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Repeated intake of methamphetamine (METH) leads to drug addiction, the inability to
control intake, and strong drug cravings. It is also likely to cause psychiatric impairments,
such as cognitive impairment, depression, and anxiety. Because the specific
neurobiological mechanisms involved are complex and have not been fully and
systematically elucidated, there is no established pharmacotherapy for METH abuse.
Studies have found that a variety of Chinese herbal medicines have significant therapeutic
effects on neuropsychiatric symptoms and have the advantage of multitarget
comprehensive treatment. We conducted a systematic review, from neurobiological
mechanisms to candidate Chinese herbal medicines, hoping to provide new
perspectives and ideas for the prevention and treatment of METH abuse.
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INTRODUCTION

Psychostimulants, including methamphetamine (METH) and other amphetamines (AMPHs), are
inferior to marijuana and have become the most diffusely used class of drugs globally (United
Nations, 2020). The abuse of METH and other AMPHs has become a serious public health problem
and a growing global concern. Regardless of the person, family, country, or society, the abuse of
METH has led to an obvious increase in various burdens, including the consumption of public health
resources (Siefried et al., 2020).

METH can cross the blood-brain barrier and act on the central nervous system. It mainly alters
neurotransmission by interfering with dopamine (DA), DA transporters (DAT), and increasing the DA
concentration in the brain (Brensilver et al., 2013). Repeated use ofMETH leads to chronic recurrent drug
dependence that is characterized by compulsive, uncontrolled drug use and intense cravings (Brensilver
et al., 2013; Mizoguchi and Yamada, 2019). METH is more likely to cause psychiatric impairments than
traditional opioids (Glasner-Edwards and Mooney, 2014; Eslami-Shahrbabaki et al., 2015). Related
epidemiological and clinical studies have suggested that people abusing METH have a significantly
increased risk of schizophrenia (Callaghan et al., 2012) and are more prone to cognitive impairment
(Wagner et al., 2013; Potvin et al., 2018; Mizoguchi and Yamada, 2019), depression (Marshall andWerb,
2010), anxiety (McKetin et al., 2016), and suicide attempts (Glasner-Edwards et al., 2008).

The Neurobiological Mechanisms Involved in Methamphetamine
Abuse
METH indirectly activates DA, 5-hydroxytryptamine (5-HT), glutamate (Glu), and adrenaline
receptors by increasing monoamine transmitters in the synaptic cleft, producing a series of
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physiological effects (Cruickshank and Dyer, 2009). In the central
nervous system, METH can indirectly stimulate adrenaline
receptors, causing increased alertness, vitality, and attention.
METH also induces the release of DA, which can induce
pleasure. Working memory and reasoning ability can be
enhanced by activating D1 receptors and α2 adrenergic
receptors in the prefrontal cortex (PFC); excited 5-HT
receptors have antianxiety effects, making people feel relaxed
and confident (Berridge, 2006; Weinshenker and Schroeder,
2007). These positive drug-induced experiences are the main
reasons why METH is widely abused. However, long-term heavy
use of METH can produce significant toxic effects on the nervous
system, which not only leads to abnormal brain function but also
damages the brain structure. At the beginning of this manuscript,
we reviewed the neurobiological mechanisms of METH
addiction, including cognitive dysfunction, anxiety, depression,
oxidative stress, and inflammation. The specific neurobiological
mechanisms of METH addiction are summarized in Table 1.

Methamphetamine and Addiction
Chronic METH abuse elicits compulsive craving and dependency
(Miner et al., 2019). The neurobiological mechanism of METH
addiction has been studied for several years. The ‘incentive-
sensitization theory’ of addiction is the most widely recognized
classical theory about METH-induced behavioral
hypersensitization and rewarding (Siefried et al., 2020). METH
stimulates the brain’s reward system, leading to drug-related
overstimulation, compulsive motivation, and excessive drug

intake (Cruickshank and Dyer, 2009). The neural circuits
involved in METH addiction are extensive and complex,
involving many brain nuclei and brain regions,
neurotransmitters, and protein mediators (Kauer and Malenka,
2007). Among them, the DA system is the most studied, and other
systems are also involved to varying degrees.

The balanced state of release and reuptake of DA is an
important prerequisite for DA to participate in various
physiological activities. METH inhibits DA reuptake by the
DAT and enhances synaptic DA release. Therefore, METH
can activate DA receptors in the brain reward system to
induce reward-motivated behavior (Volz et al., 2007).
Different DA receptors play different roles in METH
addiction. The D1 receptor is closely involved in METH-
induced drug administration, location preference, and drug-
seeking behaviour, while the D2 receptor is involved in
METH-mediated neurotoxicity (Carati and Schenk, 2011).
Studies have also found that the D3 receptor (D3R) is closely
involved in METH addiction and has also been proven to play an
important role in METH-induced hypersensitization in rats
(Jiang et al., 2018). An increase in striatal D3R dopaminergic
neurotransmission is associated with compulsive drug-seeking
behavior in METH addicts. D3R antagonists may serve as a
therapeutic tool for craving and relapse in METH addicts
(Boileau et al., 2016).

