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Abstract
In the past century, noncommunicable diseases have surpassed infectious diseases as the principal cause of
sickness and death, worldwide. Trillions of commensal microbes live in and on our body, and constitute
the human microbiome. The vast majority of these microorganisms are maternally derived and live in the
gut, where they perform functions essential to our health and survival, including: digesting food, activating
certain drugs, producing short-chain fatty acids (which help to modulate gene expression by inhibiting the
deacetylation of histone proteins), generating anti-inflammatory substances, and playing a fundamental
role in the induction, training, and function of our immune system. Among the many roles the microbiome
ultimately plays, it mitigates against untoward effects from our exposure to the environment by forming a
biotic shield between us and the outside world. The importance of physical activity coupled with a balanced
and healthy diet in the maintenance of our well-being has been recognized since antiquity. However, it is only
recently that characterization of the host–microbiome intermetabolic and crosstalk pathways has come to the
forefront in studying therapeutic design. As reviewed in this report, synthetic biology shows potential in de-
veloping microorganisms for correcting pathogenic dysbiosis (gut microbiota–host maladaptation), although
this has yet to be proven. However, the development and use of small molecule drugs have a long and suc-
cessful history in the clinic, with small molecule histone deacetylase inhibitors representing one relevant ex-
ample already approved to treat cancer and other disorders. Moreover, preclinical research suggests that
epigenetic treatment of neurological conditions holds significant promise. With the mouth being an extension
of the digestive tract, it presents a readily accessible diagnostic site for the early detection of potential un-
healthy pathogens resident in the gut. Taken together, the data outlined herein provide an encouraging road-
map toward important new medicines and companion diagnostic platforms in a wide range of therapeutic
indications.
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Introduction
In less than 100 years, noncommunicable diseases have
surpassed infectious diseases as the principal cause of
sickness and death, worldwide.1 One hundred trillion
commensal microbes (including the fungal community
referred to as the mycobiome)2 that live in and on our
body constitute the human microbiome,3 although a re-
cent study4 estimates the overall figure to be much
lower. Regardless of the absolute number, the vast ma-
jority of these microorganisms live in the gut (micro-
biota),5 where they perform functions that are essential
to our health and survival. They help us digest food6;
participate in the activation of certain drugs7; produce
short-chain fatty acids (SCFAs) that help modulate
gene expression by inhibiting deacetylation of histone
proteins8–10; generate molecules that reduce inflamma-
tion11; and play a fundamental role in the induction,
basic development, training, and function of our im-
mune system.12–14 Thus, as a whole, the microbiome be-
comes an integral part of our immune makeup, and is
largely inherited from the mother with significant differ-
ences consequent to cesarean versus vaginal deliver-
ies.15–20 Among the many roles the microbiome may
ultimately play in health and disease, it mitigates against
the untoward effects from our exposure to the environ-
ment by residing as a biotic barrier between us and the
world around us.1,21–25

Neuropsychiatric disorders26 are on the increase glob-
ally and, of the noncommunicable diseases, stand out as
a leading cause of disability.3,8,27,28 Accruing evidence
strongly links gut dysbiosis (gut microbiota–host malad-
aptation) as a risk factor in a wide range of mental ill-
nesses that include neuropsychiatric conditions,3,29–38

such as autism spectrum disorder (ASD)39–46 and
schizophrenia39,40,46–49 among them. There are cur-
rently no drugs approved that treat the core symptoms
of ASD.50 The pathogenic mechanisms underlying
schizophrenia, a debilitating mental disorder, are un-
known51 and drug therapies used to treat the associ-
ated psychotic symptoms have advanced little since
the introduction of clozapine in 1960.52,53

The reported association of mental illness with diges-
tive disturbances dates back to Hippocrates and stands as
the single consistently linked comorbidity described in
the medical literature from ancient times to the present.49

Although the genesis of our microbiome is predomi-
nantly our mother’s,18,54 eventually our microbiome
transforms into our own unique signature.55 Changes in
the gut microbial composition and function constantly
adapt to our diet,56,57 and the mechanistic relationships

between the gut microbiota in the development of the en-
teric nervous system58 and the preservation of our meta-
bolic health59,60 are only now beginning to be elucidated.

