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Abstract: The negative correlation between diets rich in fruits and vegetables and the occurrence of
cardiovascular disease, stroke, cancer, atherosclerosis, cognitive impairment and other deleterious
conditions is well established, with flavonoids and other polyphenols held to be partly responsible
for the beneficial effects. Initially, these effects were explained by their antioxidant ability, but the low
concentrations of polyphenols in tissues and relatively slow reaction with free radicals suggested that,
instead, they act by regulating cell signalling pathways. Here we summarise results demonstrating
that the abandonment of an antioxidant role for food polyphenols is based on incomplete knowledge
of the mechanism of the polyphenol-free radical reaction. New kinetic measurements show that
the reaction is up to 1000 times faster than previously reported and lowers the damaging potential
of the radicals. The results also show that the antioxidant action does not require phenolic groups,
but only a carbon-centred free radical and an aromatic molecule. Thus, not only food polyphenols
but also many of their metabolites are effective antioxidants, significantly increasing the antioxidant
protection of cells and tissues. By restoring an important antioxidant role for food polyphenols, the
new findings provide experimental support for the advocacy of diets rich in plant-derived food.

Keywords: oxidative stress; antioxidants; free radicals; polyphenols; kinetics; reaction mechanism;
radical adducts

1. Oxidative Stress and Human Health

There is little doubt that the desire to identify the causes of human disease is a major
motivation driving much biochemical research. Successful solution of the many problems
revealed is most commonly achieved by a combination of research talents in borderless
collaboration of skilled individuals with common interests, but with varied experience.
An essential component of the most effective collaborations is the pursuit of both basic
and applied research, a principle well illustrated by the outstanding scientific career of Dr
Umberto Dianzani, who, in addition to personal experience as a haematologist, pathologist,
pharmacist, chemist and biochemist, was a key member of extensive collaborative research
with many groups in many countries [1]. One of Professor Dianzani’s major interests
was the biological damage by free radicals and its prevention by antioxidants. In this
review, we continue this interest by summarising recent results demonstrating the potential
of plant-derived food components and their metabolites to protect humans exposed to
oxidative stress.

In common with other aerobic organisms, humans are constantly subjected to damage
from reactions involving oxygen or its partially reduced derivatives, commonly designated
as reactive oxygen species, or ROS. To cope with the challenge, we are equipped with an
arsenal of antioxidant defences made up of specialized enzymes and small molecules: the
former are made up of superoxide dismutase, catalase, peroxiredoxin and other peroxidases,
while the principal endogenous small antioxidants are vitamins A, C and E, glutathione
and other thiols, urate and metal ion chelators. Under normal conditions, this combined
system can cope with the oxidative challenge. However, there are conditions, particularly
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associated with modern industrial life, which can greatly increase the oxidative challenge:
they include radiation, pollutants, drugs and other xenobiotics, injury and many other
agents [2,3]. When the oxidative challenge is high, the organism can be in a state known as
Oxidative Stress (OS), originally defined as a condition in which an organism’s antioxidant
defences are insufficient to prevent or repair molecular damage caused by ROS [4]. This
simple definition was later extended to include disruption of redox signalling [5], but in this
review we use the original version because it emphasizes the phenomenon of biomolecular
damage, potentially resulting in health impairment. The range of diseases and other
deleterious conditions apparently associated with OS is extensive: it includes various
forms of cancer, cardiovascular disease, conditions associated with ageing, inflammation,
disorders of the immune system, obesity and diseases of the lung, kidney, liver, eye,
brain, muscles, bones and other tissues [4,6–10]. While future studies may show that the
currently accepted list of the deleterious health conditions includes some not associated
with oxidation, there is little doubt that OS is a health hazard.