In addition to DA, 5-HT is another important
neurotransmitter in the processes leading to METH-induced
nerve injury and addiction. METH can cause a dramatic

TABLE 1 | The effect of METH on neurotransmitters, their addictive effects, and/or psychiatric impairment.

Addictive effects
and/or

major psychiatric
impairment

Neurotransmitters Receptor or target Effect

METH
impairment

Addictive
effects

METH dependence DA D1, D2, D3, DAT DA release and reuptake imbalances;
DA receptor activation

5-HT SERT Release of 5-HT; increases synthesis
and release of DA

Glu D1 Increased glu and DA release via
D1 receptor-mediated glutamate
disinhibition

GABA GABAA Inhibits the GABAB receptor signaling
pathway

Neuronal
injury

Memory and
cognitive deficits

DA D1, D2, D3, DAT, HCN1 DA release and reuptake imbalances
and apoptosis pathways activation

Glu mGluR5 and GluNR2B Deduced glutamate homeostasis,
decreased expression of mGluR5 and
GluNR2B

Anxiety and
depression

Monoamine
neurotransmitters

Monoamine neurotransmitters receptor Monoamine neurotransmitters depletion
Apoptotic signaling pathways Apoptosis
Mitochondria and endoplasmic reticulum Stress cascading activation

Neuronal (damage) Microglia and astrocytes Inflammation and overactivation
BDNF and NGF Neurotrophic action
Toxic dopamine quinone, oxygen free radicals,
hydrogen peroxide, and increased ROS in
neuron cells

Oxidative stress

METH �methamphetamine; R � receptor; 5-HT � 5-hydroxytryptamine; D or DA � dopamine; DAT �Dopamine transporter; SERT � 5-HT transporter; GABA � gamma-aminobutyric acid;
Glu � glutamate; NR2B �N-methyl-D-aspartate receptor subtype-2B; HCN1 � hyperpolarization-activated and cyclic nucleotide-gated cation 1; BDNF � brain derived neurotrophic factor;
NGF � nerve growth factor.
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increase and release of serotonin in the body, which is due to its
indirect effect on the 5-HT transporter (SERT) (Sora et al., 2009).
Moreover, the 5-HT system and the DA system interact in the
mechanism of METH addiction. On the one hand, METH
promotes the endogenous release of 5-HT through an
independent mechanism of the 5-HT reuptake transporter
(Scearce-Levie et al., 1999). On the other hand, a large amount
of endogenous 5-HT can increase the synthesis and release of DA,
and the regulation of the release of DA in the central ‘reward
system’ may be the mechanism of the 5-HT system in METH
drug addiction (Thomas et al., 2010). However, the interaction
between the 5-HT and DA systems needs to be further
investigated.

In addition, glutamate, as the ‘assistant’ of DA, has attracted
much attention because of its involvement in the sensitization
and plasticity of neurons in the central nervous system, and
glutamate neurotoxicity is an important cause of pathological
changes in the nervous system. During METH abuse, due to
D1 receptor-mediated glutamate disinhibition in the cortical
striatum, extracellular DA increases, leading to a sharp
increase in glutamate in the striatum (Trudeau et al., 2014).
METH can also increase the activity of glutamate neurons in the
ventral tegmental area (VTA), thus inducing an increase in DA
release in the nucleus accumbens (NAc) and PFC (Mark et al.,
2007).

METH-induced addiction also involves gamma-aminobutyric
acid (GABA) neurons and their receptor signaling pathways.
METH can affect the activity of the GABAA receptor and
decrease the potential induced by the GABAA receptor, which
may be caused by the competitive binding of METH to the
GABAA receptor (Hondebrink et al., 2013). METH can also
inhibit the GABAB receptor signaling pathway of GABA neurons
in the VTA region (Padgett et al., 2012). GABA receptor agonists
can counteract METH-induced GABA neuron damage and
conditioned positional preference (CPP) behavior in rats
(Voigt et al., 2011).

Methamphetamine and Cognitive Deficits
Cognition involves various intellectual capabilities, such as
memory, attention, processing speed, and multitasking ability
(Potvin et al., 2018). Cognitive abilities are necessary to function
in society, and METH abuse can lead to cognitive problems that
interfere with daily life (Dean et al., 2013). Previous researchers
have been interested in understanding the cognitive deficits
caused by METH because of its neurotoxic properties. Long-
term METH abuse can cause permanent brain damage, which
translates into persistent cognitive deficits. It is commonly
believed that METH is an addictive drug with neurotoxic
properties that damages the nervous system and induces
cognitive impairment (Scott et al., 2007; Panenka et al., 2013).

