
RESEARCH ARTICLE

An Asymmetrically Balanced Organization

of Kinases versus Phosphatases across

Eukaryotes Determines Their Distinct Impacts

Ilan Smoly1,2, Netta Shemesh2,3, Michal Ziv-Ukelson1, Anat Ben-Zvi2,3, Esti Yeger-

Lotem2,4*

1 Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 2 National

Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel,

3 Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel, 4 Department of

Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel

* estiyl@bgu.ac.il

Abstract

Protein phosphorylation underlies cellular response pathways across eukaryotes and is

governed by the opposing actions of phosphorylating kinases and de-phosphorylating phos-

phatases. While kinases and phosphatases have been extensively studied, their organiza-

tion and the mechanisms by which they balance each other are not well understood. To

address these questions we performed quantitative analyses of large-scale ’omics’ datasets

from yeast, fly, plant, mouse and human. We uncovered an asymmetric balance of a previ-

ously-hidden scale: Each organism contained many different kinase genes, and these were

balanced by a small set of highly abundant phosphatase proteins. Kinases were much more

responsive to perturbations at the gene and protein levels. In addition, kinases had diverse

scales of phenotypic impact when manipulated. Phosphatases, in contrast, were stable,

highly robust and flatly organized, with rather uniform impact downstream. We validated

aspects of this organization experimentally in nematode, and supported additional aspects

by theoretic analysis of the dynamics of protein phosphorylation. Our analyses explain the

empirical bias in the protein phosphorylation field toward characterization and therapeutic

targeting of kinases at the expense of phosphatases. We show quantitatively and broadly

that this is not only a historical bias, but stems from wide-ranging differences in their organi-

zation and impact. The asymmetric balance between these opposing regulators of protein

phosphorylation is also common to opposing regulators of two other post-translational modi-

fication systems, suggesting its fundamental value.

Author Summary

Protein phosphorylation is a reversible modification that underlies cellular responses to

stimuli across organisms. Historically, the study of protein phosphorylation concentrated

on the role of kinases, which introduce the phosphate, at the expense of phosphatases,

which remove it. Many kinases have been associated with specific phenotypes and
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considered attractive drug targets, while phosphatases remained far less characterized. It

has been unclear whether this discrepancy is due to historical biases or reflects real sys-

temic differences between these enzymes. By analyzing large-scale ‘omics’ datasets across

genes, transcripts, proteins, interactions, and organisms, we uncovered an asymmetric

architecture of kinases versus phosphatases that balances between them, determines their

distinct impact patterns, and affects their therapeutic potential. This architecture is con-

served from yeast to human and is partially shared by two other protein modification sys-

tems, suggesting it is a general feature of these systems.

Introduction

Protein phosphorylation is a common post-translational modification, in which a phosphate

group is covalently attached to amino acid residues within a protein by the function of a

kinase. The phosphorylated protein may acquire a different reactivity, interaction specificity

or cellular localization, which allow it to carry functions that the unmodified protein could not

[1]. Protein phosphorylation is reversible, and upon removal of the phosphate group by the

function of a phosphatase, the de-phosphorylated protein regains its previous functionality [2–

4]. Reversible protein phosphorylation underlies signal transduction and controls main cellu-

lar processes across eukaryotes, such as cell-cycle, metabolism, transcription and translation

[5]. In humans, about 30% of the proteins undergo phosphorylation, many of which in a

reversible manner, and abnormal phosphorylation has been associated with complex diseases,

cancers, and pathogen infection [3]. Protein phosphorylation is therefore under strict regula-

tion, and is governed by the balanced actions of kinases and phosphatases.

The critical role of protein phosphorylation led to extensive studies of kinases and phospha-

tases, including large-scale ’omics screens that were carried predominantly in budding yeast

(e.g., [6–9]). By using mass spectrometry to analyze kinase and phosphatase interactions,

Breitkreutz et al [7] showed that an extensive backbone of kinase-kinase interactions cross-

connects the yeast proteome. The profiling of strains carrying inactivated kinases or phospha-

tases using epistatic mini-arrays [6], mRNA profiling [8], and phospho-proteomic screens [9]

revealed numerous functional overlaps and regulatory relationships among kinases and phos-

phatases. However, these and other meta-analyses (e.g., [1, 10]) often treated kinases and phos-

phatases as one group, although their internal organization might differ.

Here, we harnessed ’omics’ datasets that were gathered from budding yeast, fly, plant,

mouse and human, to gain insight into the functional organization of kinases and phospha-

tases. In particular, we asked how their organization supports the specific, transient and robust

response to signals and perturbations. The field of cell signaling has been discussing these

issues for a long time [11], and answers have been given mostly for a small set of well-studied

kinases and phosphatases [11–12]. Our goal here was to contribute to this discussion by adding

a quantitative, wide-ranging perspective across different proteins and different organisms,

which has been partial so far. We were able to obtain this quantitative view by meta-analyses of

diverse sets of large-scale data. We found that kinases and phosphatases are organized in dis-

tinct ways that are conserved across eukaryotes. Firstly, they maintain a quantitative balance,

where kinases have many more genes while the few phosphatase proteins are more abundant.

Secondly, they have a different responsiveness behavior, to which we provide a dynamics-

based theoretic insight. Thirdly, they have a different impact behavior downstream, which

we demonstrate experimentally by using the development of the vulva in Caenorhabditis ele-
gans as readout. Lastly, we show that some of these features are also shared by the opposing
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regulators of histone acetylation and of protein ubiquitination in budding yeast, suggesting

that these features are inherent to reversible post-translational systems.

Results

Intriguing asymmetries between kinases and phosphatases at the gene

and protein levels

We analyzed kinases and phosphatases from the model organisms Saccharomyces cerevisiae,

Arabidopsis thaliana, Drosophila melanogaster and Mus musculus, and from Homo sapiens.
These organisms were selected because their kinases and phosphatases were screened in an

unbiased manner and because they span different evolutionary routes. Notably, our analyses

henceforth focus on the catalytic subunits of kinases and phosphatases (see Materials and

Methods), and do not refer to regulatory or inhibitory subunits of these enzymes, for which

less data are available.

We first compared between the numbers of genes coding for kinases versus phosphatases in

these eukaryotes. We found large discrepancies: The genome of budding yeast contains 137

kinases and only 50 phosphatases (a ratio of ~2.7:1), the human genome contains 656 kinases

and only 184 phosphatases (a ratio of ~3.5:1), and similar preference toward kinases is present

in the other genomes that we examined (Fig 1A).

How can the small pool of phosphatases revert the actions of the dominating sets of kinases?

