evolve to include antigens themselves [42], there may
soon be new and valuable data available to train methods for func-
tional classification of BCRs and TCRs.

At the point where we are asking not only what is targeted but
also why or why not, the use of structural modeling is likely to play
a critical role in our understanding of BCR and TCR molecular
recognition. As a case in point, at the time of this writing, we are
in the midst of the COVID-19 pandemic. This is an example where
the target antigens, along with their structures, are largely known,
and understanding host immune responses to these antigens is of
vital importance in the development of diagnostics, biomarkers,
vaccines and therapeutics [117]. Structural similarity among neu-
tralizing antibodies targeting SARS-CoV-2 [69] or between SARS-
CoV-1 and SARS-CoV-2 [118] have been noted. With such high
stakes driving research and development, integration of emerging
technologies in the repertoire analysis domain, including structural
analysis, is expected. As the saying goes, ‘‘necessity is the mother of
invention,” and the need for understanding human immune reper-
toires has never been greater.
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