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Abstract: With the introduction of targeted therapies and immunotherapy, molecular diagnostics
gained a more profound role in the management of non-small cell lung cancer (NSCLC). This study
aimed to systematically search for studies reporting on the use of liquid biopsies (LB), the correlation
between LBs and tissue biopsies, and finally the predictive value in the management of NSCLC.
A systematic literature search was performed, including results published after 1 January 2014. Articles
studying the predictive value or validity of a LB were included. The search (up to 1 September 2019)
retrieved 1704 articles, 1323 articles were excluded after title and abstract screening. Remaining articles
were assessed for eligibility by full-text review. After full-text review, 64 articles investigating
the predictive value and 78 articles describing the validity were included. The majority of studies
investigated the predictive value of LBs in relation to therapies targeting the epidermal growth factor
receptor (EGFR) or anaplastic lymphoma kinase (ALK) receptor (n = 38). Of studies describing
the validity of a biomarker, 55 articles report on one or more EGFR mutations. Although a variety of
blood-based biomarkers are currently under investigation, most studies evaluated the validity of LBs
to determine EGFR mutation status and the subsequent targeting of EGFR tyrosine kinase inhibitors
based on the mutation status found in LBs of NSCLC patients.

Keywords: liquid biopsy; non-small cell lung cancer; biomarkers

1. Introduction

Lung cancer is the leading cause of cancer-related deaths worldwide and is known for its high
incidence and mortality rates [1,2]. The current treatment standard for early-stage non-small cell
lung cancer (NSCLC) (stage I–II) is resection. In addition to resection, patients are offered stereotactic
radiotherapy, adjuvant chemotherapy, or a combination of both depending on the tumor stage. Patients
diagnosed with stage III–IV are eligible for systemic therapy such as chemotherapy, chemoradiotherapy,
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immunotherapy, combinations, and targeted therapy based on the presence of specific genetic druggable
mutations [3].

With the introduction of targeted therapies and immunotherapy, molecular testing has become
more important, as the effectiveness of selected therapies depends on the presence of specific molecular
or genomic alterations [4]. Furthermore, patients tend to develop treatment resistance leading to
disease progression and requiring the use of second- and third-line targeted therapies. Moreover,
tumor heterogeneity and clonal evolution possibly play a role in the development of drug resistance,
increasing the need for repeat biopsies to guide treatment decisions [5–7]. Currently, oncogenic
mutations are derived from tumor tissue samples obtained by means of invasive biopsies. However,
(re-)biopsies can be highly complex and sometimes require an invasive procedure, therefore unfeasible
in a substantial proportion of patients, due to location, tumor size, or general health status. Besides being
performed in case of an inadequate first sample, re-biopsies can be performed to track tumor progression
and clonal evolution. Since a re-biopsy does also not always provide sufficient tissue for molecular
testing, liquid biopsies (LBs) might help overcome this issue [8–10]. LBs provide an alternative way of
obtaining genetic information without the need for an invasive procedure, the low patient burden
allows for more frequent biopsies to guide treatment decisions. LBs are also expected to have a health
economic benefit by better treatment targeting and by earlier identification of non-response [11].

Liquid biopsies obtained through blood samples contain different types of tumor-related genetic
or protein markers, e.g., circulating tumor cells (CTCs), RNA, exosomes, carcinoembryonic antigen,
cytokeratin, and cell-free DNA (cfDNA), which can provide valuable information with regard to
prognostics, early disease detection, treatment response monitoring, identification of emerging
treatment resistance, and recurrence monitoring [12,13].

Despite the potential benefits of liquid biopsies, not many LBs are routinely used nor are they
reimbursed. This partly has to do with the challenges of genome backward development of new
biomarkers compared to biomarker and drug co-development, as the evidence of clinical validity
needs to be established post-hoc for the latter. While clinical utility to change patient management is
the holy grail in such studies, an essential and intermediate requirement is to demonstrate diagnostic
validity and predictive validity. Existing reviews focus on a specific mutational pathway or biomarker
and not on the evidence of validity obtained through prospective studies. This review aims to identify
papers investigating a rage of liquid biopsy-based biomarkers for patients with NSCLC and, second,
to extract and compare evidence of clinical and predictive validity. It primarily focuses on the diagnostic
and predictive validity, where diagnostic validity is defined as the ability of LBs to identify mutations
or biomarkers for which tissue analysis currently is the gold standard. Predictive validity on the other
hand is defined as if the LB can predict response to a particular treatment, which is a requirement for
a test to have utility.