To answer this question we turned to protein levels (Fig 1B). Large-scale measurements of pro-

tein abundance [13] revealed that phosphatase proteins were roughly twice more abundant

than kinases, a difference that was statistically significant across phyla (p�8.3�10−3 in yeast,

plant, mouse and human, and p = 0.036, in fly, Mann-Whitney). Thus, phosphatases seem to

balance their reduced gene numbers by high protein abundance, consistently across diverse

eukaryotes. We also tested tyrosine kinases and phosphatases, which constitute small subsets

relatively to serine-threonine kinases and phosphatases and are known to have distinct charac-

teristics [14], and obtained similar results (S1 Fig).

The relative scarcity in phosphatase genes may suggest that individual phosphatases are

critical for viability and health. To test this we compared between the fractions of kinases and

Fig 1. Differences in gene numbers, protein abundance and essentiality between kinases and phosphatases are conserved across eukaryotic

lineages. A. Kinase-coding genes are more abundant than phosphatase-coding genes in five eukaryotic genomes. B. Phosphatase proteins are significantly

more abundant than kinase proteins in five eukaryotic proteomes. Box plots show the values at the first, second and third quartiles. In parenthesis per

organism are the numbers of kinases and phosphatases for which data were available. Median values for kinases and phosphatases, and the respective

Mann-Whitney p-values, were as follows: Yeast 30.4, 63, p = 0.008; plant 1.3, 4, p<10−10, fly 7.5, 10.6, p = 0.03; mouse 2.8, 6.3, p = 9*10−4; human 0.33,

0.65, p = 5*10−4. C. The fraction of phosphatases that are essential for survival in yeast and mouse, or are associated with genetic disease in human, is

significantly smaller than the fraction of kinases (yeast p = 0.03, mouse p = 0.0022, human p = 0.0023; Fisher exact test). Yeast = Saccharomyces cerevisiae;

Plant = Arabidopsis thaliana; Fly = Drosophila melanogaster; Mouse = Mus musculus; Human = Homo sapiens. *** indicates p<10−6; ** indicates p<10−3;

* indicates p<0.05. Numbers above bars indicate Y-axis values.

doi:10.1371/journal.pcbi.1005221.g001
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phosphatases that were shown to be essential for survival (Fig 1C). We observed the opposite

trend: In budding yeast 23% of the kinases were essential, a fraction that is slightly higher than

that of protein-coding genes (18.9%). Yet, only 10% of the phosphatases were essential (Fisher

exact test, p = 0.03). For fly and plant such large-scale catalogs of essential genes were not avail-

able. In mouse 36.7% of the kinases were associated with a lethal phenotype [15], relative to

24.8% of the phosphatases (Fisher exact test, p = 2.18�10−3). For humans, we analyzed the set

of over 3,100 genes that were genetically associated with a human disease [16]. Again, kinases

were much more critical: 24% were associated with disease, relative to 14.1% of the phospha-

tases (Fisher exact test, p = 2.3�10−3). Thus, the numerous kinases have a strong effect on

viability and health, while the fewer phosphatases appear to be much more functionally

redundant.

Kinases are more responsive than phosphatases at the gene and protein

levels

Kinases and phosphatases are key components in signaling and cellular response pathways

across eukaryotes. Therefore, we analyzed their ability to respond to perturbations. We focused

on their tendency to alter their expression levels, to interact with other proteins, and to

undergo phosphorylation.

To test for changes in gene expression levels, we used transcriptional profiles of over 1,400

perturbation experiments in budding yeast [17]. About 34% of the yeast kinases and phospha-

tases were differentially expressed in at least one perturbation, a fraction that was significantly

smaller than all genes (44%, p = 1.9�10−3, Fisher exact test, S2A Fig). Among those differen-

tially expressed genes, phosphatases changed in significantly fewer perturbation experiments

relative to all genes (p = 0.032, Mann-Whitney, Fig 2A), and in fewer perturbation experiments

relative to kinases (p = 0.073). Notably, there was no correlation between the number of

Fig 2. Kinases genes and proteins are more responsive than phosphatases. A. Yeast phosphatases are differentially expressed in fewer perturbations

relative to all genes in yeast (p = 0.032, Mann-Whitney test). The data refer to the 45 kinases, 15 phosphatases, and 2979 protein-coding genes that were

differentially expressed in at least one perturbation. B. Kinases are significantly more involved in protein-protein interactions (PPIs) relative to phosphatases

(*) or to all proteins (+). The numbers of kinases, phosphatases, and protein-coding genes for which PPI data were available, and the respective Mann-

Whitney p-value per organism, were as follows: Yeast 135, 49, 4,925, p<10−10; plant 377, 89, 6,430, p = 0.008; fly 213, 85, 9,539, p = 0.032; mouse 311, 52,

5,527, p = 2*10−9; human 633, 177, 16,387, p = 9*10−7. C. The capacity of yeast kinases to undergo phosphorylation is significantly higher than the capacity

of phosphatases. This is observed in data of manually-curated phosphorylation / de-phosphorylation interactions (denoted known events), p = 5.7*10−6; in

phospho-peptide abundance measurements, p = 9.7*10−5; and in a dataset of conserved phosphorylation sites within protein sequences, p = 1.4*10−7

(Fisher exact test). Box plots show the values at the first, second and third quartiles. ***/+++ indicate p<10−6; ** indicate p<10−3; */+ indicates p<0.05.

doi:10.1371/journal.pcbi.1005221.g002
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perturbations in which a gene was differentially expressed and its protein expression levels,

and thus the reduced responsiveness of phosphatases could not be attributed simply to their

higher abundance (see Materials and Methods). We next tested for differences in the protein

stability of kinases and phosphatases by examining protein half-life measurements [18]. The

protein half-life of kinases was significantly short (p = 2.7�10−3, Mann-Whitney test, S2B Fig),

while that of phosphatases was similar to all genes, supporting the more dynamic nature of

kinases.

One of the main ways by which kinases and phosphatases respond to perturbations is by

interacting with other proteins. To assess their capacity for protein-protein interactions

(PPIs), we gathered data of experimentally detected PPIs within each organism (see Materials

and Methods). In all organisms, kinases were significantly more involved in PPIs than other

proteins (Fig 2B), as was previously shown for yeast alone [7]. In yeast and human, which had

the largest PPI coverage, kinases were also more involved in PPIs relative to phosphatases, sup-

porting their increased responsiveness.