Oxidative stress is commonly coupled with excessive formation of free radicals, with
some researchers actually identifying free radicals as the origin and cause of OS. Free
radicals are atoms, molecules or ions with one or more unpaired electrons. The most
reactive ones have high reduction potentials; i.e., they readily oxidize most molecules
indiscriminately. There is a common misconception that all free radicals are highly reactive,
but in fact the range of those able to cause biological damage is quite narrow: it is made up
principally of hydroxyl, peroxyl, alkoxyl, thiyl, phenoxyl and semiquinone free radicals,
and high valence transition ions. The usual form of damage is abstraction of an electron
or H atom from a target molecule, creating a new, less reactive secondary target free
radical. In complex biological systems, the result is a chain of successive electron transfers,
creating new free radicals with decreasing reactivity, as required by thermodynamics. If
the chain involves critical molecules, such as DNA, proteins or lipids repaired or replaced
only slowly, the result may be a permanent impairment of a vital function, which, if not
reversed, can constitute the first step in the development of a disease or another form
of damage. The radical chain is only terminated by reaction with another free radical, a
transition metal ion or with an antioxidant, with the last creating a radical no longer able
to propagate the damage.

In discussing the phenomenon of oxidative reactions of free radicals and their conse-
quences, it has to be noted that low levels of free radicals form continuously in vivo and
fulfil significant roles in tissue defence, DNA biosynthesis, redox regulation and possibly
in thiol-based cell signalling [2,11–15]. There is therefore a clear and important distinction
between the consequences of formation of low and excessive levels of free radicals; the
former are essential and not a danger to the organism because its antioxidant defences can
prevent or repair any collateral molecular damage, while the latter can trigger or aggravate
a wide range of diseases and other undesirable conditions.

2. The Principal Reactions of Free Radicals In Vivo

The initial reaction of the primary damaging free radicals with biomolecules commonly
produces carbon-centred (C-centred) free radicals. Their principal subsequent reactions
result in new free radical chains, which include formation of peroxyl free radicals, ROO•,
in a fast reaction with physiological oxygen (Scheme 1).

In the reducing environment of cells and tissues, peroxyl radicals are commonly
converted to hydroperoxides. All these species, namely, the C-centred and other free
radicals, peroxyl radicals and hydroperoxides, have the capacity to propagate the damage
triggered by R•, with peroxyl radicals believed to be the main carriers of damage in living
organisms; many of the commonly used assays for the formation of free radicals in cells
and tissues depend on the detection of peroxyl radicals and hydroperoxides [16,17].
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Scheme 1. Principal biological targets of the primary free radicals and damage repair. R• is the
initiating free radical and AH an antioxidant. The initial reaction produces a carbon-centred free
radical in the target. Reactive species are shown in red. The blue curve shows the flow of the reducing
equivalents under optimal prevention of damage.

Defence against free radical-induced damage can be achieved by scavenging the
R• or repair of the damaged target molecules. Under oxidative stress, this should be
achievable in theory by enhancing the levels of the endogenous antioxidants or, if necessary,
supplementation with additional antioxidants. Considerations of the mechanism of action
of the most damaging free radicals, such as the hydroxyl, HO•, have shown that, because of
their high reactivity and low levels in vivo, direct scavenging by added radical scavengers
is not feasible, despite a commonly held contrary view [18]. This means that the earliest
and most effective point for protective action is the secondary target free radical, because
its repair prevents subsequent molecular damage (Scheme 1). It is important to note that
the well-documented recognition of the signalling and defensive functions of ROS in vivo
means that the role of antioxidants in living organisms is not to eliminate all free radicals,
but rather to lower any excessive levels, so that they can be neutralised by the endogenous
antioxidants present.