To date, several cognitive deficits have been identified in
METH addicts, including reaction time, working or attention
memory, learning and memory, motor skills, information
processing speed, and executive function deficits. Studies have
shown that continuous METH use can cause medium effect-size
cognitive impairment (Scott et al., 2007). A recent report also
revealed that moderate impairments occur in most cognitive

categories, including attention, verbal fluency, learning and
memory, executive function, and visual and working memory.
However, the societal consequences of METH cognitive
impairment also need to be understood (Potvin et al., 2018).

METH has been found to cause abnormal changes in several
neurotransmitters, such as DA overflow, leading to memory
deficits (Nordahl et al., 2003). METH abuse has persistent
adverse effects on the dopaminergic system, including DA
release, reuptake, transport, and metabolism (Moszczynska
and Callan, 2017; Anneken et al., 2018). Recent studies have
shown that METH abuse can cause excessive release of DA in the
PFC, activate neuronal apoptosis pathways, and eventually lead to
impaired memory function (Long et al., 2017). Chronic use of
antipsychotics causes downregulation of D1 receptors in the PFC,
which severely damages working memory (Castner et al., 2000).
Therefore, D1 receptor regulation in the PFC plays an important
role in working memory and is an important target for the
treatment of cognitive dysfunction (Thompson et al., 2014;
Wang et al., 2019).

Prefrontal glutamatergic dysregulation may also impact
recognition memory (Barker et al., 2007). Repeated METH
exposure alters neuronal firing states and reduces glutamate
homeostasis (Parsegian and See, 2014). METH decreases the
expression of mGluR5 and GluNR2B in the cortex after two
weeks of abstinence (Reichel et al., 2011). Because blocking both
mGluR5-and GluNR2B-containing N-methyl-D-aspartate
(NMDA) receptors impairs memory, these receptors are
important in memory and cognitive function (Barker and
Warburton, 2008).

Methamphetamine and Depression
The severity of METH exposure is associated with increased rates
of anxiety and depression (Glasner-Edwards et al., 2009). METH
abusers with depression are more likely to alleviate depressive
symptoms by taking drugs again and continue to use METH at a
much higher rate than other populations. METH addicts also
have significantly higher rates of depressive symptoms after
withdrawal (Nakama et al., 2008). Studies have proven that
the negative mood of addicts is closely associated with drug
craving (Quello et al., 2005). METH abuse can lead to or worsen
depressive and other psychiatric symptoms, which can increase
the likelihood of further METH abuse (Glasner-Edwards et al.,
2009; May et al., 2020).

Abuse of METH induces the release of neurotransmitters that
cause feelings of euphoria, thereby affecting the brain’s reward
pathways (Glasner-Edwards and Mooney, 2014). METH induces
rapid accumulation of monoamine neurotransmitters in brain
synapses, which interact with DA, norepinephrine, and SERT in
neurons to produce pharmacological effects (Cruickshank and
Dyer, 2009). The DA level in the brain can affect emotional
conditions such as depression and anxiety, leading to pathological
changes such as reward effects and drug craving (Cadet and
Brannock, 1998; Siefried et al., 2020). In METH addicts, long-
term abuse of METH severely impairs the structure and function
of the brain’s monoamine transmitter system and eventually leads
to the depletion of monoamine neurotransmitters in the brain
(Cadet et al., 2003). METH abuse can also lead to the release of
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monoamine transmitters such as DA, norepinephrine, 5-HT, and
other neurotransmitters (Rothman and Baumann, 2003; Panenka
et al., 2013). Concretely, chronic abuse of METH can deplete DA
reserves in the brain and reduce DA receptor availability
(London, 2016). In summary, long-term METH abuse depletes
reserves of DA in the brain and reduces the availability of DA
receptors (Alex and Pehek, 2007; Ferrucci et al., 2013). METH can
also have a negative impact on motor and executive function,
which are usually associated with anxiety and depression
(Rusyniak, 2013). Recent studies have demonstrated that
METH can induce neuropathological changes through
apoptotic signaling pathways in the rodent brain. Data suggest
that mitochondria- and endoplasmic reticulum-mediated cascade
activation is involved in METH-induced apoptosis and that
neuronal apoptosis aggravates the occurrence of depression
(Cadet et al., 2003).

Microglia are mainly involved in the regulation of
inflammation in the central nervous system and protect the
brain against injury and damage (Graeber and Streit, 2010).
However, microglial overactivation can induce the release of
various cytokines, reactive oxygen species, and nitrogen
species, ultimately leading to neuronal damage. A study found
that the inflammation induced by METH exposure may play an
important role in neuronal damage (Beardsley and Hauser, 2014).
Clinically, neuropsychiatric impairments, including cognitive
deficits, depression, and anxiety that have been found in
METH addicts, are associated with the inflammatory response
(Sadek et al., 2007; Zorick et al., 2010). Elevated levels of the
proinflammatory cytokines interleukin-1β (IL-1β), interleukin-2
(IL-2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α)
in plasma were obviously associated with severe neurocognitive
impairment in METH addicts (Loftis et al., 2011). It has been
suggested that METH-induced neuroinflammation in the
striatum may be the common basis of depression and
cognitive deficits in METH addicts (Krasnova et al., 2016).