Lastly, we tested the capacity of kinases and phosphatases to undergo protein phosphoryla-

tion. For this we used three types of data: data of manually curated phosphorylation or de-

phosphorylation interactions [6], measurements of changes in phospho-peptide abundance

upon perturbation [9], and a dataset of conserved phosphorylation sites between yeast and

human [19] (Fig 2C). In all datasets, over 40% of the kinases showed capacity for phosphoryla-

tion, relative to at most 12% of the phosphatases (p�9.8�10−5, Mann-Whitney test). The obser-

vation that phosphatases are less phosphorylated than kinases is not necessarily expected from

their different enzymatic activities [20]. In fact, some well-studied phosphatases, such as the

family of CDC25 dual specificity phosphatases that regulates cell cycle [21], and the tyrosine

phosphatase PTP-1B that regulates insulin and leptin signaling [22], have been shown to be

heavily regulated by phosphorylation. Yet, our analysis shows that, as a group, phosphatases

have a lower capacity for undergoing phosphorylation. In summary, the different analyses we

carried suggest that kinases have a significantly higher tendency and capacity to respond to sig-

nals at the gene and protein levels, while phosphatases seem relatively static.

A layered architecture of kinases and a flat organization of phosphatases

The large numbers of distinct kinase genes per organism led us to hypothesize that kinases

may be organized in a hierarchical manner. Hierarchical analysis was used previously to orga-

nize transcription factors [23–26], and a unified set of kinases and phosphatases, based on

their regulatory relationships [10]. Here, we defined relationships between kinases by their

impact on the phosphorylation of each other, which were measured in a series of phospho-

proteomic screens of budding yeast [9]. There, a kinase was considered to impact a target pro-

tein when the inactivation of the kinase resulted in the differential phosphorylation of the tar-

get protein. We modeled these impact relationships between kinases as a network, where

nodes represent kinases and directed edges point from the impacting kinase to its target

kinase. We then created a hierarchy of kinases by their impact relationships (Fig 3A). The top

layer contained 38 kinases that impact other kinases but are not targeted by any kinase. The

middle layer contained 26 kinases that are both targeted by kinases and also impact other

kinases. The bottom layer contained 28 kinases that are targeted by other kinases and do not

impact any kinase. 45 kinases without any kinase impact relationships were termed ’outgroup’

and were omitted from further analyses.

To validate the resulting kinase hierarchy we used additional phosphorylation-related data-

sets. These included kinase impacts on the entire proteome [9], manually-curated phosphory-

lation interactions [6], the presence of experimentally verified phosphorylation sites within
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kinases [27], as well as the presence of conserved, and thus more likely functional, phosphory-

lation sites [19]. As shown in S3 Fig, in each dataset the different layers had distinct behaviors

that were consistent with the impact-based organization of kinases. For example, top-layer

kinases had significantly few conserved phosphorylation sites, whereas bottom-layer kinases

had significantly more such sites, supporting their different tendencies to undergo phosphory-

lation (S3D Fig).

We next analyzed the impact of kinases on downstream targets using other types of data.

For that, we analyzed the impact of kinases on gene expression [17]. Inactivation of kinases

from the top layer affected the expression of the largest sets of genes, and this effect decreased

upon moving down the hierarchy (Fig 3B). We also tested the impact of kinases on survival.

The top layer had the largest fraction of kinases that were essential for survival, while the bot-

tom layer had the lowest fraction (Fig 3C). The distinct features of each layer were preserved

upon refining the hierarchy (see Materials and Methods, and S4 Fig and S5 Fig). Thus, while

phospho-proteomic data may have caveats, comparisons to several other types of data show

that upper layers indeed have broader impacts downstream.

Fig 3. A hierarchical organization of yeast kinases by their impact. A. A layered architecture of kinases

by their impact on the phosphorylation of each other. Impact edges point from the inactivated kinase (or

phosphatase) down to its differentially-phosphorylated targets. Kinases and phosphatases with no impact

relationship to other kinases / phosphatases appear as grids at the bottom. Kinases in the top, middle and

bottom layers appear as blue, light-blue or green nodes, respectively; phosphatases appear in red. Node

sizes reflect the number of target proteins. B. The impact of kinases and phosphatases on gene expression.

Impact of an individual kinase (or phosphatase) was defined as the number of genes that were differentially

expressed upon kinase (or phosphatase) inactivation. The impact of kinases from each layer decreased upon

moving down the hierarchy, with bottom-layer kinases affecting the expression of significantly smaller sets of

genes (p = 0.037, Mann-Whitney test). Data were available for 14 top-layer, 10 middle-layer, and 10 bottom-

layer kinases, and for 18 phosphatases. Box plots show the values at the first, second and third quartiles. C.

The phenotypic impact of kinases and phosphatases, as measured by the percentage of essential genes in

each subset. The phenotypic impact of kinases decreased upon moving down the hierarchy. TOP = top layer,

MID = middle layer, BOT = bottom layer, OUT = outgroup, PHO = phosphatases. * indicates p<0.05.

doi:10.1371/journal.pcbi.1005221.g003
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Unlike kinases, phosphatases did not show a layered architecture. Phosphatases were

involved in few intra-phosphatase impact relationships, and, in accordance with the kinase

hierarchy, mainly affected kinases in the middle and bottom layers (Fig 3A). Phosphatases had

limited impact on gene expression (Fig 3B) and on survival (Fig 3C). Thus kinases and phos-

phatases differ in their organization and impact behavior in budding yeast.

We turned to the nematode C. elegans to experimentally compare the impact of kinases and

phosphatases on a specific phenotype, using the well characterized vulva differentiation sys-

tem. The development of the vulva in C. elegans is regulated by epidermal growth factor (EGF)

activation of RAS, WNT/beta-catenin and Notch signaling pathways [28]. Disrupting these

signaling cascades can lead to decreased vulva induction causing a Vulvaless (Vul) phenotype,

or activation of vulva induction, resulting in Multivulva (Muv) phenotype. The let-60(ga89) (C.

elegans RAS) and bar-1(ga80) (C. elegans beta-catenin) alleles show low penetrance of Vul or

Muv phenotypes depending on cultivation condition [29]. Thus, they provide sensitize back-

grounds to explore and compare between the impact of various kinases and phosphatases that

were previously associated with disruption of vulva development.