The practical possibility of modification of biological damage by antioxidants is based
on extensive chemical knowledge of the properties of free radicals, which established that
their effectiveness is largely determined by thermodynamics and kinetics [19,20]. The
former is an intrinsic property of the reacting species and cannot be altered. Importantly,
however, kinetic factors can be manipulated because they depend on concentrations of the
reactants:

Rate of reaction = k [AH] [R•] (1)

In the equation, k is the bimolecular rate constant (units M−1 s−1), AH an antioxidant
and R• a free radical, with the bracketed terms denoting molar concentrations. Since the
damage-causing primary R• cannot be scavenged in vivo and are by definition sufficiently
reactive to generate C-centred free radicals in many molecules, antioxidant repair reactions
must be faster than those of any competing processes. This cannot be achieved under OS
by the normal levels of the endogenous antioxidants. In fact, measurements of the rate
constants of reactions of ascorbate, urate and GSH with C-centred radicals have shown
their reactions to be too slow to ensure effective scavenging of the radicals in tissues with
a low antioxidant content [21–23]. The obvious defensive tactic of increasing the levels
of lthe endogenous antioxidants to levels sufficient to prevent the consequences of OS
is not possible: in the case of enzymes and metal-chelating proteins, their activities are
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tightly regulated and are not amenable to manipulation in human populations. Similarly,
rates of free radical repair by the principal non-enzymatic antioxidants are not readily
enhanced, because their concentrations in vivo cannot be significantly increased in humans
consuming a normal healthy diet. This possibility was extensively studied for the vitamins
C and E and may well be the reason for the generally disappointing benefits of treatment
with vitamins and other supplements found in several long-term studies of thousands of
subjects [4,24–27]. There is likely to be a limit to the effective in vivo concentrations of many
added supplements: experimental evidence shows that the plasma concentration of the
excellent antioxidant ascorbate reaches a limit at a modest oral intake of the vitamin. [28].

The inadequacy of the normal human antioxidant defences under OS, demonstrated
by the population and theoretical results, shows that additional antioxidants are required
by many individuals. These should persist in tissues and be easily administered, preferably
by diet. Currently, the most promising candidates for this role are the plant-derived food
flavonoids and other polyphenols, and many of their metabolites.

3. Food Polyphenols and Health

For several decades, dietary polyphenols have been the subject of intense research ac-
tivity because of their perceived beneficial role in human health. Currently, the health-food
polyphenol link results in over 6500 entries in the Medline database and the number of
publications is increasing [29]. Polyphenols form a diverse group of over 8000 chemically
characterised secondary metabolites in plants, with about 500 commonly consumed as
part of the human diet, where they are particularly abundant in vegetables, fruit, red wine,
berries, green tea, soy and cocoa [17,30,31]. Many epidemiological and interventionist
studies have been conducted in attempts to disclose convincing links between polyphenol
intake and human health. Epidemiological research examined the relationship between
diets and conditions such as mortality, cancer, atherosclerosis, cardiovascular disease, dia-
betes, inflammation, ischemia, hypertension, stroke, metabolic syndrome, obesity, urinary
tract infections and conditions associated with ageing, such as cognitive degeneration and
Alzheimer’s and Parkinson’s diseases. Such studies are long, expensive and fraught with
methodological difficulties, but have the capacity to provide convincing links between
diet and disease. The broad overall findings were that a polyphenol-rich diet had either a
preventive or alleviating effect on the condition, or produced no detectable change.

In intervention studies, groups of subjects ranging from a few to over 100 were
administered a course of single or several food polyphenols for various periods and the
effect on selected biomarkers compared with unsupplemented controls. The results of 93
intervention studies with both healthy and health-impaired subjects, conducted before 2005,
showed some protective effects on the plasma antioxidant biomarkers, vascular system and
on markers of carcinogenesis, with the authors pointing out the design limitations of many
of the studies [32]. One common problem was the inclusion of healthy individuals; by
definition, endogenous defences are normally capable of providing adequate antioxidant
protection for healthy subjects, so that studies of the effects of diets rich in polyphenols
are much more likely to produce measurable results in subjects suspected or known to be
exposed to excessive free radical challenge; i.e., to OS. There is, in fact, evidence that the
effectiveness of dietary interventions on plasma biomarkers is much greater in individuals
compromised by disease than in healthy controls [33,34]. While studies of persons known
or suspected of exposure to OS demonstrated a general tendency towards a reduction in
the consequences of the stress and enhancement in antioxidant potential by polyphenol
administration, many results are confusing and sometimes self-contradictory [35]. One
aspect of the results is significant; however, as far as we know, there were no reports of
increased oxidative damage in the groups consuming plant-derived food, as would be
expected if the ingested polyphenols had a pro-oxidant effect.