Research has shown that brain-derived neurotrophic factor
(BDNF) plays an increasingly important role in anxiety and
depression. BDNF is involved in the pathophysiological
process of depression and plays an antidepressant role
(Heyman et al., 2012; Archer et al., 2014). Physical exercise
has been found to reverse the physical and neurological
damage caused by METH exposure by increasing BDNF release,
which is the basis for antidepressant effects (Huang et al., 2019).
Studies have shown that other neurotrophic factors, such as nerve
growth factor (NGF) and BDNF, also play a key role in the
neurophysiological mechanisms that relieve depression
(Overstreet et al., 2010; Hochstrasser et al., 2013).

Methamphetamine and Neuronal Injury
Core mechanisms of nervous system damage caused by METH
include over release of monoamine transmitters, oxidative stress,
mitochondrial dysfunction, and inflammation (Krasnova and
Cadet, 2009; Shin et al., 2012). These mechanisms may be the
common pathological basis for METH-induced neuropsychiatric
disorders such as addiction, impairments in learning, memory
and cognition, anxiety, and depression, and it is necessary to
highlight these mechanisms here.

High concentrations of DA in the cytoplasm produce toxic
dopamine quinone, oxygen free radicals, hydrogen peroxide, and
increased reactive oxygen species (ROS) in neuronal cells,
resulting in oxidative stress, mitochondrial dysfunction, and
damage to the presynaptic membrane (Cadet and Brannock,
1998; Lin et al., 2012). Studies have shown that tyrosine
hydroxylase inhibitors inhibit DA synthesis and thus protect
against neurotoxic effects caused by DA autoxidation
(Krasnova and Cadet, 2009). Excessive release of DA in the
synaptic cleft can cause the loss of the synaptic termini of
dopaminergic neurons. DAT inhibitors have been shown to
inhibit METH-induced DA release and thus have a protective
effect on synaptic terminals (Shaerzadeh et al., 2018). Increased
DA release in the synaptic cleft also induces apoptosis of
postsynaptic neurons by activating D1 and D2 receptors, and
this effect is inhibited by D1 and/or D2 receptor antagonists (Xu
et al., 2005). Antioxidants help to alleviate nerve damage caused by
METH and are neuroprotective (Imam et al., 2001). Protein kinase
Cδ (PKCδ) is also involved in METH-induced oxidative stress and
dopaminergic neurotoxicity. Inhibition of PKCδ activity can prevent
METH-induced neurotoxicity (Wen et al., 2016).

Mitochondrial dysfunction is another mechanism of METH
neurotoxicity. METH causes adenosine triphosphate (ATP)
depletion and mitochondrial complex II inhibition. Mitochondrial
complex substrates (decylubiquinone or nicotinamide) have been
shown to attenuate METH-induced striatal dopaminergic neuron
damage (Stephans et al., 1998; Brown et al., 2005).

The inflammatory response of the central nervous system
induced by METH is a complex, interactive, and regulated
process. This may be related to the symptoms of mental
disorders caused by METH (Huckans et al., 2015). Microglia,
astrocytes, and a series of inflammation-related factors form a
network of cascade pathways. When the inflammatory response
is overactivated, microglia and astrocytes can regulate each other
through inflammatory cell mediators and jointly regulate changes
in other factors in the inflammatory pathway. The increase in
inflammatory factors can stimulate or induce microglia and
astrocytes (Potula et al., 2010; Liu et al., 2012; Chen et al.,
2015; Lloyd et al., 2017). Signal changes in nuclear factor-κB
(NF-κB) acts as a ‘local pivotal factor’ in the control of midstream
inflammation, controlling the activation of many inflammatory
pathways (Mitchell and Carmody, 2018). Upstream factors, such
as toll-like receptor-4 (TLR4), signal transducer and activator of
transcription 3 (STAT3), extracellular signal-regulated kinase
(ERK), serine-threonine kinase (AKT), and
phosphatidylinositol 3-kinase (PI3K), signal changes in NF-κB
signalling (Park et al., 2017), NF-κB activation, and transcription
of various inflammatory cytokines, such as IL-1β, IL-6, and TNF-
α, thereby mediating the cellular inflammatory response (Hou
et al., 2017). D2-deficient brain regions show a significant
inflammatory response. D2 agonists inhibit NF-κB
phosphorylation and downstream inflammatory cytokine and
chemokine production (Han et al., 2017). Due to the complex
environment of the central nervous system, there are still many
upstream and downstream factors of inflammation-related
pathways, and their relationships have not been fully
elucidated and need to be further studied.
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Candidate Chinese Herbal Medicine of
Methamphetamine Abuse
METH abuse, addiction, and the resulting mental symptoms have
become an increasingly important problem to be solved.
Unfortunately, because the specific neurobiological
mechanisms involved are complex and have not been fully

and systematically elucidated, to date, there is no established
pharmacotherapy for METH abuse (Siefried et al., 2020).