2. Results

The initial search in Scopus (n = 1489) and PubMed (n = 1037) returned a total of 2526 studies,
and after duplicate removal, 1704 unique records were identified. Based on the screening of all abstracts
of the 1704 identified records, 1323 records (78%) were excluded from the full-text review. The full
study selection process is depicted in Figure 1, and a detailed description is provided in Tables 1 and 2
for presenting the full reference to the selected studies.

2.1. Extracted Data on the Validity of the Biomarker

A description of all studies included in the validity group is provided in Table 1.
Figure 2 depicts the reported sensitivity, specificity, and concordance rate of the different biomarkers

identified. Results were stratified according to the analysis method used. For each study, the sensitivity,
specificity, and concordance rate of LBs compared to tissue biopsies (TBs) were extracted from
the included papers. Data were only extracted if the study had included at least 10 patients for whom
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the biomarker was also detected in a matched tissue sample. The number of included patients ranged
from 10 to 989 with a mean of 55 patients.

Figure 1. Study selection flow chart. (Non-small cell lung cancer: NSCLC, single nucleotide
polymorphism: SNP, Overall survival: OS, Progression free survival: PFS).
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Table 1. Description of included studies describing the validity of a liquid biopsy-based biomarker.

1st Author Publication Year Evaluated Biomarker(s) Analysis Method Reference
Number

Alegre et al. 2016 L858R, del E746-A750 PCR [14]
Arriola et al. 2018 EGFR PCR [15]

Balgkouranidou et al. 2014 BRMS1 PCR [16]

Chai et al. 2016 Exon 19 deletion, L858R, L861Q,
T790M, exon 20 insertions cSMART [17]

Chen et al. 2017 Gene panel NGS [18]
Chen et al. 2016 Gene panel NGS [19]
Cui et al. 2017 ALK NGS [20]

Douillard et al. 2014 EGFR PCR [21]
Duan et al. 2015 EGFR PCR [22]

Guibert et al. 2018 PD-L1 Fluorescence [23]
Guibert et al. 2018 EGFR, T790M NGS & PCR [24]
Guibert et al. 2016 KRAS NGS & PCR [25]

Guo et al. 2016 Gene panel NGS [26]
Han et al. 2016 EGFR, KRAS PCR [27]
He et al. 2017 L858R, exon 19 deletion, EGFR PCR [28]
Ilie et al. 2018 PD-L1 Fluorescence [29]
Ilie et al. 2017 MET Fluorescence [30]

Jenkins et al. 2017 T790M, L858R, exon 19 deletion PCR [31]
Kasahara et al. 2017 Exon 19 deletion, L858R PCR [32]

Krug et al. 2018 EGFR, T790M NGS & PCR [33]
Lam et al. 2015 EGFR PCR [34]
Lee et al. 2016 Exon 19 deletion, L858R PCR [35]
Li et al. 2017 Exon 19 deletion, L858R, gene panel PCR [36]
Li et al. 2014 EGFR PCR [37]

Liu et al. 2018 Gene panel, L858R, exon 19 deletion,
KRAS, ALK NGS [38]

Ma 2016 EGFR, exon 19 deletion, L858R PCR [39]
Mayo-de-las-Casas et al. 2017 EGFR PCR [40]

Mok et al. 2015 EGFR, exon 19 deletion, L858R,
G719X, L861Q PCR [41]

Muller et al. 2017 Gene panel NGS [42]
Nilsson et al. 2016 ALK PCR [43]
Oxnard et al. 2016 Exon 19 deletion, L858R, T790M PCR [44]

Que et al. 2016 EGFR Chromatograpy [45]
Reck et al. 2016 EGFR PCR [46]

Reckamp et al. 2016 T790M, L858R, exon 19 deletion NGS [47]

Sacher et al. 2016 Exon 19 deletion, L858R, T790M,
KRAS PCR [48]

Schwaederle et al. 2017 Gene panel, EGFR NGS [49]
Shi et al. 2018 EGFR, exon 19 deletion, L858R cSMART [50]
Sim et al. 2018 EGFR PCR [51]

Sundaresan 2016 T790M PCR [52]
Sung et al. 2017 Exon 19 deletion, L858R NGS [53]

Tompson et al. 2016 Gene panel, EGFR NGS [54]
Thress et al. 2015 Exon 19 deletion, L858R, T790M PCR [55]
Uchida et al. 2015 L858R, EGFR, gene panel NGS [56]

Vazquez et al. 2016 EGFR NGS [57]
Wan et al. 2017 EGFR PCR [58]

