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ABSTRACT

Summary: We created a fast, robust and general C++ implementa-

tion of a single-nucleotide polymorphism (SNP) set enrichment algo-

rithm to identify cell types, tissues and pathways affected by risk loci.

It tests trait-associated genomic loci for enrichment of specificity to

conditions (cell types, tissues and pathways). We use a non-paramet-

ric statistical approach to compute empirical P-values by comparison

with null SNP sets. As a proof of concept, we present novel applica-

tions of our method to four sets of genome-wide significant SNPs

associated with red blood cell count, multiple sclerosis, celiac disease

and HDL cholesterol.

Availability and implementation: http://broadinstitute.org/mpg/

snpsea

Contact: soumya@broadinstitute.org

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

As genome-wide association studies (GWAS) continue to find
disease alleles, investigators seek to identify the set of pathways

and tissue types affected by these alleles, and the physiological
conditions under which they act (Elbers et al., 2009; Lango Allen
et al., 2010; Raychaudhuri, 2011; Wang et al., 2013; Yaspan and

Veatch, 2011). For example, we have previously presented
statistical methods to identify immune cell types for further func-
tional investigation by finding cell type-specific expression of

genes in linkage disequilibrium (LD) with autoimmune disease-
associated single-nucleotide polymorphisms (SNPs) (Hu et al.,
2011). Presumably, alleles influence disease risk through path-

ways specific to these cell types.
We sought a general implementation of these methods to

leverage data from high-throughput functional assays that

assess genome-wide transcription, protein binding, epigenetic
modifications and other functional parameters across diverse
cellular conditions and tissue types. Each of these diverse data

types can be represented as a continuous matrix of genes
and conditions (e.g. cell types, tissues, pathways, experimental
conditions). Databases such as Gene Ontology (GO) (Botstein

et al., 2000) offer expert-defined pathways and complementary

gene annotations that can be represented as binary values.
Investigators have already described strategies to assess enrich-

ment of GWA results for pathways or gene sets but not for

condition specificity (Holden et al., 2008; Weng et al., 2011).

In contrast to these methods, we do not require genotypes,

P-values, a priori gene sets or pathways or a priori definitions

of gene–SNP associations. We require only a list of SNP identi-

fiers, use LD structures to identify plausibly influential genes and

use a simple sampling approach to identify the conditions they

influence.
SNPsea is a general algorithm to identify the conditions rele-

vant to a trait by assessing the genes within associated loci for

enrichment of condition specificity.

2 METHODS

For a given set of SNPs, SNPsea tests genes implicated by LD, in aggre-

gate, for enrichment of specificity to a condition in a given matrix of

genes and conditions. The matrix must be normalized so that conditions

are comparable.

First, we identify genes implicated by each SNP using LD from refer-

ence genomes. Second, we calculate a specificity score for each condition

with these genes. Finally, we compare these scores with scores obtained

with null sets of matched SNP sets to calculate an empirical P-value for

each condition (see Supplementary Notes for algorithm details).

We empirically calculate P-values because we previously found that

analytical distributions can result in inaccurate P-values (Hu et al., 2011).

SNP linkage intervals, gene densities, gene sizes and gene functions are

correlated across the genome and are challenging to model analytically.

We used C++ for fast computation of P-values because Python was

prohibitively slow. The online reference manual details compilation and

installation procedures; we also provide executable files for immediate use

on select platforms.

2.1 Multiple genes implicated by LD

Accurate analyses must address the critical issue that SNPs from GWA

studies frequently implicate more than one gene (50% of GWAS Catalog

SNPs, Supplementary Fig. S2).

We defined LD intervals with SNPs from the 1000 Genomes Project

(EUR) (Genomes Project Consortium, 2010) and a previously described

strategy (Supplementary Fig. S1) (Rossin et al., 2011). A SNP implicates

genes overlapping its LD interval, defined by the furthest SNPs in a 1Mb

window with r240.5. To ensure the associated genes are included, we

extend each interval to the nearest recombination hotspots with*To whom correspondence should be addressed.
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recombination rate 43 cM/Mb (HapMap3) (Myers et al., 2005). We

merge SNPs with shared genes into a single locus.

By default, we assume that each associated locus harbours a single

influential gene rather than multiple genes. We provide an alternative

scoring method to account for multiple genes (Supplementary Notes)

that produces similar results in four traits we tested (Supplementary

Fig. S4).

Because interval lengths depend on the choice of r2 threshold, we

looked for an effect of this choice (Supplementary Fig. S3). The signifi-

cant result for the Gene Atlas and blood cell count SNPs is robust to

different thresholds. Similarly, the choice of r2 threshold has little effect

on the significant GO enrichment result for these SNPs.

2.2 Type I error estimates

We tested 10000 sets of 100 randomly selected LD-pruned SNPs. For

each condition (tissue or GO term), we observed appropriate proportions

of P-values50.5, 0.1, 0.05, 0.01 and 0.005 (Supplementary Fig. S5).

3 EXAMPLES

We used SNPsea to identify tissues relevant to blood cell count
by testing 45 genome-wide significant SNPs (van der Harst et al.,
2012) with expression data (Gene Atlas) for 17581 genes across
79 human tissues (Su et al., 2004). Bone marrow CD71+early

erythroid cells are significantly enriched for cell type-specific
expression of the genes within the trait-associated loci
(P=2� 10–7) (Fig. 1).

The genes in these loci are enriched for the term hemopoiesis

(GO:0030097) (P=2� 10–5) (Supplementary Fig. S6), suggest-

ing that blood cell count may be influenced by the genes ex-

pressed specifically in early erythroid cells and involved in

forming blood cellular components.
We provide additional examples for SNPs associated with

multiple sclerosis, celiac disease and HDL cholesterol. Each in-

cludes Gene Atlas and GO enrichments, r2 comparisons and

comparisons of results assuming a single or multiple causal

genes (Supplementary Figs S7–9).
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Fig. 1. Empirical P-values for specificity to each condition. 25 of 79

tissues (Gene Atlas) are shown. Adjacent: Pearson correlation coefficients

for pairs of expression profiles ordered by hierarchical clustering with

UPGMA
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