Microbiota-Induced Epigenetics
Advances in genetic editing technologies may help clar-
ify whether it is our genetics that control our epigenome
or epigenetics that control the genome—or, more likely,
the relationship between the two is mutual.61 There is
supporting evidence to suggest that our microbiome
plays a fundamental role in this relationship.14,62,63

Numerous studies64,65 show microbe-generated metabo-
lites are intertwined with host cell biochemistry and
physiology, and SCFA-mediated cell signaling is a key
pathway that gut microbes use to communicate with
the host.9,44,66–68 Acetate, propionate (propionic acid is
also commonly referred to as PPA), butyrate, and penta-
noate, having respectively, 2, 3, 4, and 5 carbon atoms
are SCFAs (Table 1), largely produced by microbial fer-
mentation of complex polysaccharides (starches and fi-
bers) in the colon (longer chain aliphatic acids with 6
to 12 carbons are considered to be medium-chain fatty
acids [MCFAs]). SCFAs are absorbed into the colonic
epithelium where, primarily, butyrate is consumed as a
preferred fuel source by colonocytes.69–73 Microbiota-
produced SCFAs enter the bloodstream through the por-
tal circulation of the host and/or the distal colon and are
transported to recipient tissues where they are taken up
and used in a variety of cellular responses, including the
regulation of gene expression.9,47,74,75

Many brain disorders are associated with imbalances
in protein acetylation levels and transcriptional dys-
function.76 Histone deacetylase (HDAC) inhibitors
represent a promising therapeutic option to correct
these deficiencies, and numerous studies using buty-
rate, the most potent of the SCFA HDAC inhibitors,9,77

Table 1. Chemical Structures of Fatty Acids with Two
to Eight Carbon Atoms

R Fatty acid No of carbon atoms

H Acetic 2
CH3 Propionic 3

CH3CH2 Butyric 4
CH3CH2CH2 Pentanoic 5

CH3CH2CH2CH2 Hexanoic 6
CH3CH2CH2CH2CH2 Heptanoic 7

CH3CH2CH2CH2CH2CH2 Octanoic 8
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demonstrate the medicinal potential of butyrate in the
intervention of neurodegenerative diseases and psychi-
atric disorders.26,64,76,78–85

a-Lipoic acid [(R)-5-(1,2-dithiolan-3-yl)pentanoic
acid] (ALA, Fig. 1) is a naturally occurring 5-
membered ring disulfide-substituted SCFA HDAC in-
hibitor86,87 with strong antioxidant activity.88 It is an
essential cofactor in aerobic metabolism and is the
central component forming the pyruvate dehydrogenase
complex,89,90 which functionally links glycolysis in the
cytoplasm to oxidative phosphorylation (OXPHOS) in
mitochondria.91 ALA plays a role in microbial metabo-
lism too.92 Although ALA is present in almost all food
types that we eat,93 and is readily digested, absorbed,
and transported to tissues, including brain,94–96 the
amounts available from diet are low.93 Although the
acquisition and use of ALA vary in different microbes,
yeast, and animal cells,97,98 its functions are, nonethe-
less, essential to the organism, and in most prokary-
otic and eukaryotic microorganisms, plant and
animal mitochondria, and plant plastids, ALA is enzy-
matically synthesized endogenously from the MCFA,
octanoate.97–99

In addition to its role in the metabolic pathways,
ALA is reported in many research studies to be a potent
activator of the nuclear factor (erythroid-derived 2)-
like 2 (Nrf2) antioxidant response element signaling
pathway that regulates the expression of genes whose
protein products are involved in the detoxification
and elimination of reactive oxygen species and elec-
trophilic agents.26,96,100–102 Oxidative stress has been
implicated in the pathogenesis of various neurodegener-
ative and neuropsychiatric disorders, including depres-
sion.103,104 Vasconcelos et al.105 showed that ALA
(100 mg/kg) alone or combined with clozapine reversed
schizophrenia-like alterations induced by ketamine. Ket-
amine is a known glutamatergic N-methyl-D-aspartate
receptor antagonist that can induce psychotomimetic,
perceptual, cognitive, and neuroendocrine responses in
humans and in rodent models of schizophrenia.106,107