Similarly to the other eukaryotes that we examined (Fig 1A), C. elegans had many more

genes coding for kinases than phosphatases (455 kinases relative to 177 phosphatases, a ratio of

~2.6:1). To assemble an extensive list of kinases and phosphatases that were previously associ-

ated with vulva phenotypes, we retrieved from WormBase all the kinases and phosphatases

that were annotated with Vul or Muv phenotypes in any genetic background [30]. This re-

sulted in eight kinases and four phosphatases. In wild type background, the knockdown by

RNAi of any of these kinases and phosphatases did not result in vulva phenotypes, stressing

the robustness of vulva development [30]. We then repeated this experiment in a RAS or beta-

catenin mutant background (Fig 4A). In the RAS mutant, background treatment with empty

vector control showed defective vulva (Vul or Muv phenotypes) in 4.6±1.8% of the let-60
(ga89) animals. RNAi knockdown of individual kinases resulted in a wide differential scale of

phenotypic impact, ranging from strong to no significant impact (Fig 4B). Of note, three of the

four significant responder kinases, mek-2, mpk-1 and lin-2, are known members of the RAS/

LET-60 vulva-signaling cascade [30], validating our analysis. In contrast, the four phosphatases

had a medium impact with no significant difference between any two phosphatases examined

(p>0.11, Mann-Whitney test). In the beta-catenin mutant background, treatment with empty

vector control showed defective vulva in 11.1±3.6% of the bar-1(ga80) animals (Fig 4C). RNAi

knockdown of individual kinases again resulted in wide scale of phenotypic impact, but the

significant responders varied from the RAS mutant background. Similarly to the RAS mutant

background, all four phosphatases had a medium impact. Thus, these data suggest that distinct

kinases impact the output of a specific signaling pathway. In contrast, any given phosphatase

resulted in a comparable phenotype, suggesting that in a sensitized background, phosphatases

are interchangeable while kinases less so.

The observation that phosphatases had a noticeable phenotype in C. elegans may seem sur-

prising given their lower essentiality rate (Fig 1C). However, essentiality was measured in a

non-sensitized background, while in the C. elegans screen we used sensitized backgrounds.

We, therefore, turned back to yeast to examine if sensitized background can impact phospha-

tases requirement. A negative genetic interaction (NGI) is called between two genes, g1 and g2,

when the strain carrying both deletions shows reduced growth relative to expectation based on

the growth of a strain carrying a g1 deletion and a strain carrying a g2 deletion. Using data

from a screen for NGIs involving kinases or phosphatases [6], we found that yeast phospha-

tases were slightly more involved in NGIs than kinases: 74% of the yeast phosphatases had at

least one NGI, compared to 67% of the kinases. Additionally, phosphatases had a median of 4

NGIs per gene, relative to 2 NGIs for kinases. Thus, while yeast cells tolerate single deletion of
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phosphatases better than single deletion of kinases (Fig 1C), in a sensitized background yeast

cells were as sensitive to phosphatase deletion as they were to kinase deletion, in agreement

with the results of the C. elegans screen.

Asymmetries are evident in other post-translational modification systems

Are the characteristics we observed above also present in other reversible post-translational

modification systems? For this we turned to the histone acetylation system, which regulates

transcription through the action of histone-acetyltransferases and histone-deacetylases, and the

protein ubiquitination system, which regulates protein function and fate through the action of

ubiquitin ligases and ubiquitin proteases. Henceforth, we refer to histone-acetyltransferases and

ubiquitin ligases as ’writers’ since they add the modification (similarly to kinases), and to his-

tone-deacetylases and ubiquitin proteases as ’erasers’ since they remove the modification

Fig 4. RNAi knockdown of C. elegans kinases results in variable effects on vulva development, while knockdown of C.

elegans phosphatases results in more uniform effects. A. Illustration of the experimental pipeline. Age-synchronized animals

were grown on kinase/phosphatase specific RNAi-expressing bacteria at the indicated conditions. The percentage of animals showing

a disrupted vulva development (Multivulva / Vulvaless) was scored at day 2 of adulthood. B. For each RNAi-treatment of a kinase (or

phosphatase) in animals with perturbed RAS signaling, the percentage of animals with disrupted vulva phenotype was scored. Shown

are the medians (±SEM) of at least 3 independent experiments. Four kinase treatments and two phosphatase treatments showed a

significantly higher tendency for disrupted phenotype relative to control (p-values: mpk-1 p = 0.012, F31E3.2 p = 0.024, mek-2

p = 0.024, lin-2 p = 0.02, ptp-2 p = 4*10−3, dep-1 p = 0.046; Mann-Whitney test). C. Same as in B, for animals with perturbed wnt/beta-

catenin signaling. Five kinase treatments and four phosphatase treatments showed a significantly higher tendency for disrupted

phenotype relative to control (p-values: lin-2 p = 2.2*10−3, mek-2 p = 0.013, par-1 p = 0.018, mpk-1 p = 0.043, pkc-3 p = 8.6*10−3, let-

92 p = 4.6*10−3, dep-1 p = 0.017, ptp-2 p = 0.027, eya-1 p = 0.023; Mann-Whitney test).

doi:10.1371/journal.pcbi.1005221.g004
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(similarly to phosphatases). We focused on analyses of budding yeast where data were available.

For other post translational modification systems we did not have enough data, or the number

of genes was too small for a reliable comparison of the different properties.

Similarly to kinases and phosphatases, writers were encoded by many more genes relative

to erasers (Fig 5A), and their protein products were significantly less abundant (Fig 5B). Fur-

thermore, a much larger fraction of the writers were essential for survival (Fig 5C), and they

had more PPI partners relative to all genes (Fig 5D). This suggests that these features reflect

common design principles for these systems.

Discussion

Historically, the study of protein phosphorylation concentrated mainly on the role of kinases

at the expense of phosphatases [11]. Many kinases have been associated with specific functions

and phenotypes, while phosphatases remained far less characterized. This difference has

pharmaceutical implications that become apparent upon examining the targets of approved

drugs: 17% of the human kinases were targeted by drugs, relative to only 6.5% of the human

Fig 5. Writers and erasers of histone-acetylation (Ac) and protein-ubiquitination (Ubq) in budding

yeast share features with kinases and phosphatases. A. Writer-coding genes are more abundant than

eraser-coding genes. B. Writer proteins are significantly less abundant than all proteins (Ac p = 3.7*10−3, Ubq

p = 1.4*10−5; Mann-Whitney test). C. Few eraser genes in budding yeast are essential (0% in acetylation, and

9.5% in the ubiquitination systems), in contrast to more than 21% of the writers (Ac p = 0.035; Fisher exact

test). D. Acetylation writers, ubiquitination writers and ubiquitination erasers are significantly more connected

by PPIs relative to all proteins (p = 0.0018, p = 0.0035 and p = 0.042, respectively, Mann-Whitney test).

