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Inborn errors of metabolism cause a wide spectrum of 
neurodevelopmental and neurodegenerative conditions 
[15]. A pivotal enzyme located at the intersection of the 
amino acid and folic acid metabolic pathways is SHMT2, 
the mitochondrial form of serine hydroxymethyltransferase. 
SHMT2 performs the first step in a series of reactions that 
provide one-carbon units covalently bound to folate species 
in mitochondria: it transfers one-carbon units from serine to 
tetrahydrofolate (THF), generating glycine and 5,10-meth-
ylene-THF [4, 11, 12].

Using whole exome sequencing (WES), we identified 
biallelic SHMT2 variants in five individuals from four dif-
ferent families. All identified variants were located in con-
served residues, either absent or extremely rare in control 
databases (gnomAD, ExAC), and cosegregated based on a 
recessive mode of inheritance (pRec = 0.9918 for this gene) 
(Supplementary Figs.  1–3, Supplementary Table 1). In 
family F1, a homozygous missense variant present in two 
affected siblings was located in a region without heterozy-
gosity (~ 10 Mb, the only region > 1 Mb shared by both 
siblings) in which no other candidate variants were found, 
providing a strong genetic evidence of causality for these 
variants. The missense/in-frame deletion nature of these 
variants, and the absence of loss-of-function homozygous 
individuals in control databases, combined with the fact that 
complete loss of SHMT2 is embryonic lethal in the mouse 
[18], suggested that these variants may cause hypomor-
phic effects. Using 3D molecular dynamics models of the 
SHMT2 protein, we concluded that these candidate variants 
probably alter the SHMT2 oligomerization process, and/or 
disrupt the conformation of the active site, thus inducing 
deleterious effects on SHMT2 enzymatic function (Supple-
mentary Figs. 4–8, Supplementary Tables 2–3, Supplemen-
tary video) [8, 19].

All patients presented a similar phenotype, characterized 
by dysmorphic features including long palpebral fissures, 
eversion of lateral third of lower eyelids, arched eyebrows, 
long eyelashes, thin upper lip, long philtrum, short fifth fin-
ger, fleshy pads at the tips of the fingers, mild 2–3 toe syn-
dactyly and low-set thumbs. All patients exhibited intellec-
tual disability and motor dysfunction, in the form of spastic 
paraparesis, ataxia, and/or peripheral neuropathy. Also, four 
out of five patients showed hypertrophic cardiomyopathy or 
atrial-septal defects, which tend to progress over time. All of 
the patients showed congenital microcephaly; MRI revealed 
corpus callosum abnormalities in all patients and perisylvian 
polymicrogyria-like pattern in patients P1–P4 (Fig. 1a–c, 
Supplementary Figs.  9–11, Supplementary Table  4). 
Quadriceps muscle and myocardium biopsies from Patient 4 
showed myopathic changes, and myocardium biopsy showed 

the presence of “ragged red” fibers, suggestive of defective 
mitochondria (Fig. 1d, Supplementary Fig. 12).

To assess the pathogenicity of SHMT2 variants, we 
pursued functional testing with patient-derived primary 
fibroblasts. SHMT2 protein levels in fibroblasts were not 
significantly altered (Supplementary Fig. 13). While all 
metabolites were in the normal range in plasma, fibroblasts 
from affected individuals showed a significant decrease in 
glycine/serine ratios compared to controls. Folate metabo-
lism was also impaired: 5-methyltetrahydrofolate levels were 
increased in patients in relation to total folate (Fig. 1e, f). 
The substrate of SHMT2 tetrahydrofolate (THF) was unde-
tectable in mitochondria-enriched control fibroblast samples, 
but low levels of this molecule were detectable in extracts 
from patient fibroblasts (Supplementary Table 5). These data 
support the impairment of SHMT2 enzymatic function in 
these patients. Because folate and serine are required for 
proper mitochondrial translation [11, 12], we verified levels 
of mitochondrial OXPHOS complexes, which did not vary 
(Supplemental Fig. 14).

Next we analyzed bioenergetic and mitochondrial func-
tion in patients’ fibroblasts, which were described to be 
impaired in knockout human cancer cell lines [11, 12]. ATP 
measurements, as well as extracellular flux analysis in a Sea-
horse device, under glucose restriction conditions, indicated 
an impaired oxidative capacity in patients’ cells relative to 
controls (Fig. 1g, h, Supplementary Fig. 15). Mitochon-
drial membrane potential was found to be altered, as well 
as ROS levels (both total and mitochondrial), supporting 
mitochondrial redox metabolism malfunction (Supplemen-
tary Fig. 16).