Wang et al. 2014 EGFR PCR [59]
Wang et al. 2016 ALK NGS [60]

Watanabe et al. 2016 EGFR, exon 19 deletion PCR [61]
Wei et al. 2018 Gene panel, L858R, exon 19 deletion EFIRM [62]
Wei et al. 2017 Gene panel, L858R, exon 19 deletion PCR [63]
Wu et al. 2018 EGFR PCR [64]
Wu et al. 2017 Exon 19 deletion, L858R PCR [65]
Xu et al. 2016 Gene panel NGS [66]

Yang et al. 2017 BRAF, EGFR, exon 19 deletion, L858R,
T790M PCR [67]

Yao et al. 2017 Gene panel NGS [68]
Yu et al. 2019 EGFR PCR [69]
Yu et al. 2017 Exon 19 deletion, L858R, T790M PCR [70]
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Table 1. Cont.

1st Author Publication Year Evaluated Biomarker(s) Analysis Method Reference
Number

Zhang et al. 2018 EGFR, L858R, exon 19 deletion PCR [71]
Zhang et al. 2017 L858R, exon 19 deletion PCR [72]
Zheng et al. 2016 T790M PCR [73]

Zhu et al. 2015 Exon 19 deletion, L858R PCR [74]
Zhu et al. 2017 Exon 19 deletion, L858R PCR [75]
Zhu et al. 2017 Exon 19 deletion, L858R PCR [76]

Chen et al. 2019 PD-L1 Fluorescence [77]
Ding et al. 2019 Exon 19 deletion, L858R, S768I, L861Q PCR [78]

Garcia et al. 2019 EGFR NGS [79]
He et al. 2019 ALK Fluorescence [80]

Li et al. 2019 ALK, KRAS, EGFR, MET, ERBB2,
BRAF, ROS1, RET, T790M NGS [81]

O’kane et al. 2019 T790M NGS [82]
Park et al. 2019 ALK PCR [83]

Soria-Comes et al. 2019 EGFR PCR [84]
Usui et al. 2019 T790M NGS [85]
Wang et al. 2019 EGFR NGS [86]
Yang et al. 2018 T790M PCR [87]

Ye et al. 2019 KRAS PCR [88]
Zhang et al. 2019 EGFR NGS [89]
Zhang et al. 2019 Exon 19 deletion, L858R PCR [90]

Yoshida et al. 2017 Exon 19 deletion, L858R, T790M PCR [91]

Polymerase chain reaction: PCR, Next generation sequencing: NGS, Circulating single molecule amplification
and re-sequencing technology: cSMART, Epidermal Growth Factor Receptor: EGFR, Breast Cancer Metastasis
Supressor-1: BRMS1, Anaplastic Lymphoma Kinase: ALK, Programmed Death Ligand 1: PD-L1, Kirsten Rat
Sarcoma: KRAS, MET proto-oncogene: MET, B-Raf proto-oncogene: BRAF, erb-b2 receptor tyrosine kinase 2: ERBB2,
ROS proto-oncogene 1: ROS1, ret proto-oncogene: RET.

The majority of studies (72%, n = 56) reported validity of EGFR mutations, including exon 19
deletion, L858R, and T790M mutations. Reported sensitivity values for identified biomarkers ranged
from 19.6% to a perfect 100%. In these studies, the sensitivity was reported for EGFR, exon 19 deletion,
L858R, and T790M in 23, 21, 23, and 10 studies. The results indicate that next generation sequencing
(NGS) is more sensitive than polymerase chain reaction (PCR) in the detection of EGFR and T790M
mutations, but less for L858R mutations. Figure 2 depicts the sensitivity, specificity, and concordance
reported by each. As shown in Figure 2, the average sensitivity of NGS in the detection of EGFR
and T790M mutations was 81% and 87%, respectively. While the average sensitivity of PCR in
the detection of EGFR and T790M mutations was 62% and 64%, respectively. A slightly higher
sensitivity of PCR compared to NGS was reported for exon 19 deletions (NGS 67%, PCR 76%).

Specificity was reported in 21, 20, 20, and 8 studies for L858R, exon 19 deletion, EGFR, and T790M
mutations respectively. A specificity of >90% was seen in most of the studies, despite a few exceptions
like a study reporting a specificity of 47% in a 50-gene panel including EGFR, ALK, and KRAS [19].
The specificity of L858R mutation detection was 97.8% and 98.2% for PCR and NGS-based methods
respectively. While the average specificity for PCR- and NGS-based methods in the detection of exon
19 deletion was 98% and 97%, respectively. In the detection of T790M mutations with an average
reported specificity of 94% and 82% for NGS- and PCR-based methods.