ALA also inhibits nuclear factor kappa-B (NF-jB) acti-
vation independent of its antioxidant function. NF-jB
belongs to an important group of transcription factors
regulated by a kinase-mediated signaling pathway that
transduces signals from the cell surface to changes in
gene expression.108,109

Fatty acids represent one of the body’s long-term stor-
age reservoirs and sources of fuel energy—the heart being
a primary consumer.110 In the presence of respiratory ox-
ygen, fatty acids are shuttled through the mitochondrial
OXPHOS complex system, where they are degraded by
two carbon units at a time to shorter-chain fatty acids
(and ultimately to acetyl coenzyme A), with concomitant
release of water, CO2, and ATP in the process. The cellu-
lar availability of SCFAs for use in epigenetic chromatin
remodeling through their ability to inhibit HDAC activ-
ity, therefore, is closely tied to mitochondrial energy pro-
duction and metabolism. Since both prokaryote and
eukaryote cells share common pathways for energy pro-
duction, for example, the citric acid cycle,75 it comes as
no surprise that gut microbiota inexorably affect host–
cell bioenergetics, which in turn fuels gene expression
in the mitochondrial and nuclear genomes.75,111 Over a
billion years of evolutionary history have allowed our mi-
tochondrial DNA (mtDNA) and nuclear DNA to co-
evolve with a high degree of genetic compatibility.112,113

Interestingly, our microbiome and our mitogenome
(mtDNA), as well as portions of our epigenome—for ex-
ample, maternal silencing,114 are uniquely passed to each
of us from our mother.

Gut microbiota have a profound influence on the host
immune system.13 Maternal immune activation is a
shared environmental risk factor for a plethora of neu-
ropsychiatric and neurodegenerative disorders that
may or may not develop into clinical symptoms in off-
spring.13 Evidence from an in-depth study115 of data
extracted from the Danish health registry of more
than 1 million children born between 1980 and 2005, fo-
cusing on cases where the mother had a viral infection
with fever requiring hospitalization during the first tri-
mester, strongly links maternal immune dysregulation
with suppressed neurodevelopment and cognitive func-
tion (ASD) in their offspring.116 In other epidemiologi-
cal studies,117 prenatal exposure to infection visibly
stands out as a risk factor in schizophrenia and other
neurodevelopmental abnormalities. The possibility that
prenatal Zika virus infection from a mosquito reservoir
is responsible for the current outbreak in Brazil of chil-
dren born with microcephaly is a disturbing and fright-
ening example.118–121

FIG. 1. Chemical structure of R-(+)-lipoic acid.
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Synthetic Biology
With a capacity to act either naturally or by manipula-
tion, the gut microbial ecosystem is an indispensable
and constituent player in the maintenance of our well-
being.7 Thus, in treating disease, adjusting the functional
composition of the gut microbiome may help facilitate
and even alter the outcome of therapeutic interven-
tions.122,123 Dietary sources of probiotics such as, for ex-
ample, in traditional Greek yogurt, have been used since
antiquity in the Mediterranean region (Mediterranean
diet)124,125 to maintain a state of wellness. However,
once pathogenic dysbiosis sets in, probiotics have
not proven to be remedial123,126,127 and other inter-
ventional methods are being investigated. In this ef-
fort, independent work from several groups suggests
that (engineered) bacteria have potential to be an ef-
fective means for delivering, enhancing, or themselves
acting as therapeutic agents (‘‘living pills’’)128 to treat
certain diseases,22,129–132 including psychiatric disor-
ders,43,48,133–136 and significant investments are being
made to adapt a variety of commensal microbial species
for remodeling the gut microbiota (ecobiotics) in disease-
treating indications.133,137–139 A similar approach aims to
utilize engineered viruses to seek and selectively destroy
pathogenic bacteria.140–142 Drawing conclusions from a
study of 11 children affected by ASD that showed im-
provement in communication and behavioral tests after
being treated with vancomycin for 8 weeks, Mangiola
et al.46 speculate that modulation of gut microbiota
through antibiotic treatment may influence the symp-
toms and expression of psychiatric disorders in general.
Devkota143 takes this further by underscoring a com-
prehensive need for more investigations into drug–
microbiome interactions and the mechanisms that
are involved therein.