The results and conclusions drawn from a wide range of studies have been summa-
rized in many comprehensive reviews published in the last decade, constantly updated
because of the rapid increase in the numbers of studies of the effects of plant-derived food
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on health. Those quoted are selected to give an overall view of the current state of the field,
with the list constantly expanding and limited here only by space requirements [36–42].

4. New Developments in the Antioxidant Role of Polyphenols

Given the generally accepted health benefits of food polyphenols, the intensive search
for their cause is not surprising. An early theory, based on the long-known ability of pheno-
lic compounds to act as chemical antioxidants, acquired physiological relevance following
the discoveries of the presence of polyphenols in human diet and of the generation of
free radicals in living organisms. While the antioxidant theory was accepted for several
decades, recent re-examination of the beneficial role of dietary polyphenols on health
suggested that their physiological effects are more likely to be due to their interaction with
macromolecules and the ability to affect the cell redox signalling functions. [12,13,34,35].
The virtually universal abandonment of a major antioxidant role for food polyphenols
in vivo was based on three sets of observations: (1) the polyphenol reaction with free
radicals was believed to be too slow for successful competition with oxygen and ascorbate;
(2) modification of the redox properties of polyphenols by extensive metabolism, including
the loss of phenolic groups, would not allow them to function as effective antioxidants;
and (3) the concentrations of the ingested polyphenols in biofluids are too low for effective
antioxidant action [12,17,31,43].

These conclusions are now challenged by reports indicating that the dismissal of
an antioxidant role of polyphenols in vivo is incorrect, because it is based on incomplete
knowledge of the mechanism of reaction of polyphenols with free radicals. The classi-
cal mechanism assumed that antioxidant action required transfer of electrons from the
polyphenol to the radical. However, new experimental results show that (1) the polyphenol
reaction with radicals is very fast and lowers their damaging potential; (2) loss of phenolic
groups does not abolish the antioxidant ability of the polyphenols; and (3) the antioxidant
defences of an organism include both polyphenols and their aromatic metabolites, present
in vivo at µM concentrations. Evidence for these conclusions is summarised below.

4.1. Speed of the Polyphenol-Free Radical Reactions

The classical definition of oxidation is the “complete, net removal of one or more
electrons from a molecular entity” [44]. Thus, in a single electron transfer involving a
free radical R• and a polyphenol electron donor PPOH, the donor is oxidized to a free
radical PPO•. This, in an environment rich in reducing compounds, AH, such as a cell,
regenerates the donor and produces a new free radical A• with diminished reactivity. As
radical reactions go, the overall process is relatively slow, because of a large entropic barrier,
since it involves the exchange of at least two protons and breaking of the strong O–H
bond [45]:

R• + PPOH→ RH + PPO• (2)

PPO• + AH→ PPOH + A• (3)

Only a few studies addressed the kinetics of reactions of flavonoids and other phenols
with C-centred free radicals. Experimental investigations required the employment of
pulse radiolysis, with accelerated electrons generating a C-radical, R•, which then reacted
with the phenolic compound [46]. Measurements of the subsequent decay of the R• or
formation of PPO• allowed the derivation of the speed of the reaction by calculation of
the reaction rate constant (Equation (1)). The results of early studies with polyphenols are
shown in the first seven kf values listed in Table 1. Apart from one value, the rate constants
were less than 108 M−1 s−1. This is much lower than the 109–1010 M−1 s−1 range common
for free radical reactions, termed “diffusion controlled”, because they require little or no
activation energy and their speed is primarily limited by diffusion of the reactants. The rate
constants of Reaction (2) confirm that, according to the classical mechanism of oxidation,
polyphenols cannot compete with the parallel fast reactions of the DNA, protein or lipid
C-centred free radicals with physiological oxygen or ascorbate.
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Table 1. Rate constants of repair of the carbon radicals by flavonoids and a metabolite.