Box plots show the values at the first, second and third quartiles. ++ indicate p<10−3; */+ indicates p<0.05. In

parenthesis are the numbers of writers and erasers for which data were available. Numbers above bars

indicate Y-axis values.

doi:10.1371/journal.pcbi.1005221.g005
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phosphatases [31]. However, it has been unclear whether this discrepancy is due to historical

biases, or reflects a real difference in the organization and impact of kinases versus phospha-

tases. Here, we addressed this discrepancy systematically by analyzing data from unbiased

’omics’ screens across genes, transcripts, proteins, interactions, and organisms.

Our first observation regards the quantitative relationships between kinases and phospha-

tases (Fig 1). Despite the seeming symmetry between kinases and phosphatases, which act on

the same protein targets, eukaryotic genomes contain numerous kinase genes, over twice the

number of phosphatase genes [4, 12]. Nonetheless, we show that a quantitative balance is

maintained between kinases and phosphatases at the protein level, since the fewer phosphatase

genes encode high-copy proteins. These high-copy proteins can be incorporated into different

phosphatase complexes with distinct regulatory subunits, activities and specificities, as has

been shown for some well-studied phosphatases [4, 11, 20].

Our second observation relates to the outcome of interference with kinases versus phospha-

tases. Given the numerous kinase genes per organism, one may hypothesize that interference

with a specific kinase might lead to a kinase-specific response, whereas interference with a spe-

cific phosphatase might lead to a more general response. Indeed, this hypothesis is supported

by our analyses of C. elegans vulva development (Fig 4). The phenotypes obtained upon knock-

ing down individual kinase were variable and background-specific. In one background, some

kinases had strong effects on vulva development, some had medium effects while other had no

effect, whereas in another background, the effects of the same kinases were different. In con-

trast, knocking down any phosphatase gave a medium phenotype, with little variability among

the phosphatases.

The scalable, variable impacts of kinases were not limited to a specific C. elegans system but

also genome-wide, as we observed in budding yeast. Using hierarchical analysis, we identified

a hierarchy of kinases that was not shown before (Fig 3). This hierarchy was relevant to the

impact of kinases on the yeast phospho-proteome, transcriptome, and organism fitness. Nota-

bly, we did not observe a hierarchy of phosphatases. Together with the experimental analysis

of C. elegans, this suggests that kinases have a broad range of specificities and impact that helps

them mediate highly-specific responses to signals. This broad range makes kinases easier to

characterize, and more favorable drug targets. In contrast, the relative uniformity among phos-

phatases implies that, in general, phosphatases are less favorable targets for controlling specific

phenotypes. The discrepancy in the characterization of kinases at the expense of phosphatases

is thus rooted in the different organization of each group.

Another feature that differed between kinases and phosphatases is their responsiveness (Fig

2). Kinases were more responsive and had a higher capacity to change at the gene and protein

levels, making them specialized regulators that can rapidly alter their behavior and fine-tune

cellular responses to signals. Phosphatases were less responsive, in agreement with the view

that many phosphatases are catalytically active continuously [32]. We remind here that our

analysis was focused on the catalytic subunits of kinases and phosphatases. The responsiveness

and specificity of phosphatase complexes involves additional factors, including dynamic

changes in their regulatory and inhibitory subunits, in the concentrations of relevant ions such

as calcium, in their cellular localization, and more, as shown for the extensively studied PP1

and PP2A phosphatases [4, 11, 20]. The responsiveness of these factors and the elucidation of

their effects on phosphatase activity are most intriguing, and their analysis will become feasible

once more data are collected.

What are the benefits in having the catalytic subunits of phosphatases generally active,

while kinases alter their activity in response to perturbations? One clear benefit is noise

reduction: Kinases are less likely to trigger a response accidentally or prolong it, since the con-

tinuously active phosphatases can quickly attenuate the response. The serine/threonine
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phosphatase 1 (PP1) is a prominent example: this ubiquitous phosphatase acts as a "green"

enzyme, promoting the recycling of proteins and the reversal of cells to basal and/or energy-

conserving state [33]. This "driving with one foot on the break" strategy is common to many

short-term processes, such as insulin signaling and glycogen metabolism, RAS GTPase signal-

ing, activation of the transcription factor CREB and more [34].

Another feature that could be influenced by having phosphatases continuously active is

phosphorylation dynamics. Below, we investigated phosphorylation dynamics as a function of

the responsiveness of kinases and phosphatases. We analyzed a simplified scenario where a

protein Y is reversibly phosphorylated. The concentration of the phosphorylated protein,

denoted YP, depends on the activity level of its kinase, denoted k, and the activity level of its

phosphatase, denoted p (Fig 6A). Since the expression level of Y is often much higher than the

level of its phosphorylated form YP [35–36], the change in the concentration of Y can be

ignored, and the change in YP can be described by the following equation: d YP/ dt = k–p YP

([37] and see Materials and Methods). The steady state level of YP, denoted YP_st, is thus given

by: YP_st = k / p. Note that YP_st can be doubled in two ways: Either the kinase becomes twice

more active (Fig 6B), or the phosphatase becomes only half active (Fig 6C). While both of

these scenarios seem to lead to the same end result, the response time at which YP reaches

YP_st/2, denoted t1/2, is different [37]: The change in the k does not affect t1/2 (Fig 6B), whereas

the change in p leads to a doubling of t1/2 (Fig 6C). Response time is a crucial factor in the abil-

ity of cells to adapt to changes in their environment. Thus, in this simplified scenario, keeping

phosphatases intact, namely less responsive, and fine-tuning the activity of kinases, rendering

them responsive, helps maintain timely responses to stimuli.

The asymmetry that we observed between kinases and phosphatases is inherent to their

actions: although they act on the same targets, phosphatases always act after kinases do. We

thus asked if other reversible cellular systems with writers and erasers behave similarly. We find

Fig 6. The dynamics of protein phosphorylation. A. Given a protein Y, the accumulation of its phosphorylated

form, YP, is determined by the activity rates of its kinase and phosphatase (k and p, respectively). B. The level of

YP as a function of time (t). YP starts at zero and ends at its steady state level, described by the equation: YP(t) =

k/p * (1−e−pt). The black line depicts the regular activity rates (k = 1, p = 1, denoted KK and PP, respectively). The

blue line depicts a 2-fold increase in the steady-state level of YP, achieved by doubling the kinase activity (k = 2

and p = 1, denoted as KKKK and PP, respectively). The response time t1/2 (dashed black line) is identical in both

cases. C. The black line is as described in B. The red line depicts a 2-fold increase in the steady-state level of YP,

achieved by 2-fold decrease in the phosphatase activity (k = 1, p = 0.5, denoted as KK and P, respectively). The

response time t1/2 in this case (dashed red line) is twice the response time of the regular case.

doi:10.1371/journal.pcbi.1005221.g006
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that in budding yeast, the reversible systems of histone acetylation and protein ubiquitination

show similar quantitative relationships and similar impact on fitness (Fig 5). Once suitable data

become available, it will be intriguing to check whether hierarchical organization and differ-

ences in responsiveness are also maintained in those systems, whether other reversible systems

such as protein methylation behave similarly, and what other features accompany this behavior.