Finally, the concordance between LBs and TBs is reported as a percentage agreement. Concordance
rates of EGFR mutation detection were reported in 14, 15, 14, and 6 studies for L858R, exon 19 deletion,
EGFR, and T790M mutations, respectively. Concordance ranged from 40% for detection of the T790M
mutation to 98.7% for the detection of EGFR mutations. On average reported concordance rates
were higher for NGS-based methods compared to PCR-based methods for all EGFR mutations.
With an average concordance rate for NGS and PCR of 91% vs. 88% in L858R mutations, 90% vs. 87%
for exon 19 deletions, 89% vs. 84% for EGFR mutations, and 69% vs. 68% for T790M mutations.
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Figure 2. Validity measures of all identified analytes, including the sensitivity, specificity, and concordance of
liquid biopsy results compared to matched tissue samples. The y-axis presents each of the reported biomarkers
with analysis platform used and separated through an underscore (e.g., EGFR_NGS). The size of the “circle”
(see caption right of the figure) depicts the number of patients in whom the biomarker was detected in the tissue
sample. Likewise, the “plus” shaped marker depicts the average of the reported values. A boxplot is used to
present the range of the reported values, the box represents the 25th and 75th percentiles, while the whiskers
extend to a maximum of 1.5 times the inter-quartile range.
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2.2. Study Evidence Levels for Predictive Biomarkers

A description of all studies included as describing the predictive value of biomarkers is listed in
Table 2.

Table 2. Description of included studies describing the predictive value of a liquid biopsy-based
biomarker.

1st Author Publication Year Evaluated Biomarker(s) Treatment Reference
Number

Arrieta et al. 2014 Ck18, Ck19, CEA Chemotherapy [92]
Azuma et al. 2016 c-MET Erlotinib, Tivantinib [93]

Chen et al. 2016

has-miR-98-5p,
has-miR-302e,

has-miR-495-3p,
has-miR-613

Radiotherapy [94]

Costantini et al. 2018 sGranB Nivolumab [95]
Del Re et al. 2017 KRAS Erlotinib, Gefitinib [96]

Dowler Nygaard et al. 2014 cfDNA level, KRAS Chemotherapy, bevacizumab [97]
Fiala et al. 2014 NSE, TK Erlotinib, Gefitinib [98]
Fiala et al. 2014 CYFRA, CEA Erlotinib [99]
Fiala et al. 2015 CRP Erlotinib [100]

Haghgoo et al. 2017 TGF-aplha, soluble EGFR,
amphiregulin EGFR TKI [101]

He et al. 2017 L858R, exon 19 deletion,
T790M Afatinib [28]

Jiang et al. 2017 MMB Chemotherapy [102]
Jiang et al. 2018 CTC count Afatinib, Erlotinib, Gefitinib, Icotinib [103]
Juan et al. 2014 CTC count Chemotherapy [104]

Karachaliou et al. 2015 Exon 19 deletion, L858R Erlotinib, chemotherapy [105]
Lee et al. 2014 BIM Chemotherapy [106]
Li et al. 2014 EGFR EGFR TKI [37]
Li et al. 2014 RRM1, ERCC1, BRCA1 Chemotherapy [107]

Ma et al. 2016 EGFR EGFR TKI [39]
Mai et al. 2017 CD8/CD4 Montanide ISA 51 [108]
Mok et al. 2015 EGFR Chemotherapy, Erlotinib [41]

Muinelo-Romay et al. 2014 CTC count Chemotherapy [109]
Nel et al. 2014 CD133/pan-CK, N-cadherin Chemotherapy [110]

Nilsson et al. 2016 ALK Crizotinib [43]
Nygaard et al. 2014 cfDNA level Chemotherapy [111]

Ostheimer et al. 2017 OPN plasma level Radiotherapy, Chemotherapy [112]
Oxnard et al. 2016 T790M Osimertinib [44]

Paz-Ares et al. 2015 EGFR Sorafenib [113]
Qi et al. 2017 CTC count Chemotherapy [114]

Que et al. 2016 EGFR EGFR TKI [45]

Quoix et al. 2016 TrPAL TG4010+chemotherapy,
chemotherapy [115]

Shi et al. 2014 survivin mRNA, EGFR Gefitinib, Erlotinib [116]
Sun et al. 2017 BIM Gefitinib, Erlotinib [117]