C-Radical Polyphenol Conditions 10−7 × kf
(M−1s−1)

Electron
Transfer

Promethazine EGC pH 3 1.4 yes

Tryptophan Catechin pH 7 2.0 yes

Tryptophan Quercetin flavonoid HSA bound 6.8 yes

Tryptophan Rutin flavonoid HSA bound 14 yes

Tryptophan Rutin micelles 4.8 yes

Tryptophan Quercetin micelles 6.0 yes

Uric acid Quercetin flavonoid HSA bound 0.2 yes

TMPD Rutin pH 13.5 1300 no

Ac-Ala-NH2 Morin pH neutral 1000 no

Ac-Lys-NH2 Morin pH neutral 100 no

Ac-Pro-NH2 Morin pH neutral >1000 no

Ac-Gly-NH2 Morin pH neutral 1000 no

Cyclo(Gly)2 Morin pH neutral 300 no

Ac-Glu-NH2 Morin pH neutral >400 no

tert-BuOH Morin pH neutral 2000 no

Ac-Ala-NH2

Gallate
Rutin
EGCG
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In a new development, the possibility of a very fast reduction in the damaging po-
tential of free radicals by polyphenols was suggested by a report of rapid scavenging of
alcohol C-centred radicals by histidine [49]. In this study, aqueous solutions containing an
alcohol and a low concentration of histidine were irradiated with 50 ns pulses of 2 MeV
electrons, with the formation of transient absorbing species followed optically. The kinetics
of absorbance changes were measured on the µs time scale. In solutions saturated with
N2O, the electron pulse decomposed the solvent water, producing virtually exclusively the
powerful oxidizing hydroxyl free radicals HO• [19]. The HO• generated C-centred alcohol
free radicals, which formed adducts with the His in a reversible reaction with a forward rate
constant >109 M−1 s−1, or about 1000 times faster than the classical antioxidant reaction
involving electron and/or H transfer (Table 1). This result was supported by measurements
of the forward rate constants of reactions of His or nitrobenzenes with C-centred radicals
from isopropanol, CO2

−, CF3 and CCl3, which were virtually diffusion-controlled, with
values between ≤3 × 109 and 2 × 1010 M−1 [50–52].

Analysis of these reports showed that the only requirement for a molecule forming an
adduct with the free radical was the presence of an aromatic centre. Since flavonoids and
other polyphenols, and many of their metabolites, have such centres, tests were carried out
to determine their potential to form adducts with amino acid C-centred radicals generated
by pulse radiolysis [48]. Acetylated amino acid derivatives of Lys, Pro, Gly, Glu and
cyclo(Gly)2 were used, because of their structural relevance to peptides and proteins. The
concentration ratio of the amino acid N-Ac-AA-NH2 to polyphenol was 200:1, ensuring
that 98% of the HO• reacted with the amino acid, leaving the polyphenol unaffected:

N-Ac-AA-NH2 + HO• → N-Ac-AA•-NH2 + H2O (4)
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In the absence of oxygen, the amino acid free radicals formed adducts with the
polyphenols in a reversible process. For morin, the reaction was

N-Ac-AA•-NH2 + morin 
 [adduct]• (5)

While morin was used in most experiments, similar fast reactions were recorded with
the flavonoids rutin and epigallocatechin gallate and with the polyphenol metabolite gallate
(Table 1). Further details of the formation and characteristics of the free radical–polyphenol
adducts were elaborated in a subsequent publication [53].

It is clear that the large differences in the two groups of low and high rate constants,
and therefore the speeds of the polyphenol-C-radical reactions, were determined by the
mechanism of the process. When the electrons were transferred, as in Reaction (2), the
process was slow, for the reason given above. When an adduct formed without electron
transfer, the reaction was practically diffusion controlled. Since some of the earlier studies
of polyphenol free radicals also employed pulse radiolysis, an obvious question is why
they failed to observe formation of the radical adducts [46,54,55]. The reason is that only
Filipe et al. have studied the reaction between C-centred free radicals and a polyphenol
flavonoid, measuring the kinetics of reaction of Trp• and catechin on a time scale too slow
to observe the adduct.