In summary, we found that across eukaryotes kinases and phosphatases have an intriguing

balance and are organized differently. Some of these features were previously demonstrated

for specific kinases and phosphatases, and likewise, they may not describe every kinase and

phosphatase. However, we show here quantitatively and broadly that these asymmetries hold

widely in phosphorylation systems of diverse eukaryotes. They go hand-in-hand with the

maintenance of transient, signal-specific responses, and provide insight into the different pro-

pensity of kinases and phosphatases to impact phenotypes.

Materials and Methods

Genes analyzed in this study

The annotations of genes to different molecular functions were obtained from the Gene

Ontology (GO) Database [38]. We chose to work with GO annotations since they were in

good agreement with other sources and provided a consistent framework across the different

organisms. Kinases and phosphatases were defined as genes with molecular function annotation

of ’protein kinase activity’ (GO:0004672) or ’phosphoprotein phosphatase activity’ (GO:0004721),

respectively. Regulators of histone acetylation were defined as genes with ’histone acetyltransferase

activity’ (GO:0004402) or ’histone deacetylase activity’ (GO:0004407) annotations. Regulators

of protein ubiquitination were defined as genes with "ubiquitin-protein transferase activity"

(GO:0004842) or "thiol-dependent ubiquitin-specific protease activity" (GO:0004843) annotations.

For H. sapiens we considered only genes that were reviewed by UniProt database [39]. For A. thali-
ana we considered only genes with annotated TAIR accessions [40]. For D. melanogaster we con-

sidered only genes with annotated FlyBase accessions [41]. For M. musculus we considered only

genes with annotated MGI accessions [42]. For C. elegans we considered all kinases and phospha-

tases annotated with multivulva or vulvaless phenotype according to WormBase [30]. To validate

the trends we observed, we also analyzed curated kinases and phosphatases extracted from organ-

ism-specific databases, which showed similar results (S6 Fig).

Data sources for protein expression, protein interactions and mutant

phenotypes

Data of absolute protein expression levels were obtained through the PaxDb database [13].

Data of M. musculus and of H. sapiens included the dataset designated ’integrated’ in PaxDb.

Data of S. cerevisiae included the dataset of Ghaemmaghami et al [43]. Data of D. melanogaster
included the dataset of Brunner et al [44] therein. Data of A. thaliana included the datasets of

Baerenfaller et al. [45] and Castellana et al. [46] therein (in case multiple measurements were

available for a protein the highest value was considered). Data of experimentally-verified phys-

ical associations between proteins were obtained from BIOGRID [47] (version 2.09) and

INTACT [48]. For A. thaliana and D. melanogaster, we augmented these data with PPIs from

TAIR [40, 49] and DroiD [50], respectively. Data of essential genes, whose inactivation or

over-expression is deleterious to yeast, were obtained from SGD [51]. Data of essential genes

in mouse were obtained from Mouse Genome Database (MGD) [42], similarly to Georgi et al

[15]. Human genes associated with genetic diseases were identified through OMIM and were

retrieved by their MIM Morbid Accession [16] using Ensembl BioMart [52].
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Yeast phosphorylation-related data sources

Data of known phosphorylation and de-phosphorylation events were obtained from Fielder

et al [6], and consisted of high-confidence, manually-curated interactions from literature. Data

of experimentally-determined phosphorylation sites per protein were obtained from Yachie

et al [27]. Data of conserved phosphorylation sites were obtained from Minguez et al [19], lim-

ited to relative Residue Conservation Score (rRCS) > 95, as used therein for determining con-

servation. Data for the hierarchical analysis were obtained from Bodenmiller et al [9]. As

defined therein, a kinase (or phosphatase) was considered to impact proteins that contained

phospho-peptides that were differentially-phosphorylated in the kinase (phosphatase) inacti-

vated strain. Data of differentially expressed genes in genetically-manipulated kinase (or phos-

phatase) strains were obtained from Kemmeren et al [17]. Data of protein half-life measures

were obtained from Belle et al [18].

Correlation between gene responsiveness and protein expression level

in budding yeast

Gene responsiveness was calculated as the number of perturbations in which a gene was differ-

entially expressed. We computed the Spearman correlation between this measure and protein

expression level. There was no meaningful correlation upon considering all genes (r = -0.065),

and upon considering only kinases and phosphatases (r = 0.11, p = 0.36).

Hierarchy construction

Kinases were divided into layers according to the numbers of their impact-target relationships

[9]. The top layer contained kinases that impacted kinases and were not targeted by any kinase.

The middle layer contained kinases that impacted kinases and were also targeted by kinases.

The bottom layer contained kinases that did not impact any kinase and were targeted by

kinases. The outgroup contained kinases with no impact or target relationships with any

kinase, and was further ignored. Phosphatases were incorporated into the hierarchy by consid-

ering impact relationships among phosphatases, and between phosphatases and kinases (S1

Table). The hierarchy in Fig 3A was depicted using Cytoscape 2.8 [53]. We tested the repro-

ducibility of the features of each layer in two ways. Firstly, we repeated the analyses using the

subset of fully-characterized kinases (S7 Fig), and observed similar trends (S4 Fig). Secondly,

we recreated the hierarchy so that the assignment of a kinase to a layer will be more robust,

i.e., will not depend on a single impact relationship. Specifically, a kinase was associated with

(i) the top layer, if the kinase impacted two or more kinases, and was the target of at most one

kinase (which could be noise); (ii) the middle layer, if it impacted two or more kinases and was

targeted by two or more kinases; and (iii) the bottom layer, if it impacted at most one kinase

and was targeted by two or more kinases. Again, the features of the original hierarchy were

maintained (S5 Fig).

Statistical analyses

The probability of overlap between datasets was calculated using Fisher’s exact test (two tailed).

The probability of observing similar distributions between two gene sets was calculated using

Mann-Whitney test (one tailed). In all analyses, only measured genes/proteins were consid-

ered. Statistical tests were computed using Python 2.7, fisher 0.1.4 package and Scipy package.

Statistical analysis of RNA interference experiments was performed using two-tailed Mann-

Whitney test in STATISTICA. In all figures, star symbol (�) indicates a statistically significant

difference between kinases and phosphatases, and plus symbol (+) indicates statistically
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significant difference between the respective group and the whole genome. The number of

star/plus symbols indicates the significance level: ���/+++ indicates p<10−6; ��/++ indicates

p<10−3; �/+ indicates p<0.05.