Svaton et al. 2014 Natrium level Erlotinib [118]
Tissot et al. 2015 cfDNA level Chemotherapy [119]

Tu et al. 2017 CD4/CD8, NK expression EGFR TKI [120]

Uchibori et al. 2018 Exon 19 deletion, L858R,
T790M Gefitinib+ chemotherapy [121]

Wang et al. 2017 T790M EGFR TKI, chemotherapy [122]
Wang et al. 2018 T790M EGFR TKI [123]
Wang et al. 2014 T790M Gefitinib, erlotinib [124]

Winther-Larsen et al. 2017 cfDNA mutation Erlotinib [125]
Wu et al. 2017 EGFR Chemotherapy, Afatinib [126]

Yanagita et al. 2016 CTC count, cfDNA level Erlotinib [127]
Yang et al. 2017 CTC count Gefitinib, Erlotinib [128]
Yang et al. 2018 CTC count AZD9291 [129]

Yonesaka et al. 2017 Soluble HRG Patritumab + Erlotinib [130]
Zhang et al. 2015 Pokemon Chemotherapy [131]
Zhang et al. 2016 sAPE1 Chemotherapy [132]
Zhou et al. 2017 CTC count Chemotherapy [133]

Zhu et al. 2017 EGFR, L858R, exon 19
deletion EGFR TKI [134]



Cancers 2020, 12, 1120 8 of 23

Table 2. Cont.

1st Author Publication Year Evaluated Biomarker(s) Treatment Reference
Number

Akamatsu et al. 2019 EGFR Afatinib [135]
Alama et al. 2019 CTC count, cfDNA level Nivolumab [136]
Bordi et al. 2019 Mutation level, EGFR Osimertinib [137]

Hojbjerg et al. 2019 miR-30b, miR-30c- miR-211,
miR-222 Erlotinib [138]

Kotsakis et al. 2019 CD4, T-cells, PD-1, PD-L1,
B-cells, DC/monocytes Chemotherapy [139]

Navarro et al. 2019 Exosome seize Surgery [140]
O’Kane et al. 2019 EGFR, T790M EGFR TKI [82]

Park et al. 2019 ALK Crizotinib [83]

Passiglia et al. 2019 cfDNA level, neutrophil to
lymphocyte ratio Nivolumab [141]

Tamminga et al. 2019 CTC count Checkpoint inhibitors [142]
Wang et al. 2019 TMB Anti PD-(L)1 [143]

Zhang et al. 2018
Lymphocyte to monocyte

ratio, neutrophil to
lymphocyte ratio

EGFR TKI [144]

Yang et al. 2018 MiR-10b Chemotherapy [145]
Chea et al. 2019 TMB, MAF Checkpoint inhibitors [146]

Cytokeratin 18: CK18, Cytokeratin 19: CK19, Carcinoembryonic antigen: CEA, MET proto-oncogene: c-MET,
Granzyme B: sGranB, Kirsten Rat Sarcoma: KRAS, cell-free DNA: cfDNA, Neuron specific enolase: NSE, Thymidine
kinase: TK, Cytokeratin-19 fragments: CYFRA, C-reactive protein: CRP, Transforming Growth Factor-alpha: TGF
alpha, Epidermal Growth Factor Receptor: EGFR, molecular mutational burden: MMB, circulating tumor cells:
CTC, Bcl-2-like protein: BIM, M1 subunit of ribonucleotide reductase: RRM1, excision repair cross-complementation
1 gene: ERCC1, breast cancer susceptibility gene 1: BRCA1, pan-cytokeratin: pan-CK, anaplastic lymphoma kinase:
ALK, osteopontin: OPN, triple-positive activated lymphocytes: TrPAL, heregulin: HRG, programmed cell death 1:
PD-1, dendritic cells: DC, tumor mutational burden: TMB, mutant allele frequency: MAF.

Studies were classified according to the evidence framework as proposed by Rao et al. [147].
Six different evidence levels were identified, ranging from retrospective non-case/control studies, to
post-hoc biomarker correlative analysis of a prospective randomized clinical trial. The majority of
studies were classified as III B, a prospective observational study (n = 38.59%). Other classes included
I D post-hoc biomarker correlative analysis of a prospective randomized controlled trial (n = 6.10%),
II B prospective biomarker driven non-randomized clinical trial (n = 5.8%), II C a post-hoc biomarker
correlative analysis of non-randomized clinical trial (n = 3.5%), III C a case-control study (n = 1.2%),
III E a retrospective non-case-control study (n = 11.17%)(Figure 3.).