From the point of view of biological protection, it is important to note that the first
step in the reaction resulting in formation of the free radical–polyphenol adduct is already
an antioxidant event, because it results in significant reduction of the reactivity of the
C-centred radicals, as required by thermodynamics.

4.2. The Antioxidant Role of OH Groups in Polyphenols

The role of antioxidants is to reduce the damaging potential of ROS. While the classical
free radical scavenging action of polyphenols required the transfer of a hydrogen from
a phenolic group [45], the results summarised in Section 4.1 demonstrate that this group
is not necessary for fast formation of an adduct; the only requirements are a C-radical
and an aromatic compound. This finding greatly expands the range of available dietary
antioxidants, because the requirements for adduct formation are fulfilled by a plethora of
polyphenol metabolites, as discussed in Section 4.4.

4.3. The Principal Reactions of C-Radicals In Vivo

The experimental observations of the formation and subsequent fate of the adducts
are consistent with the processes illustrated in Scheme 2. In this, [adduct]• formation is
assumed to be followed by a series of equilibria, with the final slow transfer of electrons in
Reaction (2). The different values of the reaction rate constants reported in Table 1 can be
explained by the time point at which the reaction was measured; adduct detection required
measurements on the low µs scale, while in the earlier studies only the final slow stage
involving electron or H transfer was seen (Reaction 2).
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4.4. Concentration of Polyphenols and Their Metabolites In Vivo

Knowledge of the tissue concentration of any bioactive antioxidant is important
because, among other reasons, of its influence on the rates of reactions (Equation (1)). Mea-
surements of the concentrations of flavonoids and other polyphenols in humans typically
involved oral administration of the selected compound, followed by its detection in plasma
and urine at different times [56,57]. The results can give the maximum biofluid concentra-
tions of the parent compound (Cmax) and times of its clearance (Tmax). Studies of the ability
of the administered polyphenol to affect a particular health-related parameter commonly
compare its effects in normal controls and in patients with an identified condition, such as
cancer or neurological disease. With some exceptions, the general results of the treatments
have proved beneficial. However, usually the benefits cannot be quantitatively related to
levels of the polyphenol in plasma or urine, because accurate values of their concentrations
are difficult to derive. For example, the commonly used LC-MS technique shows significant
variability in interlaboratory results, sometimes differing by a factor of 10 [58,59].

In spite of such problems, already existing data allows the drawing of some broad
conclusions. Analysis of 424 intervention studies with polyphenol-rich food sources and
pure polyphenols led Rothwell and collaborators to conclude that a plasma concentration
of over 5 µM should be achievable by simultaneous consumption of a variety of foods
rich in several polyphenols, as is common in daily life [30]. Over 380 metabolites were
identified in the Phenol-Explorer database, which, together with the parent compounds,
form part of the total phenolic metabolome of human tissues. Many of the metabolites
retained the aromatic character of their parent polyphenols and showed higher Tmax values.
The authors implied that, however valuable, measurements of the levels and persistence
of singly administered polyphenols in biofluids are not useful for estimating the total
contribution of a vegetable-rich diet to health, because the effects of the individual dietary
components are additive. The derived consensus was that the physiological concentration
of the total polyphenol-derived metabolome in humans varies widely and can reach µM
concentrations, but is unlikely to exceed 10 µM [30,32].