Interestingly, during long stays in space, the config-
uration of the gut microbiome of astronauts is often
significantly transformed relative to the one they had
on Earth.144–146 The ongoing NASA Twins Study,
with Scott Kelly having recently returned from a his-
toric 340-day mission aboard the International Space
Station, may shine additional light on this subject.147

Gut microbial dysregulation can alter one’s immune
status and cause aberrant social and cognitive behav-
ior.35,148,149 This may result in catastrophic conse-
quences during long space flights, as for example, to
Mars, if an astronaut’s ability to carry out demanding
tasks at a high performance and optimal level becomes
severely compromised.150 History shows that address-
ing the technological challenges space exploration

presents has a constructive rippling effect on the tech-
nological advances made for a wide range of applica-
tions here on Earth. Synthetic biology151 has potential
to deliver robust and reliable organisms that can assist
on long-duration astronaut missions.152 It is antici-
pated that the techniques required to be developed
may also be applied to engineer phage and bacteria
to explore and to therapeutically modify the gut micro-
biome as needed.153

Brain Development and Neurological Disorders
Aging is a leading risk factor (Fig. 2)154 in progressing to
dementia.155–159 Although the latest studies suggest that
the prevalence of dementia may be leveling off and even
decreasing in some subsets of the population,160 for the
foreseeable future, dementia will continue to be a major
challenge for the healthcare establishment.161

The gut’s evolving capacity to adapt and maintain
normal microbiota, which begins at birth and contin-
ues throughout one’s life, is necessary to support the
metabolic activities of the brain.59,162 This is especially
so in the early childhood years through adulthood.59

Studies have shown that some of the typical behavioral
and physiological abnormalities associated with neuro-
developmental disorders, including autism43–45,163–165

and schizophrenia,40,47–49 can be modulated by recon-
figuring the gut microbiome composition.122,166

Acetate, propionate, and butyrate comprise the ma-
jority of SCFAs produced in the gut by microbial fer-
mentation.21,69 Propionate and butyrate can modulate
brain functioning, principally appetite and energy ho-
meostasis, through regulation of neuropeptide produc-
tion.167 Butyrate is mostly absorbed by the colonic
epithelium, whereas acetate and propionate are passed
into the portal circulation.168–170 In gut dysbiosis, the
constitutional spectrum of SCFAs varies substantially
from the host’s natural healthy balance,3,32,39,60,171

and higher than normal levels of PPA have been linked
to deleterious effects on brain function43,75,78,172–179 in
autistic children.24,174 Given these findings, and the fact
that PPA is widely used as a food preservative,180 there
may be cause for some concern.

Idiopathic late-onset dementia (ILOD) is character-
ized by a series of declining daily functional compe-
tences, most often involving memory, reasoning, and
sociobehavioral abilities, in the elderly.157,161 Dementia
encompasses a myriad of clinical symptoms typically as-
sociated with discrete neurological disorders such as Alz-
heimer and Parkinson diseases, hippocampal sclerosis of
aging, and Lewy body and frontotemporal dementias
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being the more notable ones, but not collectively mani-
fested by any one of them. Cellular processes depend
on the energy supplied by their mitochondria, and
dysfunctional mitochondria can lead to an unsustain-
able cellular bioenergetics deficit that is detrimental to
the cell’s function and survival.181 In brain cells, even
a small energy deficit, which is a common occurrence
during the aging process, can reduce synaptic neuro-
transmitter release and adversely affect synaptic func-
tion.26,101 Maintaining a healthy gut microbiota state
is necessary to support the metabolic activities of the
brain,59,162 and Mattson157 and Bourassa et al.85 posit
that some of the common pathologies leading to ILOD
and other brain disorders may be amenable to therapeu-
tic modification by diet and lifestyle changes. For exam-
ple, exercise, yoga, and meditation are lifestyle activities
known to improve brain blood flow—which, presum-
ably, can enhance perfusion of the brain with micronu-
trients absorbed by the gut182—and are increasingly
being incorporated in treatments for depression and
other mental disturbances.36,127,183–185