Figure 3. Evidence levels of studies in category: predictive value. Evidence levels identified in studies
classified as describing the predictive value of liquid biopsies.
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2.3. Evidence of Predictive Value of a Biomarker Based on LBs

A total of 64 studies were identified reporting on the predictive value of a LB to guide a specific
treatment. The included studies tested 67 different analytes for 24 different treatments or treatment
combinations. EGFR mutations (including exon 19 deletion, T790M, and L858R) were described in 18
studies (28%), while 10 studies described the predictive value of CTC count (16%). Nineteen studies
(30%) evaluated the LB to indicate chemotherapy, either a single, doublet or combination therapy.
Targeted therapy agents (e.g., erlotinib, gefitinib, icotinib, afatinib) were subject of evaluation in 31 (48%)
of the identified studies, while immunotherapy agents (e.g., patritumab, nivolumab, bevacizumab)
were described by 9 (14%) studies.

2.4. Evidence Level Per Analyte and Therapy

Figure 4 depicts the analytes and therapies described in the different studies, stratified according
to the evidence level. As previously shown in Figure 3, the majority of studies were classified as class
III B, a prospective observational study. In this category, CTC count, EGFR mutations, and cfDNA level
were identified most frequently. While CTC count and cfDNA level were researched in combination
with several types of treatments including chemotherapy, immunotherapy, and targeted therapies.
EGFR mutations in this category were exclusively researched in combination with targeted therapies.
Looking at the class with the highest evidence level (I D, post-hoc biomarker correlative analysis of
a prospective randomized clinical trial), we see that majority of studies in this class evaluate EGFR
mutations including exon 19 deletion and L858R.

3. Discussion

Our results provide a clear overview of the current developments within the field and the potential
clinical utility of the biomarkers identified in our study. More specific, our findings suggest that
in the diverse and active landscape of biomarker research, many studies focus on EGFR mutation
detection in LBs. The review also concludes that the EGFR is a valid marker in comparison to tissue
analysis. It was shown that using these LB markers it is possible to indicate the treatment likely to
be effective.

Figure 4. Cont.
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Figure 4. Evidence level per analyte and with reference to the companion therapies. The data is
presented for each evidence level (levels I-III; right y-axis) and studies were categorized based on
the biomarker of interest. Different colors are used to indicate the treatment these biomarkers were
compared to and numbers within the bars refer to the corresponding reference number. The evidence
levels were adopted from Rao et al. [147]. I D: Post-hoc biomarker correlative analysis of a prospective
randomized clinical trial. II B: Prospective biomarker driven non-randomized clinical trial. II C: Post-hoc
biomarker correlative analysis of a non-randomized clinical trial. III B: Prospective observational study.
III C: Case-control study. III E: Retrospective non-case/control study.
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Results show a significant variety in reported sensitivity, specificity, and concordance values
for LB results compared to matched tissue samples. The variation in results might be explained by
differences in sample preparation, sample volume, used assay, previous lines of treatment prior to
study inclusion, disease stage, amount of tumor shedding, and the number of patients included in
the study. The difference in sensitivity and specificity of the platform used in mutation detection was
also shown in a review by Li et al. [148]. In this review, the authors compared the performance of
multiple platforms in the detection of T790M mutations. In a review, Kim et al. [149] reported on
the sensitivity, specificity, and concordance rate in the detection of EGFR mutations. In this review,
authors reported a variation in outcomes depending on the technology and the genomic mutation of
interest. Variations in the sensitivity of mutation detection might indicate that at this moment, LBs are
not ready to replace TBs in practice; however, LBs might be a good alternative in patients in whom a TB
was deemed unfeasible. Moreover, as shown in Figure 2, there are studies reporting sensitivity values
exceeding 90%, indicating that by selecting the correct analysis method and patient group, LBs might
provide a satisfactory sensitivity for clinical applications. The variation in concordance and specificity
might be an indication of tumor heterogeneity missed by TB and would indicate that there might be
an added value of performing LBs alongside tissue analysis. In a report, the International Association
for the Study of Lung Cancer recommended the use of LB techniques to detect EGFR mutations in
treatment naïve patients. However, a negative result should be considered uninformative and should
be followed by a TB [150]. Moreover, the dominant presence of studies reporting on the clinical
validity of LBs in the detection of EGFR mutations found in this review is in line with the view of
the International Association for the Study of Lung Cancer, and it is to be expected that the first
role of LBs in the management of NSCLC will involve detection of EGFR mutations. Our results are
potentially biased towards the evaluation of the validity of LBs in the detection of EGFR mutations.
Considering the potential of LBs in the detection of acquired resistance to 1st and 2nd generation
EGFR tyrosine kinase inhibitors (TKIs) attracted considerable attention; however, the introduction
of osimertinib, a 3rd generation EGFR TKI, lessens the need for detection of the T790M resistance
mechanism, for which the FDA approved the use of plasma ctDNA analysis. Moreover, current
guidelines now recommend the use of osimertinib in the first-line setting, further reducing the need for
the detection of acquired resistance to 1st and 2nd generation EGFR TKIs [151]. Although the necessity
for LBs in the detection of T790M mutations was diminished by the introduction of osimertinib, a more
comprehensive frame of reference seems appropriate, since only 12% to 45% of NSCLC patients present
with EGFR mutations, depending on geography, histology, and smoking status [152,153]. While more
driver mutations, targetable pathways, drugs, and companion diagnostics are being discovered [154].
Indicating that there is a lot of potential for LBs beyond the detection of EGFR mutations and resistance
mechanisms to provide clinical benefit in the future. Looking at Figure 4 it becomes apparent that
a lot of biomarkers are being investigated at this moment in relation to a large variety of treatments
and treatment combinations. This indicates that this is an active field in which multiple research
groups try to identify the most beneficial treatment for patients based on genomic mutations or other
biomarkers identified by LBs. In this review, we looked at studies reporting on treatment outcomes
based on biomarker analysis prior to initiation of the study related treatment. In a number of studies,
patients did receive previous lines of treatment before study inclusion. Response monitoring could
also be considered a predictive value of LBs; however, response monitoring was not taken into account
in this review.