The contribution of these levels of dietary polyphenols to the organism’s antioxidant
potential needs to be augmented by the discovery that not only polyphenols but also other
aromatic food components can lower the damaging potential of C-centred free radicals by
forming adducts. Recent work has shown that a major source of aromatic food metabolites
are the non-extractable polyphenols, including condensed tannins, ellagitannins, flavanone
rutinosides and other high molecular weight polyphenols, not soluble under conditions
usually employed for a polyphenol assay in tissues, but requiring previous acid hydroly-
sis [60–62]. The condensed polyphenols form a large proportion of the phenolic content of
many plant-derived foods; for example, studies with apples, nectarines and pears showed
5 times more non-extractable than extractable polyphenols by weight [62]. The large
molecules are not absorbed in the stomach or small intestine but are efficiently catabolised
by the gut microorganisms to easily absorbed lower molecular weight compounds [57].
These can reach significant concentrations in tissues: after consumption of almond skins,
the peak concentration of phenylacetic acid in human plasma was 8 µM and the 4-OH-
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3-methoxyphenyl acetic acid in urine 25 µM. The maximum concentrations of most of
the microbial catabolites persisted in tissues for 24–43 h, much longer than is common
for dietary polyphenols [56,61]. Many of them have aromatic centres and some retain the
phenolic groups of their precursors. Not surprisingly, the non-extractable polyphenols
have antioxidant, anti-inflammatory and antiatherogenic properties, contributing over 60%
to the average antioxidant potential of cereals, legumes and cocoa products [62–64]. This,
together with the persistence of these metabolites in body fluids, suggests that they provide
a steady level of antioxidant protection for hours after a polyphenol-rich meal.

From these observations, the three general conclusions of particular significance for
this review are (1) food polyphenols and many of their metabolic derivatives are absorbed
by living organisms; (2) combined concentrations of the polyphenols and metabolites in
biofluids can reach micromolar levels; and (3) many metabolites of food polyphenols retain
their aromatic function sufficient for antioxidant activity.

5. Polyphenols in Scavenging of Free Radicals In Vivo

The finding of high rate constants of reactions of aromatic molecules with C-centred
free radicals allows an approximate estimate of the potential effectiveness of polyphenols
and their aromatic metabolites in delaying, reducing or preventing biological damage under
oxidative stress. Since, as already indicated, not all free radicals can or should be scavenged
in vivo, the function of added antioxidants is to augment the antioxidant capacity of the
organism to a level sufficient to overcome any damage caused by oxidative stress. As the
damage initiating primary radicals R• cannot be intercepted, antioxidant repair needs to
be applied to the secondary [Target]•. Assuming that the two main reactions competing
for the [Target]• are as shown in Scheme 2, and using the rate constants of 2 × 109 M−1 s−1

for the [Target]• reacting with O2 and 1010 M−1 s−1 for adduct formation, for 50% of the
[Target]• to be repaired, the concentration of the aromatic antioxidants should be 4 µM.
Such levels are easily achievable by diets containing the recommended daily amounts
of fruits and vegetables and may well be sufficient to neutralise excessive levels of free
radicals in oxidative stress. In contrast, a similar efficiency of reactions involving electron or
H transfer would require an unachievable antioxidant concentration of ~2 mM and would
include only the polyphenols and those of their metabolites retaining the phenolic groups.

6. Conclusions and Prospects

The new insight into the mechanism of the free radical–polyphenol reaction provides
support for the age-old advice urging consumption of plant-derived foods. Such advice is
seldom based on rigorous scientific evidence. The results reviewed here provide evidence
that at least part of the demonstrated health benefits of fruit and vegetable diet is likely to
be derived from the capacity of the constituent polyphenols to function as antioxidants,
reducing or eliminating the ability of free radicals to cause cell and tissue damage. They
also identify the basis of the antioxidant properties of a large proportion of polyphenol
metabolites and show that they, and other aromatic molecules, are part of the overall an-
tioxidant arsenal of an organism. Besides the plant-derived food components, this aromatic
metabolome would include other tissue constituents and many pharmaceuticals used in the
treatment of pain or inflammation. New antioxidant drugs with the desirable properties
of easy administration, low toxicity and persistence can be developed for individuals,
especially those exposed to oxidative stress because of the particular conditions of their
lives. Or, one can rely on a varied diet rich in vegetables, fruits, nuts, dark chocolate and
red wine.
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