In recent years, research on the therapeutic effect of Chinese
herbal medicine on METH has received increasing attention and
has made remarkable progress. Studies have found that a variety
of Chinese herbal medicines have significant therapeutic effects

FIGURE 1 | A diagram of the mechanism of different Chinese herbs in the treatment of METH-induced neuropsychiatric injury (Created with BioRender.com). ®↓
symbol indicates decrease and ↑ symbol indicates increase following METH treatment.
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on psychiatric symptoms, such as addiction, depression, and
cognitive impairment, induced by METH abuse and have the
advantage of multitarget comprehensive treatment. We
conducted a systematic review to provide new perspectives
and ideas for the prevention and treatment of METH abuse.
The detailed neural mechanism is illustrated in Figure 1.

Tetrahydroprotoberberines
Tetrahydroprotoberberines (THPBs) are a series of alkaloids
isolated from the traditional Chinese analgesic drug
Yanhuasol that act on the dopaminergic system of the CNS
and have a far-reaching effect (Jin and Sun, 1995).
l-Tetrahydropalmatine (l-THP) and l-stepholidine (l-SPD)
are members of the THPB family. They have unique
pharmacological characteristics as D1 receptor agonists and
D2 receptor antagonists (Jin et al., 2002) and have been proven
to have value in the clinical treatment of drug dependence
(Chu et al., 2008).

l-THP acts in the brain and induces the release of endogenous
opioids such as endorphins, enkephalins, and kephalins. This
may be the underlying mechanism for treating drug dependence
(Jin and Sun, 1995). The reward effect in the process of METH
addiction is mainly caused by the increase of DA, and the
blocking effect of l-THP on the DA receptor in the reward
system can weaken the reward effect of METH, reduce the
euphoria it produces, and finally reduce the mental
dependence on METH (Jin and Sun, 1995). Our other study
also found that l-THP inhibits METH self-administration and
reinstatement in rats (Gong et al., 2016). l-THP can suppress
METH-induced rewarding in CPP mice (Su et al., 2013), and the
l-THP inhibitory effect may be associated with the inhibition of
ERK phosphorylation in the NAc and PFC (Su et al., 2020). l-THP
inhibits METH-induced behavioral sensitization by upregulating
5-HT neuronal activity and increasing the expression of the D3
receptor (Yun, 2014a). l-THP treatment also has a potential
protective role on METH-induced spatial memory impairment
in mice (Cao et al., 2018).

l-SPD, a partial agonist of the D1 receptor and antagonist of
the D2 receptor (Natesan et al., 2008), has a therapeutic effect on
memory damage induced by METH. l-SPD can also attenuate
METH-induced locomotor sensitization behavior in a dose-
dependent manner (Ma et al., 2014). A recent study proved
that l-SPD alleviates memory deficits in Alzheimer’s disease
rats by affecting dopaminergic pathways and synaptic
plasticity (Hao et al., 2015). Our previous study also
demonstrated that l-SPD pre-treatment rescues METH-
induced memory deficits by suppressing upregulated HCN1
channels and the dopaminergic pathway (Zhou et al., 2019).

l-scoulerine (l-SLR, an l-SPD analogue) is not only a D1
receptor agonist and D2 receptor antagonist but also a 5-
HT1A receptor partial agonist. Pre-treatment with l-SLR
reduces the chronic behavioral sensitization and METH-
induced expression of CPP in mice. l-SLR also inhibits the
anxiety-like behaviors induced by METH in zebrafish (Mi
et al., 2016).

The effects of these traditional Chinese medicine (TCM)
THPBs are summarized in Table 2.

Ginsenoside
Ginseng is a perennial, succulent root and a family of plants
known as araliaceae. Ginseng is mainly divided into American
ginseng panaxquinquefolium and Korean ginseng panax ginseng.
Over many years, in traditional medicine, ginseng has played a
positive role in invigorating qi, calming nerves, and enhancing
immunity. It has also been used as an anxiolytic, antidepressant,
and memory enhancer (Lacaille-Dubois and Wagner, 1996).
Ginseng prevents morphine-, cocaine-, and METH-induced
tolerance and dependence in rodents (Tokuyama and
Takahashi, 2001; Kim et al., 2005). Ginseng also reduces the
hyperstimulation induced by METH and cocaine even after
discontinuation for 30 days (Tokuyama et al., 1996).

It has been suggested that ginseng total saponin (GTS)
attenuates hyperlocomotion and CPP induced by METH in
rodents (Kim et al., 1996; Tokuyama and Takahashi, 2001;
Kim et al., 2005). GTS modulates the activity of the
dopaminergic system by reducing DA reuptake and then
affecting brain DA concentrations (Lacaille-Dubois and
Wagner, 1996).