At the other end of the age spectrum, the correla-
tion between impaired intellectual development and
a prolonged state of malnutrition in infants and
young children is inescapable.186–189 Recent studies
have demonstrated that the normal pattern of gut
microbiota assembly is disrupted in malnourished
children.162,187 To maximize the therapeutic benefit

of diet and dietary supplements, preclinical evidence
suggests that a healthy microbiome in these children
may need to be configured as well.190,191

Concluding Remarks
The importance of physical activity coupled with a bal-
anced and healthy diet in the maintenance of our well-
being has been recognized since antiquity. However, it
is only recently that characterization of the host–
microbiome intermetabolic and crosstalk pathways
has come to the forefront for study in therapeutic de-
sign and treatments.68,192 As reviewed in this report,
synthetic biology has potential to develop microorgan-
isms for correcting pathogenic dysbiosis, but this has
yet to be proven. (For additional examples of the latest
approaches to manipulating the microbiota, including
illustrative figures, see Ash and Mueller,193 and articles
cited therein.) In contrast, the development and use of
small molecule drugs have a long and successful his-
tory in the clinical treatment of diseases. Small mole-
cule HDAC inhibitors are already used in the clinic
to treat cancer and hematological disorders,77 and
preclinical research with SCFA HDAC inhibitors
demonstrates significant potential in epigenetic treat-
ment of neurological conditions.26,101 Epigenetic reg-
ulation of host–microbiota interactions by utilizing
epigenomic-targeting drugs has been suggested by
Alenghat and Artis.74

FIG. 2. Meta analyzed estimates of dementia prevalence in the United States.
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The mouth, being an extension of the digestive tract,
presents a readily accessible diagnostic site for the early
detection of potential unhealthy pathogens resident in
the gut. Salivanomics is a rapidly emerging tool in the
arsenal of salivary diagnostics.194 Collecting saliva or
swabbing the inside cheek of the mouth is noninterven-
tional, making it a highly attractive diagnostic proce-
dure, particularly for infants and young children. It is
not unlikely that regular visits to your dentist may
soon be as important to your gut as it is to your oral
hygiene, white teeth, and a nice smile.

Acknowledgments
We thank the MitoCure Foundation for their generous
financial support, and Drs. Carl A. Pinkert (The Uni-
versity of Alabama, Tuscaloosa, AL), Michael H.
Irwin (Auburn University, Auburn, AL), Robert J.
Zamboni (McGill University, Montreal, QC, Canada),
and Susan P. Perrine (Boston University School of
Medicine) for their invaluable advice and helpful dis-
cussions in the preparation of this article.

Authors’ Contributions
The article was written through contributions of all au-
thors. All authors have given approval to the final ver-
sion of the article.

Author Disclosure Statement
K.S. owns shares in PhenoMatriX. W.H.M. and K.S.
have collaborated in the past on cancer projects as
part of a formal agreement between SRI International
and PhenoMatriX. No competing financial interests
exist.

References
1. Dietert J, Dietert R. The sum of our parts. Scientist. 2015;29:44–49.
2. Ghannoum M. The mycobiome. Scientist. 2016;30:32–37.
3. Fond G, Boukouaci W, Chevalier G, et al. The ‘‘psychomicrobiotic’’: tar-

geting microbiota in major psychiatric disorders: a systematic review.
Pathol Biol. 2015;63:35–42.

4. Sender R, Fuchs S, Milo R. Revised estimates for the number of human
and bacteria cells in the body. BioRxiv. 2016 [Epub ahead of print]; DOI:
http://dx.doi.org/10.1101/036103.

5. Blekhman R, Goodrich JK, Huang K, et al. Host genetic variation impacts
microbiome composition across human body sites. Genome Biol.
2015;16:191.
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Abbreviations Used
ALA ¼ a-lipoic acid
ASD ¼ autism spectrum disorder

HDAC ¼ histone deacetylase
ILOD ¼ idiopathic late-onset dementia

MCFA ¼ medium-chain fatty acid
mtDNA ¼ mitochondrial DNA

NF-jB ¼ nuclear factor kappa-B
Nrf2 ¼ nuclear factor (erythroid-derived 2)-like 2

OXPHOS ¼ oxidative phosphorylation
PPA ¼ propionic acid

SCFA ¼ short-chain fatty acid
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