Currently, most targeted treatments requiring a companion diagnostic focused on tissue-based
analyses for treatment selection, as indicated by Bernabé et al. [155] and also supported by
the classification of studies according to their evidence level in this review (Figures 3 and 4).
The preliminary nature of the evidence makes it difficult to access the clinical benefit of mutation
detection using LBs since the beneficial effect of the treatment is unclear in tissue negative, plasma
positive patients. Therefore, more studies should aim to include LB analysis in the study design to
build on the currently available preliminary evidence. In our review, we found that 59% of identified
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studies were of prospective observational nature, while only 10% of the identified studies reported on
a randomized clinical trial with post-hoc biomarker analysis. Future directions towards implementation
might include large registry studies, which include matched tissue and LB results, and repeated LB
measurements to possibly evaluate the predictive value of a LB in response monitoring.

Like every review, this review has potential limitations. Despite the generally accepted problems
of selection of studies, A more fundamental problem might be the decision not to report the specific
methodology used in sample preparation and analysis. This was deliberately chosen as our focus was
to review evidence levels for each of the analytes. However, it is acknowledged that specific analytic
issues (such as DNA extraction) will potentially impact the clinical validity and predictive value. One of
the reasons for this restriction, was that more than half of the included studies in the validity group
did not provide detailed information regarding the applied methodology (e.g., DNA input quantity),
referred back to previous work, only listed the test kits used, the authors stated that DNA purification
or library preparation was performed according to manufacturers’ instructions, or sample analysis was
performed in an external laboratory. This lack of information makes it difficult to compare different test
accuracies, even within biomarkers analyzed using similar methodologies (e.g., NGS or PCR). Second,
TBs are regarded as the gold standard in determining the sensitivity, specificity, and concordance rate
of LBs. In this review we did not collect information on the methods used to detect biomarkers in
tissue samples, the accuracy of methodologies used in the analysis of tissue samples directly influences
the accuracy of LB results, e.g., mutations missed in the analysis of tissue samples potentially lead to
a reduction in the specificity and concordance rate of the LB analysis. However, it was expected that
all studies included in this review applied generally accepted methods or used commercially available
equipment in the analysis of tissue samples.

4. Materials and Methods

4.1. Eligibility Criteria

Studies included in this review could cover a wide range of LBs, but had to present results of
either the clinical validity or predictive validity. Original full-text articles published in English were
selected for review.

4.2. Search

A systematic literature search was performed in September 2019 using Scopus and PubMed
databases to identify relevant studies published between 1 January 2014 and 1 September, 2019. The time
span was selected to cover all recent developments in LB development while maintaining a amenable
amount of search results. The search included the following keywords and allowed for different
conjugations: NSCLC, non-small cell, ctDNA, microRNA (miRNAs), CTCs, extracellular vesicles, blood,
and serum. The full search queries used to perform the literature search are depicted in Supplementary
Materials I (S1). All article types were included in the initial search. This systematic review was
conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) guidelines [156].