Pansenoside F11 (PF11) is a special ginsenoside that is found
in American ginseng but not in Korean ginseng. PF11 can reduce
DA levels by regulating dopaminergic and GABA neurons in the
NAc and thus exerts an inhibitory effect on METH addiction-
induced behavior (Fu et al., 2016). PF11 has a neuroprotective
effect and can antagonize the neurotoxic effects caused by METH
addiction (Wu et al., 2003).

Ginsenoside Re can effectively prevent METH-induced
mitochondrial dysfunction, oxidative damage, microglial
activation, activation of proapoptotic factors, and degeneration
of dopaminergic neurons by inhibiting the PKCδ gene (Shin et al.,
2014; Nam et al., 2015). Both single and repeated administration
of ginsenosides Rb1 and Rg1 (major components of GTS) inhibit
the behavioral sensitization and CPP induced by METH (Kim
et al., 1998).

One of the clinical indications of ginseng is antidepressant
effects (Kennedy and Scholey, 2003). In forced swimming tasks,
PF11 shortens METH-induced long periods of immobility and
increases the incubation period of the Morris water maze task,
suggesting that PF11 alleviates memory decline and depression-
like behavior (Wu et al., 2003). A study found that ginseng
saponin Rb1 has an antidepressant effect associated with the
BDNF- tyrosine kinase B (TrkB) signaling pathways and that the
combination of BDNF and TrkB regulates PI3K through at least
three intracellular signal transduction pathways. These different
signal transduction pathways ultimately regulate cell
proliferation, differentiation, and apoptosis through the cyclic
adenosine monophosphate response element binding protein
(CREB)-dependent activation of transcription factors and are
critical to play an antidepressant role (Lee et al., 2016; Kang et al.,
2019). Therefore, ginseng (saponin) is also a potential candidate
drug for METH-induced depression.

The effects of the TCM ginseng are summarized in Table 3.

Others
Scutellariae baicalensis Georgi (Huang Qin) belongs to the
labiaceae family. It has many clinical therapeutic effects.
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TABLE 2 | Summarized effects of TCM Corydalis and Stephania therapy on METH abuse and other psychiatric symptoms.

Herb Compound Types of functional
impairment

Symptoms and experiment Animal Effective dose Receptor or signaling
pathway molecule

Author
[Ref.]

Corydalis and
Stephania

l-THP METH dependence METH self-administration and
METH-induced reinstatement

Rat l-THP 5 mg/kg DA receptor Gong et al.
(2016)

CPP Mice l-THP (10 and
20 mg/kg)

Su et al.
(2013)

l-THP 10 mg/kg ERK phosphorylation Su et al.
(2020)

Behavioral sensitization Locomotor activity Rat and
mice

l-THP (10 and
15 mg/kg)

5-HT and D3 receptor Yun (2014a)

Memory and cognitive
function impairment

Spatial memory impairment Mice l-THP (10 and
20 mg/kg)

DA receptor Cao et al.
(2018)

l-SPD Behavioral sensitization Locomotor sensitization
behavior

Rat l-SPD (5 and
10 mg/kg, i.p.)

DA receptor Ma et al.
(2014)

Memory and cognitive
function impairment

Memory deficits Mice l-SPD
(10 mg/kg, i.p.)

Dopaminergic pathway
and HCN1 channels

Zhou et al.
(2019)

l-SLR Behavioral sensitization Behavioral sensitization Mice l-SLR (5 mg/kg) D2 receptor antagonist,
D1 receptor agonist

Mi et al.
(2016)METH dependence CPP

Anxiety-like behaviors Anxiety-like behaviors Zebrafish 5-HT1A receptor partial
agonist

METH � methamphetamine; 5-HT � 5-hydroxytryptamine; D or DA � dopamine; ERK � extracellular-regulated kinase; HCN1 � hyperpolarization-activated and cyclic nucleotide-gated
cation 1; l-THP � l-tetrahydropalmatine; l-SPD � l-stepholidine; l-SLR � l-scoulerine; CPP � conditioned place preference.

TABLE 3 | Summarized effects of TCM ginseng therapy on METH abuse and other psychiatric symptoms.

Herb Compound Types of
functional
impairment

Symptoms and
experiment

Animal Effective dose Receptor or signaling
pathway molecule

Author
[Ref.]

Ginseng GTS Behavioral
sensitization

Hyperlocomotion Mice 200 mg/kg Modulated reuptake of
dopamine and complex
pharmacological actions
between dopamine receptors
and a serotonergic/adenosine
A2A/delta-opioid receptor

Tokuyama
et al. (1996)

METH
dependence

CPP

Ginsenoside
Rb1 and Rg1

Behavioral
sensitization

Hyperlocomotion Mice 100 and 200 mg/kg,
respectively

Postsynaptic DA receptors Kim et al.
(1998)

METH
dependence

CPP 100 mg/kg,
respectively

Ginsenoside
Rb1

Anxiety-like
behaviors and
stress

Immobilization stress Rat 40 mg/kg BDNF - TrkB signaling
pathways

Kang et al.
(2019)