In previous works, Shmt2  knockout mice exhibited 
embryonic lethality, attributed to severe mitochondrial 
respiration defects in fetal liver, and ensuing inhibition of 
erythroblast differentiation resulting in anemia. Moreover, 
metabolic defects were not observed in brain tissue, possibly 
due to the preferential use of the glycine cleavage system to 
provide one-carbon units [17]. To investigate whether the 
patients’ neurological phenotype could be mediated by non-
neuronal autonomous mechanisms, we knocked down Shmt2 
specifically in Drosophila motor neurons (~ 65% knockdown 
of Shmt2 RNA as shown previously by qPCR) [3]. We ana-
lyzed the morphology of presynaptic terminals at neuro-
muscular junctions (NMJs), which reliably model excitatory 
synapses in the mammalian brain and spinal cord [2]. While 
no changes in the numbers of total boutons or mature bou-
tons were observed in Shmt2-knockdown animals compared 
with eGFP controls, we found a significant increase in the 
numbers of satellite boutons, emerging from the main nerve 
terminal or budding excessively from primary boutons and 
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Fig. 1   SHMT2-mutated patients: phenotype and functional evaluation 
in fibroblasts. a Sagital T1-weighted MRI planes showing corpus cal-
losum hypoplasia in Patient P1 (left) and Patient P4 (right). b Axial 
T1-weighted MRI planes (left) in Patient P2 showing perisylvian pol-
ymicrogyria (PMG) visible around both Sylvian fissures and insulae 
(arrows) and right parasagittal T1-weighted MRI (dotted contour). 
Note the stippled gray-white boundary of the polymicrogyric cor-
tex compared to the smooth gray-white boundary in normal cortical 
areas. c Dysmorphic features in Patients P1–P5. d Modified Gomori 
trichrome staining of Patient 4 myocardium biopsy sample showed 
the presence of “ragged red” fibers, consistent with a mitochondrial 
cytopathy. e Quantification of Gly/Ser ratio in fibroblasts from con-
trol individuals (CTL, n = 6) and patients (SHMT2, n = 5). f 5′-Methyl 
THF (tetrahydrofolate) normalized to total folate levels in fibroblasts 
from control individuals (CTL, n = 5) and patients (SHMT2, n = 5). 
g Measure of ATP concentration in control individuals (CTL, n = 6) 
and patients (SHMT2, n = 5) fibroblasts after 24-h incubation in a 

medium without glucose. Values were normalized by number of cells. 
Quantification depicted as fold change to control fibroblasts. h Quan-
tification of mitochondrial oxygen consumption rates (OCR, pmol 
O2/min/1000 cells) in control individuals (CTL, n = 5) and patients 
(SHMT2, n = 4). i Shmt2 knockdown in motoneurons cause neuro-
muscular junction (NMJ) and motility defects in Drosophila. Left: 
immunofluorescence images of the neuromuscular junctions of mus-
cle 4 segment A2–A3 stained with the presynaptic marker horserad-
ish peroxidase (HRP, arrowhead). Right: quantification of the average 
number of satellite boutons, climbing distance and velocity in control 
(eGFP) and mutant (Shmt2 RNAi #1, #2) flies (n = 15-18 for bou-
tons, n = 30 for distance and velocity). In e–h, values are expressed 
as mean ± SD, and two-tailed Student t tests were performed; in i, val-
ues are expressed as mean ± SEM, and one-way ANOVA with Tuk-
ey’s multiple comparisons test was performed (*p < 0.05, **p < 0.01, 
***p < 0.001)
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forming clusters (Fig. 1i, Supplementary Fig. 17). Of note, 
previous studies have shown increased satellite boutons in 
Drosophila models for Amyotrophic Lateral Sclerosis and 
Spastic Paraplegia [7, 16]. Moreover, mutant flies showed 
reduced climbing distance and velocity compared to eGFP 
control animals (Fig. 1i). These results may reflect a role for 
human SHMT2 in the maintenance of presynaptic vesicles, 
and can be attributed to a selective decrease of Shmt2 in 
neurons, without any significant systemic interfering effects. 
Thus, these studies argue against non-cell autonomous 
mechanisms from the periphery causing neuronal malfunc-
tion in patients.

Interestingly, this novel rare disease entity corresponds 
faithfully to an intersection of diverse clinical manifesta-
tions associated with defects in metabolic pathways in which 
SHMT2 plays a crucial role, such as amino acid and folate 
metabolism and mitochondrial homeostasis [4, 11, 12]. 
SHMT2 impairment alters intracellular glycine/serine levels, 
which provides the main source of mitochondrial one-carbon 
units in proliferating cells, and thus probably contributes to 
microcephaly and polymicrogyria [9, 10, 13]. Microceph-
aly associated with hypomyelination is also seen in patients 
with loss of PYCR2, an enzyme of proline synthesis which 
interacts with SHMT2, causing hyperglycinemia, under-
scoring the impact of dysregulated glycine/serine levels on 
neurodevelopment [6]. SHMT2 malfunction also depletes a 
downstream product species, 5,10-methylTHF, required for 
nucleotide metabolism [1, 5]. Microcephaly, developmental 
delay/intellectual disability and cardiomyopathy have been 
extensively described in defects of folate metabolism [14]. In 
summary, we describe a novel neurodevelopmental, syndro-
mic encephalopathy and movement disorder associated with 
cardiac defects. Despite a certain degree of variable sever-
ity, clinical manifestations were consistent in all individuals 
and thus establish a well-defined and recognizable clinical 
syndrome of defective folate and amino acid metabolism.
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