4.3. Study Selection

After removing duplicate records, a review protocol (Figure 1) was used towards the selection
of relevant articles. Prior to conducting a full-text review, one author (F.v.D.) reviewed the title
and abstract of all records to determine their relevance. Exclusion of records from full-text review was
based on article type (e.g., review, letter to the editor, short communication, meta-analysis), cancer type
(other than NSCLC), number of patients included in the study (<20), clinical utility (the absence of
a relation between the biomarker and treatment outcome or a comparison between the LB results
and matched tissue samples), and biomarker type (single nucleotide polymorphisms (SNPs) were
excluded from this review). Inclusion criteria were checked in a fixed order (as depicted in Figure 1),
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inclusion criteria were not mutually exclusive and exclusion of articles was based on the first unmet
criteria. All reviewed abstracts were discussed with two co-authors (V.R. and H.K.) in case of doubt,
until a consensus was made on the inclusion of the paper. The two co-authors independently reviewed
70 randomly selected abstracts (~ 4% of all records identified). Results were compared to check for
disagreement between reviewers.

Articles were excluded if (1) the described study included less than 20 patients, (2) the intended
use of the biomarker was not categorized in terms of being prognostic, predictive, or diagnostic,
(3) the study did not report overall survival (OS), progression free survival (PFS), sensitivity, specificity,
and/or concordance rate, (4) full English text was unavailable.

Studies were excluded if they only reported on a biomarker of interest that could be classified
as an SNP. Reported sensitivity, specificity, and concordance were only extracted in case the study
included >10 patients in whom the biomarker was detected in matched tissue samples. Thresholds
were chosen to ensure a minimal evidence base.

4.4. Data Extraction

A full-text review was conducted on all records selected by title and abstract screening to determine
the eligibility of the articles for data extraction.

Full-text articles were screened for relevant outcomes, including Overall Survival (in months or
days, OS), Progression-Free Survival (PFS, in months or days), Sensitivity, Specificity, and Concordance
rate (percentage of identical measurement outcomes).

Records included after full-text screening were classified into two categories, namely validity
and predictive value. Articles describing a direct comparison between LB and tissue-based molecular
analysis were categorized in the category validity. From these papers we extracted the sensitivity,
specificity, and concordance rate. The sensitivity and specificity reflect the true positive and true
negative rate, respectively. While the concordance rate should reflect the overlap between LB and TB
outcomes. The category predictive value was assigned to articles describing differences in clinical
outcomes from study treatments based on the presence of a biomarker detected by LB analysis.

4.5. Evidence Classification

To gain an insight into the stage of biomarker research, we classified the level of evidence for
all articles included after full-text review and categorized as describing the predictive validity of
a biomarker. For this purpose, the evidence framework as proposed by Rao et al. was adopted [147].
evidence levels were classified from level I A (high-quality meta-analysis) to level IV E (expert opinion).
All records were classified by the first author (F.v.D.) and discussed with co-authors (V.R. and H.K.)
in case of doubt. Records were classified according to the highest applicable evidence level.

4.6. Data Interpretation

Information provided by included studies was summarized to provide a comprehensible overview.
Meaning, in studies classified as predictive all mentioned chemotherapy agents in single, doublet,
and combination therapies were labeled as chemotherapy. The therapy of interest in the study was
labeled as EGFR TKI in case the study included multiple comparable EGFR therapies, e.g., erlotinib
and gefitinib without stratification of results based on the prescribed therapy. In studies describing
the validity of a biomarker, the detailed description of the biomarker analysis method was reduced to
the principal technique or method. The distribution and average of the reported sensitivity, specificity,
and concordance values were estimated using a weighted approach based on the study size.

5. Conclusions

Current literature shows that the field is moving towards the use of LBs in the detection of
EGFR mutations and the prescription of EGFR TKI inhibitors. Moreover, the first adoption of
LBs in practice is expected to involve the detection of EGFR mutations as an addition to currently
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employed TBs. The currently available evidence for most analytes is limited to observational studies,
and the sensitivity, specificity, and concordance rates of LBs showed a strong variation between studies.
Although the diagnostic accuracy of LB compared to TB results is not perfect, it should be noted that
LBs might detect mutations missed in TBs, and further research is needed to evaluate the clinical
benefit of adopting LBs in practice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/5/1120/s1,S1:
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