Anxiety-like
responses and post-
traumatic stress

30 mg/kg CREB Lee et al.
(2016)

Pansenoside
F11

METH
dependence

CPP Mice 4 or 8 mg/kg/day p.o Reduce DA level by regulating
dopaminergic and GABA
neurons

Fu et al.
(2016)

Neurotoxic Neurotoxic 4 and 8 mg/kg, p.o.,
two times at 4 h
intervals, 60 min prior
to METH
administration

Neuroprotective Wu et al.
(2003)Depression Prolonged immobility

time in the forced
swimming task

Memory and
cognitive
function
impairment

Increased latency in
morris water maze
task

Ginsenoside
Re

Neurotoxic Oxidative damage,
mitochondrial
dysfunction

Mice 10 and 20 mg/kg, p.o.,
twice a day, 8 or
19 days

PKCδ gene Shin et al.
(2014)

Microglial activation
and dopaminergic
degeneration

Human
neuroblastoma
dopaminergic SH-
SY5Y cell lines

100 μM Nam et al.
(2015)

METH �methamphetamine; 5-HT � 5-hydroxytryptamine; D or DA � dopamine; GABA � gamma-aminobutyric acid; BDNF � brain derived neurotrophic factor; TrkB � tyrosine kinase B;
CREB � cAMP-response element binding protein; PKC � protein kinase C; GTS � ginseng total saponin; CPP � conditioned place preference
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TABLE 4 | Summarized effects of other TCM therapy on METH abuse and other psychiatric symptoms.

Herb Compound Types of
functional
impairment

Symptoms and
experiment

Animal Effective dose Receptor or signaling
pathway molecule

Author [Ref.]

Scutellariae
baicalensis
Georgi

Baicalein Memory and
cognitive
function
impairment

Memory deficits, amnesia Mice 1 mg/kg D2 receptors Wong et al.
(2014)

Uncaria alkaloids Rhynchophylline Neurotoxic Oxidative damage Mice 1 mg/kg Dopamine transporter Liu et al. (2006)
Neurotoxic Dopaminergic neurotoxicity
METH
dependence

Dopaminergic neurotoxicity 1 mg/kg Elevated NO level Liu et al. (2006)
CPP 40 and 80 mg/kg Reduce NR2B

expression
Li et al. (2014)

Clerodendrum
inerme

Hispidulin Behavioral
sensitization

Hyperlocomotion Mice 10,30, and
100 mg/kg, ip;
10 nmol,
intracerebellar
microinjection (i.c.b.)

Activate GABAA
receptors

Liao et al.
(2016)

G. kola seeds Kolaviron Behavioral
sensitization

Stereotypic behaviors Rat 200, 400, and
800 mg/kg, po.,
4 weeks

Inhibition of
acetylcholinesterase

Ijomone and
Obi (2013)

Saururus
chinensis

Sauchinone Memory and
cognitive
function
impairment

Negative effects of METH
on learning and memory

Mice 10 mg/kg, po Degeneration of
dopaminergic nerve
terminals, NO synthase

Jang et al.
(2012)

Neurotoxic Neurotoxicity
Neurotoxic Attenuated the METH-

induced degeneration of
dopaminergic nerve
terminals, reduced the glial
cell activation, inhibited the
synthesis of NO

Coffee beans Chlorogenic and
caftaric acids

METH
dependence

CPP Rat 10 mg/kg, ip NO synthase inhibitor Kim et al.
(2013)

Oxidative stress Oxidative stress 60 mg/kg
chlorogenic acid and
40 mg/kg caftaric
acid

Antioxidant stress Koriem and
Soliman
(2014)

Grape Resveratrol Behavioral
sensitization

Dopamine overflow Rat Repeated
resveratrol treatment
(1–20 mg/kg)

Reduce DA release Miller et al.
(2013)

Lemon Limonene Behavioral
sensitization

Neuron apoptotic Neuronal
N27 cell
lines

10 µM Caspase-3 dependent
pathway

Kanthasamy
et al. (2011)

Hyperlocomotion Rat and
mice

200, 400, and
600 mg/kg, i.p

5-HT neuronal function
and DA release

Yun (2014b)

Ginkgo biloba Ginkgolide B Nerve
inflammation

Microglial activation BV2 cells
lines

120–240 µM TLR4-NF-κb signaling
pathway

Wan et al.
(2017)

Silybum
Marianum

Silibinin Memory and
cognitive
function
impairment

Cognitive deficits Mice 200 mg/kg, po.,qd,
7 days

DA and 5-HT system Lu et al. (2010)