Phosphorylation dynamics analysis

The change in the concentration of a phosphorylated protein YP results from two processes: the

rate of accumulation of YP owing to the kinase activity rate, denoted k, and the rate of elimina-

tion of YP owing to the phosphatase activity rate, denoted p. The non-phosphorylated protein is

often much more abundant than the phosphorylated protein YP [35–36], implying that the non-

phosphorylated protein is generally not a rate-limiting factor. Therefore, the change in YP can be

described by: dYP / dt = k–p YP [37]. Following a signal that activates the kinase, YP accumulates

and approaches its steady state as described by: YP (t) = YP_st �(1-e-pt) [37]. The response time

t1/2 is derived from this equation upon solving it for YP (t) = YP_st/2, resulting in t1/2 = log (2)/p.

RNA interference (RNAi)

The experiment included RNAi for each kinase and phosphatase that was annotated with mul-

tivulva or vulvaless phenotype in WormBase [30]. Nematodes, let-60(ga89) and bar-1(ga80)
(SD551 and EW15 strains, respectively), were grown on NGM plates seeded with the Escheri-
chia coli OP50-1 strains at 15˚C. In each experiment 15–30 embryos, laid at 15˚C, were picked

and transferred to fresh plates seeded with E. coli strain HT115(DE3) transformed with the

indicated RNAi vectors (obtained from the Ahringer or Vidal RNAi libraries), as previously

described [54]. SD551 animals were grown at the permissive temperature of 15˚C until the

first larval stage (L1) to avoid embryo lethality, and were then shifted to the partially restrictive

temperature of 22.5˚C until day 2 of adulthood. EW15 animals were grown in the partially

restrictive temperature of 22.5˚C until day 2 of adulthood. Animals showing Vul or Muv phe-

notypes were scored as defective vulva. Data are presented as percentage of animals showing

defective vulva (Median ± SEM). mRNA levels were examined by quantitative RT-PCR to vali-

date RNAi knock-down. RNAi experiments were repeated at least 3 times for the computation

of SEM values. Total RNA was extracted from SD551 and EW15 animals fed with RNAi vec-

tors using the TRIzol reagent (Invitrogene). For cDNA synthesis, mRNA was reverse-tran-

scribed using the iScriptTM cDNA Synthesis Kit (Bio-Rad). Quantitative PCR was performed

on a C1000 Thermal Cycler (Bio-Rad) with SsoFas EvaGreen Supermix (Bio-Rad). The primer

sequences used in this procedure are given in S2 Table. RNAi knock-down of mRNA levels

was controlled by comparing the mRNA levels of the target gene with mRNA levels of animals

fed on bacteria containing the empty vector (pL4440).

Supporting Information

S1 Fig. Differences in gene numbers, protein abundance and essentiality between tyrosine-

kinases and tyrosine-phosphatases. The list of tyrosine kinases and phosphatases was created

by gathering from Gene Ontology (GO) proteins annotated to ’protein tyrosine kinase activity’

(GO:0004713) and to ’protein tyrosine phosphatase activity’ (GO:0004725). From these lists

we excluded proteins that were also annotated to ’protein serine/threonine kinase activity’

(GO:0004674) or ’protein serine/threonine phosphatase activity’ (GO:0004722), thus leaving

in only proteins that were exclusively tyrosine kinases and phosphatases.

A. Numbers of genes coding for tyrosine-kinases and tyrosine-phosphatases in five eukaryotic

genomes.
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B. Tyrosine-kinase proteins are significantly less abundant than all proteins in plant (p =

0.041; median abundance of tyrosine-kinases versus all proteins: 1.42: 3.8) and fly (p =

3.8�10−5; median abundance of tyrosine-kinases versus all proteins: 2.54: 12.97). They are

also less abundant than tyrosine-phosphatases in human (p = 0.048; median abundance

of tyrosine-kinases versus phosphatases 0.33: 0.62). In parenthesis are the numbers of

kinases and phosphatases per organism for which data were available. Box plots show the

values at the first, second and third quartiles. P-values were computed using Mann-Whit-

ney test.

C. In mouse, the percentage of tyrosine-phosphatases that are essential for survival is smaller

than that of tyrosine kinases. In human, the percentage of tyrosine phosphatases that were

associated with genetic diseases is significantly smaller than that of tyrosine-kinases

(p = 0.006; Fisher exact test).

Yeast = Saccharomyces cerevisiae; Plant = Arabidopsis thaliana; Fly = Drosophila melanogaster;
Mouse = Mus musculus; Human = Homo sapiens. ++/ indicates p<10−3; �/+ indicates p<0.05.

(TIF)

S2 Fig. The transcriptional responses and protein half-lives of kinases and phosphatases in

budding yeast.

A. The percentage of genes that are differentially expressed in at least one of the experiments

reported by Kemmeren et al. [17]. The fraction of differentially expressed kinases and

phosphatases is significantly lower relative to all genes (p = 0.0019, Fisher exact test).

B. Kinase proteins have shorter half-lives relative to all proteins (p = 0.0026, Mann-Whitney

test; median half-life in minutes: kinases = 33, phosphatases = 42, all genes = 44). Box plots

show the values at the first, second and third quartiles. + indicates p<0.05.

(TIF)

S3 Fig. Validations for the impact hierarchy of budding yeast kinases.

A. The impact of kinases from each layer on the phospho-proteome. The numbers of proteins

with altered phosphorylation upon kinase inactivation, for kinases from each layer, de-

creased upon moving down the kinase hierarchy. Inactivation of top-layer kinases affected

the phosphorylation of significantly large sets of proteins (p = 0.0024), while inactivation of

kinases from the bottom layer affected the phosphorylation of significantly small sets of

proteins (p = 3.6�10−5). Inactivation of phosphatases affected the phosphorylation of signif-

icantly more proteins relative to the middle- and bottom-layer kinases (p = 0.0423). Statis-

tical significance was computed using Mann-Whitney tests.

B. Manually-curated kinase-kinase phosphorylations support the impact hierarchy. The per-

centages of kinases known to phosphorylate other kinases (outgoing) is significantly low in

the bottom layer (p = 0.015), and the percentage of kinases known to be phosphorylated

(incoming) is significantly low in the top layer (p = 0.041). Statistically significance was

computed using Fisher exact test.