Cassia siamea
Lamk

Barakol Neurotoxic Decreases of DA and 5-HT Mice 100 mg/kg, ip Dopaminergic receptors Sukma et al.
(2002)Behavioral

sensitization
Hyperlocomotion

Cortex
cinnamomi

Cinnamaldehyde Neurotoxic Neurotoxicity Rat 40 mg/kg, ip ERK pathway Saeed et al.
(2018)Memory and

cognitive
function
impairment

Learning and cognition
deficits

METH �methamphetamine; NO � nitric oxide; 5-HT � 5-hydroxytryptamine; D or DA � dopamine; GABA � gamma-aminobutyric acid; NR2B � N-methyl-D-aspartate receptor subtype-
2B; ERK � extracellular-regulated kinase; TLR4-NF-κB � toll-like receptor 4-nuclear factor-κB; CPP � conditioned place preference
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Baicalein is an active ingredient isolated from Huang Qin roots
that has anti-inflammatory and free radical scavenging effects.
Studies have shown that baicalein has a powerful neuroprotective
effect (Sowndhararajan et al., 2017). A recent study confirmed
that baicalein ameliorates METH-induced memory loss and
amnesia through D2 receptors in mice. Baicalein also reduces
METH-induced hippocampal lipid peroxidation and
peroxynitrite production in mice (Wong et al., 2014). Baicalein
attenuates the loss of DAT (Wu et al., 2006) and affects the DA
concentration in METH-intoxicated mice in a dose-dependent
manner (Liu et al., 2006). In the striatum, baicalein protects
neurons from METH-induced reductions in NO content (Liu
et al., 2006).

Uncaria alkaloids are commonly used in TCM (Shi et al.,
2003). In the central nervous system, rhynchophylline has anti-
convulsive, sedative, memory repair, and anti-epileptic effects (Li
et al., 2015). Rhynchophylline is a noncompetitive NMDA
receptor antagonist and a calcium channel blocker. It can
reduce the CPP behavior of animals by reducing the
expression of NR2B protein and thus reduces psycho-
dependence after METH abuse (Li et al., 2014).

Hispidulin, the active constituent of the C. inerme ethanolic
group, also decreases hyperlocomotion induced by METH (Chen
et al., 2012; Huang et al., 2015). Hispidulin inhibits METH-
induced behavioral sensitization, possibly by activation of the
GABAA receptor α6 subunit (Liao et al., 2016).

Kolaviron, the biflavone complex in kola seeds, alleviates the
stereotypical behavior induced by a single dose of METH in mice
and alleviates the negative effects of METH on learning and
memory. Brain histological studies also show that kolaviron
preconditioning protects the hippocampus from METH-
induced neurotoxicity. Kolaviron may restore METH-induced
cognitive impairment by inhibiting acetylcholinesterase (Ijomone
and Obi, 2013).

Possible protective effects of sauchinone against METH abuse
have also been discussed. Sauchinone attenuates METH-induced
dopaminergic nerve terminal degeneration. In addition,
sauchinone reduces glial cell activation and inhibits the
synthesis of NO through the suppression of NO synthase
(Jang et al., 2012). Kim and coworkers found that sauchinone
shows a dose-dependent protective effect, inhibiting the
expression and acquisition of CPP induced by METH (Kim
et al., 2013).

Chlorogenic acid and caftaric acid can eliminate
hepatotoxicity and reverse the increase in oxidative stress
induced by METH (Koriem and Soliman, 2014). Resveratrol
also reduces METH-induced DA overload in the brains of rats
(Miller et al., 2013). Resveratrol has a protective effect on METH-
induced caspase-3-dependent apoptosis (Kanthasamy et al.,
2011). Limonene reduces METH-induced hyperlocomotion in
a dose-dependent manner (Yun, 2014b).

Ginkgolide B inhibits microglial cell activation induced by
METH, possibly through the TLR4-NF-κB signaling pathway

(Wan et al., 2017). Silibinin can reduce cognitive impairment and
decrease DA and 5-HT associated with METH abuse (Lu
et al., 2010). Barakol, the main component of cassia seeds,
reduces hyperactivity induced by METH in a dose-
dependent manner by inhibiting dopaminergic receptors
(Sukma et al., 2002). Cinnamaldehyde can reduce METH-
induced nerve damage and enhances learning and cognitive
abilities through activation of the ERK pathway in the PFC
(Saeed et al., 2018).

The effects of other TCM are summarized in Table 4.

DISCUSSION

METH dependence and its related neurological and
psychiatric problems involve multiple transmitter systems
in multiple brain regions. METH dependence is caused by
very complex mechanisms involving DA, Glu, 5-HT,
acetylcholine, and GABA. With a history of more than
200 years, TCM drug rehabilitation has accumulated rich
experience and formed a set of unique theories and
methods. The treatment philosophy of TCM drug
abstinence is to support healthy qi and eliminate toxic
drugs, and this philosophy highlights the characteristics of
treatment based on syndrome differentiation. More
importantly, TCM compounds also have multitarget effects
that are similar to cocktail therapy, aiming to address METH
substance dependence and the neuropsychiatric problems
derived from this complex multitarget intractable
encephalopathy. TCM can be regarded as a useful attempt
and exploration. Unfortunately, only a few TCM or chemical
constituents have sufficient literature to identify promising
candidates for METH abuse. Further basic and clinical studies
are needed.
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