C. The numbers of experimentally-verified phosphorylation sites harbored by kinases agrees

with the impact hierarchy. Top-layer kinases harbor a significantly low number of phos-

phorylation sites relative to other layers (p = 2�10−6). Bottom-layer kinases harbor signifi-

cantly more phosphorylation sites relative to top- and middle-layer kinases (p < 2.5�10−4).

Statistical significance was computed using Mann-Whitney tests.
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D. The fraction of kinases harboring conserved phosphorylation sites is lowest in the top layer

(p = 1.1�10−4) and highest in the bottom layer (p = 2.7�10−3). Statistical significance was

computed using Fisher exact test.

TOP = top layer, MID = middle layer, BOT = bottom layer. �� indicates p<10−3; � indicates

p<0.05. Each box-plot shows the values at the first, second and third quartiles. Statistical sig-

nificance was computed of one layer relative to the two other layers.

(TIF)

S4 Fig. The distinct impact of kinase layers when limiting each layer to kinases that were

fully measured. Each layer contained only kinases that were both inactivated and detected in

Bodenmiller et al.[9], including 14 top-layer kinases (TOP#), 26 middle-layer kinases (MID#),

and 11 bottom-layer kinases (BOT#). Note that the middle layer was unchanged (MID# = MID),

as all middle-layer kinases were fully measured.

A. The impact of kinases on phosphorylation of proteins, as measured by the numbers of pro-

teins with altered phosphorylation upon kinase inactivation, for kinases from each layer,

decreased upon moving down the kinase hierarchy. Bottom layer kinases affected signifi-

cantly smaller sets of proteins relative to middle- and top-layer kinases (p = 1.3�10−4).

B. The impact of kinases on gene expression, as measured by the numbers of differentially

expressed genes upon kinase inactivation, for kinases from each layer, decreased upon

moving down the kinase hierarchy. Bottom-layer kinases affected significantly smaller sets

of genes relative to middle- and top-layer kinases (p = 0.028).

C. The phenotypic impact of kinases, as measured by the percentage of essential kinase genes

in each layer, is highest for top-layer kinases.

Statistical significance was calculated for one layer against the two other layers using the

Mann-Whitney test. Box plots show the values at the first, second and third quartiles. �� indi-

cates p<10−3; � indicates p<0.05.

(TIF)

S5 Fig. The distinct impact of kinase layers upon reconstructing the hierarchy using more

stringent thresholds. The revised hierarchy consisted of 216 kinase-kinase relationships

involving 29 top-layer kinases (TOP�), 16 middle-layer kinases (MID�) and 24 bottom-layer

kinases (BOT�).

A. The impact of kinases on phosphorylation of proteins, as measured by the numbers of pro-

teins with altered phosphorylation upon kinase inactivation, for kinases from each layer,

decreased upon moving down the kinase hierarchy. Top-layer kinases affect significantly

larger sets of proteins (p = 9�10−5) and bottom layer kinases affect significantly smaller sets

of proteins (p = 8�10−6).

B. The impact of kinases on gene expression, as measured by the number of differentially

expressed genes upon kinase inactivation, for kinases from each layer.

C. The phenotypic impact of kinases, as measured by the percentage of essential kinase genes

in each layer, is highest for top-layer kinases.

Statistical significance was calculated for each layer against the two other layers using the

Mann-Whitney test. Box plots show the values at the first, second and third quartiles. �� indi-

cates p<10−3.

(TIF)
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S6 Fig. Differences in gene numbers, protein abundance, essentiality and protein-protein

interactions between curated kinases and phosphatases. We repeated our analyses using lists

of curated kinases and phosphatases from the following organism-specific databases: Saccha-

romyces Genome Database (SGD) for yeast, The Arabidopsis Information Resource (TAIR)

for plant, FlyBase for fly and Mouse Genome Informatics (MGI) for mouse. For human, we

obtained data from PhosphoSitePlus website: Kinases were extracted as genes with ’kinase,

protein’ annotation, and phosphatases as genes with at least one of the following annotations:

’Protein phosphatase, dual-specificity’, ’Protein phosphatase, Ser/Thr (non-receptor)’, ’Protein

phosphatase, tyrosine (non-receptor)’ or ’Receptor protein phosphatase, tyrosine’.

A. Kinase-coding genes are more abundant than phosphatase-coding genes in the five eukary-

otic genomes.

B. Phosphatase proteins are significantly more abundant than kinase proteins in the five

eukaryotic proteomes. Median values for kinases, phosphatases and Mann-Whitney p-val-

ues per organism are as follows: yeast 30.4, 61.3, p = 0.008; plant 1.3, 4.1, p<10−10; fly 7.8,

10.6, p = 0.044; mouse 2.8, 6.3, p = 9�10−4; human 0.31, 0.4, p = 0.03. In parenthesis are the

numbers of kinases and phosphatases per organism for which data were available.

C. The fraction of phosphatases that are essential for survival (yeast and mouse), or were asso-

ciated with genetic disease (human) is significantly smaller than that of kinases (yeast

p = 0.043, mouse p = 0.0018, human p = 0.006; Fisher exact test).

D. Kinases are significantly more involved in protein-protein interactions (PPIs) relative to

phosphatases (�) or to all proteins (+). The numbers of kinases, phosphatases, and protein-

coding genes for which PPI data were available, and the Mann-Whitney p-value per organ-

ism, are as follows: Yeast 127, 48, 4925, p<10−10; plant 382, 94, 6430, p = 0.006; fly 206, 82,

9539, p = 0.04; mouse 311, 52, 5527, p = 2�10−9; human 508, 135, 16,387, p = 3.2�10−7.

Box plots show the values at the first, second and third quartiles. Yeast = Saccharomyces cerevi-
siae; Plant = Arabidopsis thaliana; Fly = Drosophila melanogaster; Mouse = Mus musculus;
Human = Homo sapiens. ���/+++ indicates p<10−6; �� indicates p<10−3; � indicates p<0.05.

(TIF)

S7 Fig. The percentages of kinases and phosphatases that were characterized in the phos-

pho-proteomic analysis of Bodenmiller et al.[9]. ’Detected’ enzymes denote phosphorylation

enzymes that contain a peptide whose abundance was measured. ’Inactivated’ enzymes denote

phosphorylation enzymes for which a strain carrying the inactivated enzyme was profiled.

TOP = top layer, MID = middle layer, BOT = bottom layer, OUT = outgroup,

PHO = phosphatases.

(TIF)

S1 Table. A listing of yeast kinases and phosphatases and the association of kinases to lay-

ers in the impact hierarchy.

(XLSX)

S2 Table. Primer sequences used to measure mRNA levels for the validation of RNAi

knock-down in C. elegans.
(XLSX)
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